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Abstract

The avian nucleus mesencephalicus lateralis, pars dorsalis (MLd) is an auditory midbrain nucleus that plays a significant role in a variety of
acoustically mediated behaviours. We tested whether MLd is hypertrophied in species with auditory specializations: owls, the vocal learners and
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cholocaters. Using both conventional and phylogenetically corrected statistics, we find that the echolocating species have a margina
Ld, but it does not differ significantly from auditory generalists, such as pigeons, raptors and chickens. Similarly, all of the vocal lea

o have relatively small MLds. Finally, MLd is significantly larger in owls compared to all other birds regardless of how the size of MLd is
his enlargement is far more marked in asymmetrically eared owls than symmetrically eared owls. Variation in MLd size therefore app
orrelated with some auditory specializations, but not others. Whether an auditory specialist possesses a hypertrophied MLd appears
pon their hearing range and sensitivity as well as the ability to resolve small azimuthal and elevational angles when determining the lo
ound. As a result, the only group to possess a significantly large MLd consistently across our analyses is the owls. Unlike other birds sur
ave a battery of peripheral and other central auditory system specializations that correlate well with their hearing abilities. The lack ofnces
mong the generalists, vocal learners and echolocaters therefore reflects an overall similarity in hearing abilities, despite the specificory
equirements of each specialization and species. This correlation between the size of a neural structure and the sensitivity of a perce
arallels a similar pattern in mammals.
2005 Elsevier B.V. All rights reserved.
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. Introduction

The evolution of sensory specializations is often correlated
ith an increase in size of the neural region(s) that mediate the
pecialization. Jerison[45] referred to this relationship as the
principle of proper mass’ whereby the size of a given neural
tructure is a reflection of the complexity of the behaviour that
t subserves. Although there is considerable debate concerning

Abbreviations: IC, inferior colliculus; MLd, nucleus mesencephalicus lat-
ralis, pars dorsalis; An, nucleus angularis; La, nucleus laminaris; MC, nucleus
agnocellularis; SC, superior colliculus; SI, somatosensory cortex; TeO, tectum
pticum
∗ Corresponding author. Tel.: +1 780 492 7239; fax: +1 780 492 1768.

E-mail address: brainsize@yahoo.ca (A.N. Iwaniuk).

how and why such a correlation exists[79], there are nume
ous examples of such correlations in vertebrates. For exa
mammals with different somatosensory requirements can
dramatically different somatosensory representations, su
the expansion of the nose is the Star-nosed Mole (Condylura
cristata) [11], the tail in Spider Monkeys (Ateles spp.) [67]
and the forepaw in Raccoons (Procyon lotor) [68] This correla
tion between the size of a sensory region and behaviour
restricted to the cortex or somatosensation, but is also pres
visual[5], auditory[3,27]and gustatory systems[23]. Although
there are numerous examples of this in mammals, syste
comparisons of behaviour and sensory regions are rare in
[33]. Given that birds share many behavioural[55] and neura
similarities[43,72]with mammals, it is likely that such corre
tions also exist in birds.

166-4328/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.bbr.2005.09.015
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Audition is of critical importance to a wide range of
behaviours in birds, such as prey capture, individual and species
recognition, vocal learning and mate selection. As a result of
the range of behaviours that rely upon acoustic cues, studies
of avian audition have revealed marked species differences in
hearing range and the ability to localize sounds and discrim-
inate pitch, intensity and temporal differences (see review in
[21]). From this and other evidence, it is clear that several groups
have evolved unique auditory specializations that are not present
in other birds: localization of prey using only acoustic cues,
vocal learning and echolocation. The first of these, the loca-
tion of prey using acoustic cues, has been well documented in
owls. Asymmetrically eared owls, like the Barn Owl (Tyto alba),
can accurately acoustically locate prey up to 7 m away in com-
plete darkness[63]. The vocal learners are all species that learn
some, or all, of their vocal repertoire and includes the song-
birds, parrots and hummingbirds. Specialized forebrain nuclei
and their projections to and from auditory and motor structures
in the thalamus, midbrain and hindbrain mediate the learning and
production of vocalizations in all three taxa[7,25,31,42,44,80].
Unlike the owls and vocal learners, the echolocating birds have
received relatively little attention. The only species known to
echolocate are the Oilbird (Steatornis caripensis) [28] and the
Swiftlets (Aerodramus andCollocalia spp.)[58,66,69]. All of
these species primarily echolocate only when navigating through
roosting sites and caves and do not appear to use echolocation
t
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Fig. 1. Scatterplots of log-transformed inferior colliculus (IC) volume against (a)
brain volume minus IC volume and (b) superior colliculus volume for echolo-
cating (closed symbols) and non-echolocating (open circles) bats (data from
[4]). It should be noted that all species of the suborder Megachiroptera are
non-echolocating, with the exception of the Egyptian Fruit Bat (Rousettus aegyp-
tiacus), which is indicated by the filled square.

2. Materials and methods

2.1. Specimens

We measured MLd and tectum opticum (TeO) in 72 specimens representing
54 species (Table 1). Representatives of all three auditory specializations were
surveyed as well as representative species from other taxa in order to encom-
pass as much interspecific variation in MLd size as possible. Two echolocating
species were measured: Oilbird and Pygmy Swiftlet (Collocalia troglodytes)
[66]. Closely related non-echolocating taxa were also measured. For the Oilbird,
we measured several caprimulgiform species (Table 1), which are regarded by
some as close relatives[8,17,56,77]. For the echolocating Swiftlet, we measured
the closely related[65,66]and non-echolocating Glossy Swiftlet (C. esculenta)
and the Common Swift (Apus apus), a swift that is not closely related to the
Swiftlets and does not echolocate. Species from all three orders that exhibit vocal
learning were also sampled: songbirds (11 spp.), parrots (15 spp.) and humming-
birds (5 spp.). Lastly, two asymmetrically eared owls, Barn Owl and Saw-whet
Owl, and one symmetrically eared owl, the Southern Boobook Owl (Ninox boo-
book), were measured. Data for an additional 31 species were obtained from
Boire [6] and Cobb[13], which included four vocal learners, one echolocating
Swiftlet and several species classified as auditory generalists (seeTable 1). For
those species that were both measured and gleaned from the literature, the values
presented are the means of the two data sets.
o capture prey.
One region that is likely to be integral to all forms of acous

ediated behaviours is the nucleus mesencephalicus lat
ars dorsalis (MLd). MLd receives input from the two pa

el auditory pathways[10,47] and as such plays a role in t
ntegration of auditory information. MLd is homologous to b
he mammalian inferior colliculus (IC) and the torus sem
ularis (TS) in non-avian reptiles and amphibians[9,47,51].
ylander[73] reported that MLd is hypertrophied in songbi
nd Cobb[13,14] reported a similar hypertrophy of MLd

he echolocating Oilbird and Black-nest Swiftlet (Aerodramus
aximus), which parallels the hypertrophy of IC in echo
ating bats (Fig. 1). Lastly, the most detailed studies of
natomy and function of MLd are in the Barn Owl, in wh
Ld plays a critical role in the auditory localization of pr

see reviews in[50,52]). Several authors reported that M
ppears to be enlarged in the Barn Owl and other asym
ically eared owls, such as Saw-whet (Aegolius acadicus) and
ared (Asio) owls, compared to symmetrically eared owls
ther birds[13,84]. Thus, there is ample evidence to suppo
ignificant role of MLd in vocal learning, echolocation and p

ocalization that might result in its hypertrophy. A system
nalysis of size variation in MLd has not, however, been

ormed across species to test this hypothesis. Here, we p
detailed analysis of size variation in MLd across 84 spe

ncluding the echolocating Swiftlets and Oilbird, all three vo
earning taxa and several owl species using both conven
nd phylogenetically based statistics. Based on previous re

13,14,73], we expected MLd to be significantly larger in
hree auditory specialists compared to other birds (i.e., aud
generalists’).
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Table 1
A list of the 84 species surveyed, the auditory category they each belong to, brain, tectum opticum (TeO) and nucleus mesencephalicus lateralis, parsdorsalis (MLd)
volumes (all in mm3) and the ratio of MLd to TeO

Order Species n Auditory
categorya

Brain
volume

TeO volume MLd volume MLd:TeO Source

Anseriformes
Mallard Anas platyrhynchos 2 G 6065 187.48 7.916 0.042 [6], This study
Plumed Whistling-duck Dendrocygna eytoni 1 G 9421 164.81 7.850 0.047 This study

Apodiformss
Black-nest Swiftlet Aerodramus maximus 1 E – – – 0.061 [13]
Common Swift Apusapus 2 G 668 42.84 0.813 0.019 This study
Chimney Swift Chaetura pelagica 2 G 343 30.47 0.668 0.033 [6,2]
Glossy Swiftlet Collocalia esculenta 2 G 121 9.51 0.504 0.043 This study

(FMNH,
SEA132),[13]

Pygmy Swiftlet C. troglodytes 2 E 139 9.71 0.543 0.056 This study
(FMNH,
SEA133,
SEA134)

African Palm-swift Cypsiurus parvus 1 G 300 – – 0.052 [13]

Caprimulgiformes
Feline Owlet-nightjar Aegotheles insignis 1 G 1540 73.64 3.801 0.052 This study

(BBM-NG
101365)

Indian Nightjar Caprimulgus asiaticus 1 G – – – 0.060 [13]
Nightjar Caprimulgus sp. 1 G 734 58.81 2.319 0.039 [6]
Whip-poor-will Caprimulgus vociferus 1 G 820 – – 0.052 [2]
Spotted Nightjar Eurostopodus argus 1 G 1013 60.97 3.515 0.058 This study
Common Poorwill Phalaenoptilus nuttallii 1 G – – – 0.057 [13]
Tawny Frogmouth Podargus strigoides 2 G 5627 296.64 9.908 0.033 This study
Oilbird Steatornis caripensis 2 E 3900 104.74 5.363 0.062 This study

(USNM,
431365),[13]

Charadriiformes
Least Sandpiper Calidris minutilla 1 G 472 35.52 1.241 0.035 [6]
Killdeer Charadrius vociferus 1 G 1073 100.92 1.817 0.018 [6]
Short-billed Dowitcher Limnodromus griseus 2 G 1231 51.12 1.807 0.035 [6], this study
Common Tern Sterna hirundo 1 G 1593 121.49 1.700 0.014 [6]
Masked Lapwing Vanellus miles 1 G 2686 206.30 4.937 0.024 This study

Ciconiiformes
Grey Heron Ardea cinerea 1 G 8446 525.32 4.653 0.009 [6]
Cattle Egret Bubulcus ibis 1 G 4025 213.76 2.068 0.010 This study

Columbiformes
Pigeon Columba livia 2 G 2189 143.85 4.296 0.030 This study,

[6]
Ringneck Dove Streptopelia risoria 1 G 1141 95.11 2.319 0.024 [6]

Coraciiformes
Laughing Kookaburra Dacelo novaeguineae 3 G 4027 333.48 5.116 0.015 This study

Falconiformes
Brown Goshawk Accipiter fasciatus 1 G 4875 236.92 3.792 0.016 This study
Brown Falcon Falco berigora 1 G 6007 387.05 7.950 0.021 This study
Australian Hobby Falcon Falco longipennis 1 G 3035 200.36 3.230 0.016 This study

Galliformes
Chukar Alectoris chukar 1 G 2500 147.76 5.453 0.037 [6]
Ruffed Grouse Bonasa umbellus 2 G 3136 182.33 8.574 0.047 This study
Golden Pheasant Chrysolophus pictus 1 G 3369 211.64 9.664 0.046 [6]
Northern Bobwhite Colinus virginianus 1 G 1091 81.13 3.826 0.047 [6]
Common Quail Coturnix coturnix 1 G 811 67.90 2.650 0.039 [6]
Chicken Gallus domesticus 1 G 2993 201.23 7.595 0.038 [6]
Turkey Meleagns gallopavo 1 G 6097 552.93 19.766 0.036 [6]
Helmeted Guineafowl Numida meleagris 1 G 3951 233.86 10.239 0.044 [6]
Chaco Chachalaca Ortalis canicollis 1 G 3374 203.67 6.436 0.032 [6]
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Table 1 (Continued )

Order Species n Auditory
categorya

Brain
volume

TeO volume MLd volume MLd:TeO Source

Peafowl Pavo meleagris 1 G 7355 284.95 15.141 0.053 [6]
Ring-necked Pheasant Phasianus colchicus 1 G 2762 129.83 8.164 0.063 [6]

Gruiformes
American Coot Fulica americana 1 G 2719 127.65 5.454 0.043 This study

Passeriformes
Brown Thornbill Acanthiza pusilla 1 VL 434 34.81 0.515 0.015 This study
Eastern Spinebill Acanthorhynchus tenuirostris 1 VL 489 29.46 0.822 0.028 This study
Blue-faced Honeyeater Entomyzon cyanotis 1 VL 2227 96.99 3.391 0.035 This study
Eastern Yellow Robin Eopsaltria australis 1 VL 839 39.40 1.758 0.045 This study
Australian Magpie Gymnorhina tibicen 1 VL 4017 202.27 3.281 0.016 This study
White-plumed Honeyeater Lichenostomus perspicillatus 1 VL 917 47.94 0.720 0.015 This study
Noisy Miner Manonna melanocephala 1 VL 2279 88.50 1.592 0.018 This study
Superb Lyrebird Menura novaehollandiae 1 VL 10163 384.66 4.107 0.011 This study
Spotted Paradalote Pardalotus punctatus 1 VL 401 17.09 0.837 0.049 This study
Grey Currawong Strepera versicolor 1 VL 5425 270.86 4.200 0.016 This study
Double-barred Finch Taenwpygia bichenovii 1 VL 409 25.81 0.655 0.025 This study
Zebra Finch Taeniopygia guttata 1 VL 328 20.90 0.711 0.034 [6]

Pelecaniformes
Double-crested Cormorant Phalacrocorax auritus 1 G 7323 187.24 5.291 0.028 [6]

Procellariiformes
Short-tailed Shearwater Puffinus tenuirostris 1 G 4658 235.01 2.864 0.012 This study

Psittaciformes
Masked Lovebird Agapornis personata 1 VL 2824 82.57 2.575 0.031 This study
Australian King Parrot Alisterus scapularis 1 VL 5305 200.90 4.455 0.022 This study
Blue-fronted Amazon Amazona aestiva 1 VL 7955 273.47 4.142 0.015 This study
Galah Cacatua roseicapilla 1 VL 6547 217.52 3.305 0.015 This study
Yellow-tailed Black-cockatoo Calyptorhynchus funereus 1 VL 16111 309.66 5.340 0.017 This study
Eclectus Parrot Eclectus roratus 1 VL 5796 208.59 4.492 0.022 This study
Musk Lorikeet Glossopsitta concinna 2 VL 3198 99.52 2.669 0.027 This study
Budgerigar Melopsittacus undulatus 1 VL 1220 43.53 2.386 0.055 [6]
Bourke’s Parrot Neopsephotus bourkii 1 VL 1213 56.42 1.884 0.033 This study
Cockatiel Nymphicus hollandicus 3 VL 2263 75.31 2.111 0.028 This study
Blue-headed Parrot Pionus menstruus 1 VL 5283 184.61 3.555 0.019 [6]
Crimson Rosella Platycercus elegans 1 VL 3683 154.94 3.935 0.025 This study
Eastern Rosella Platycercus eximius 2 VL 3155 129.25 2.678 0.021 This study
Superb Parrot Polytelis swainsonii 2 VL 3157 134.88 3.586 0.027 This study
Red-rumped Parrot Psephotus haematonotus 2 VL 1940 73.47 1.689 0.023 This study
African Grey Parrot Psittacus erithacus 1 VL 6405 155.14 4.357 0.028 This study
Rainbow Lorikeet Trichoglossus haematodus 2 VL 3728 123.42 2.578 0.021 This study

Rheiformes
Greater Rhea Rhea americana 1 G 19228 953.28 38.190 0.040 [6]

Sphenisciformes
Magellanic Penguin Spheniscus magellanicus 1 G 16757 383.31 9.967 0.026 [6]

Strigiformes
Saw-whet Owl Aegolius acadicus 1 0 2343 64.49 14.227 0.221 This study
Southern Boobook Owl Ninox boobook 2 0 5626 148.15 9.261 0.063 This study
Barn Owl Tyto alba 1 0 7143 107.09 26.150 0.244 This study

Tinamiformes
Red-winged Tinamou Rhynchotus rufescens 1 G 3377 327.43 9.964 0.030 [6]

Trochiliformes
Anna’s Hummingbird Calypte anna 1 VL 183 12.33 0.329 0.027 This study
Blue-tailed Emerald Chlorostilbon mellisugus 1 VL 119 10.44 0.554 0.053 [6]
Green-fronted Lancebill Doryfera ludoviciae 1 VL 139 9.49 0.224 0.024 This study

(FMNH
320498)

Buff-tailed Sicklebill Eutoxeres condamini 2 VL 257 20.46 0.474 0.023 This study
(FMNH
315304,
315300)
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Table 1 (Continued )

Order Species n Auditory
categorya

Brain
volume

TeO volume MLd volume MLd:TeO Source

Rufous-breasted Hermit Glaucis hirsuta 1 VL 123 12.96 0.296 0.023 This study
(USNM
616825)

Green-backed Firecrown Sephanoides sephanoides 2 VL 134 10.19 0.238 0.023 This study
(FMNH
316786,
316784)

The sources of the material are as follows—BBM: Bernice Bishop Museum (Honolulu, HI), USNM: National Museum of Natural History (Washington, DC),
FMNH:Field Museum of Natural History (Chicago, IL) and references as indicated. Where more than one source is referenced, the values represent the mean.

a Auditory categories are as follows—E: echolocaters, G: generalists, O: owls and VL: vocal learners.

Several specimens were loaned to us from the Field Museum of Natural
History (Chicago, IL), National Museum of Natural History (Washington, DC)
and the Bishop Museum (Honolulu, HI). All of the museum specimens were
captured in the field, immersion fixed in 10% formalin for several days to several
weeks and then stored in 70% ethanol for 3–45 years before we extracted the
brains. Other fixed specimens were acquired from wildlife shelters, veterinary
clinics and other labs. For all specimens, including the museum specimens,
the brain was extracted, weighed to the nearest milligram and post-fixed in
4% paraformaldehyde in 0.1 M phosphate buffer (PB) for several days. The
brains were then blocked in the sagittal plane, cryoprotected in 30% sucrose
in PB, embedded in gelatin and sectioned in the coronal plane on a freezing
stage microtome at a thickness of 40�m. Sections were collected in 0.1 M
phosphate buffered saline, mounted onto gelatinized slides, stained with thionin
and coverslipped with Permount.

2.2. Measurements

Previous studies of MLd[14,73] compared the volume of MLd to the size
of the optic lobe. The optic lobe in these studies is defined as the volume of the
optic tectum and mesencephalon within those sections that the IC is located. The
problem, however, is that this measure of the optic lobe is highly dependent upon
the plane of section. For example, if the angle the sections are cut at is angled
more rostro-ventrally in one specimen than another, the resulting measures of
optic lobe volume will be markedly different. For this reason, we chose to scale
the size of MLd against TeO. We chose TeO because studies in mammals have
suggested that there is a trade-off between the size of the IC and the superior
colliculus (SC) that reflects the degree of visual or auditory specialization (Fig. 1)
and SC is homologous with the TeO[9]. Furthermore, Cobb[13] notes that TeO
is a more meaningful measure because TeO is primarily visual whereas the optic
lobe measurement encompasses parts of the mesencephalon that are unrelated
to vision or hearing and provides a MLd:TeO ratio for eight species. Finally, the
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this method, we measured 10–20 sections containing MLd and 30–40 sections
containing TeO for each specimen. Measurements of each region were made
using the NIH ImageJ freeware computer program. Volumes were calculated by
multiplying the area by the sampling interval and section thickness. All of these
procedures are similar to those used in previous studies[6,13,14,73].

2.3. Statistical analysis

All species were classified according to four categories: owls, vocal learners,
echolocaters and auditory generalists (i.e., species without any known auditory
specializations). We then calculated MLd:TeO ratios (Table 1) and performed
ANOVAs on these four categories to determine if there was a difference among
the auditory specialists and other birds. To further examine relative size variation
in MLd, we first logio-transformed MLd, TeO and brain minus MLd volumes
(hereafter referred to as brain volume). Analyses of covariance (ANCOVAs)
with auditory specialization and the scaling variables as covariates of MLd vol-
ume were then used to test for significant differences among groups. We also
used ANOVAs of residuals derived from least-squares linear regression lines of
MLd against TeO and brain volumes to assess differences among groups and
Tukey–Kramer post hoc tests for pair-wise comparisons. In addition, we tested
for differences among those orders represented by three or more species using
ANOVAs of the MLd residuals to assess whether some orders tended to have
larger MLds than others.

F alote
( sen-
c Other
s (ICo),
n lularis
( n (T),
t

elative size of a given brain region can vary depending upon what is use
caling factor[18,38,64,79]and therefore the use of multiple scaling factor
ecommended to assess how consistent the results are. We therefore co
he volume of MLd to both TeO and brain volume.

In accordance with previous studies[6] we defined TeO as the laminat
ortion of the optic lobe excluding the optic tract. The caudal and rostral
f MLd were defined as those regions ventral to the third ventricle tha

arger, darker and more densely packed cells than adjacent regions. The
nd lateral borders were defined by the presence of a distinct lamina tha
fibre bundle surrounding MLd[51] and the dorsal and lateral borders w

efined by the tectal ventricle (Fig. 2). Although MLd can be subdivided in
everal subdivisions[51,85], the border between the central and external nuc
aint [83] and we were unable to reliably distinguish the subdivisions in mo
he specimens. Therefore, our measurements are restricted to the entire
f MLd. For both TeO and MLd, our borders were similar to those use
revious allometric studies[6,13,14,73]. Whole brain volumes were measu
y dividing the mass of each brain by the average density of fresh brain

6,36,38,40].
Digital photographs were taken throughout the rostro-caudal extent of

nd TeO for all specimens that we measured. Sampling intervals varied
very second to every fifth section depending on the size of the brain.
a
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ig. 2. A photomicrograph of the optic lobe of a songbird, the Spotted Pard
Pardalotus punctatus). The ventral and lateral borders of the nucleus me
ephalicus lateralis, pars dorsalis (MLd) are indicated by the solid line.
tructures shown are as follows: cerebellum (Cb), nucleus intercollicularis
ucleus isthmi, pars magnocellularis (Imc), nucleus isthmi, pars parvocel
Ipc), nucleus semiluminaris (SLu), stratum opticum (SOp), telencephalo
ectum opticum (TeO) and ventricle (V). Scale bar = 1 mm.
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Because allometric analyses can be affected by phylogenetic relationships
[32], we then repeated these analyses using phylogenetically based statistics.
Phylogenetically corrected ANCOVAs and ANOVAs were performed using the
PDAP software package (available from T. Garland). We performed these by
simulating a nullF distribution of traits along a phylogeny and using the critical
values from this distribution as phylogenetically corrected criticalFs as opposed
to critical Fs derived from conventional statistical tables[26]. This method
has been used previously in comparative analyses of the brain and behaviour
[36–38,64]and is less prone to type I error than conventional statistics when
comparing data from many species[26]. To perform these analyses, a compos-
ite phylogeny was constructed using the inter-ordinal relationships in Sibley and
Ahlquist[77] with resolution for some groups supplemented by additional refer-
ences[1,2,12,48,66]. For each test, we constrained the simulation to biologically
realistic values by setting the upper boundaries slightly higher and lower than
that of the largest and smallest values respectively. The simulatedF values were
similar using both a gradual and a speciational model of evolutionary change,
so we only report those of the gradual model.

3. Results

3.1. MLd:TeO ratio

The MLd:TeO ratio varied from 0.007 in the Grey Heron
(Ardea cinerea) to 0.244 in the Barn Owl (Table 1). An ANOVA
revealed a significant difference in MLd:TeO ratio among the
auditory generalists and specialists (Table 2). Post hoc tests indi-
cated that the owls have significantly larger MLd:TeO than any
of the other groups and that the echolocaters have significantly
l -
c the
n was
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a the
o
s ithin
t and
S cally
e

F MLd)
t s and
a r each
c tliers.
S ps and
b

A significant difference in MLd:TeO was also found among
orders (F(8,63)=21.43, p < 0.01). Post hoc pair-wise compar-
isons revealed that owls have significantly larger ratios than
all other orders and the caprimulgiforms (which includes the
Oilbird) have significantly larger ratios than the parrots (Psittaci-
formes). The significant difference among orders did not, how-
ever, exceed the phylogeny-corrected criticalF (26.89). Overall
then, owls tend to have larger MLd:TeO ratios than other groups,
but this difference is minimal when phylogeny is taken into
account.

3.2. MLd and TeO

Comparing the size of MLd with TeO using an allometric
approach yielded similar results to that of the MLd:TeO ratio.
A scatterplot of MLd against TeO volume revealed that the
two asymmetrically eared owls lie well above all of the other
species sampled (Fig. 4a) and are, in fact, significant outliers.
Although the Boobook Owl lies below the other two owls, it
too has a larger MLd relative to TeO than the remaining species.
An ANCOVA using auditory specializations and TeO volume as
covariates of MLd volume did not yield a significant interaction

Fig. 4. A scatterplot of log-transformed nucleus mesencephalicus lateralis, pars
dorsalis (MLd) against: (a) log-transformed tectum opticum (TeO) volume and
(b) log-transformed brain volume minus MLd volume.
arger ratios than the vocal learners (Fig. 3). Although the echolo
ating swifts (0.058) have a marginally higher ratio than
on-echolocating swifts (0.044), no significant difference
etected (t(4) =−1.80,p = 0.15). The Oilbird, however, did ha
significantly larger ratio than its putative relatives within

rder Caprimulgiformes (single samplet(7) = 3.12,p = 0.02). It
hould also be noted that there was substantial variability w
he owls. Specifically, the asymmetrically eared Barn Owl
aw-whet Owl have ratios three times that of the symmetri
ared Boobook Owl (Table 1).

ig. 3. Boxplots of the nucleus mesencephalic lateralis, pars dorsalis (
o tectum opticum (TeO) ratio for the echolocaters, owls, vocal learner
uditory generalists. The boxes represent the 95% confidence interval fo
ategory, the horizontal line is the median and the filled circles are ou
ignificant differences were present between the owls and all other grou
etween the echolocaters and vocal learners.
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Table 2
The results of ANOVAs performed on relative nucleus mesencephalicus lateralis, pars dorsalis (MLd) volume using the scaling factors of: a ratio of MLd to tectum
opticum (TeO) volume, residuals from a MLd volume and brain volume minus MLd volume regression and residuals from a MLd volume and TeO volume regression

Test df CalculatedF Critical F Phylogeny-corrected criticalF

MLd:TeO ratio 3, 81 56.51 2.72 9.76
MLd and TeO volume 3, 76 20.34 2.72 11.08
MLd and brain volume 3, 76 13.75 2.72 10.83

CriticalFs were derived from conventional statistical tables whereas the phylogeny-corrected criticalFs were calculated in PDANOVA (see text for details). Significant
calculatedFs are shown in bold.

term, but there was a significant effect of auditory specialization
(Table 3). This remained significant even when the calculatedF
was compared to the phylogeny-corrected criticalF (Table 3).
Thus, there is a significant difference in the relative size of MLd
amongst the auditory specialists and generalists regardless of
whether phylogenetic relationships are accounted for or not. In
fact, this multiple regression model accounted for more vari-
ation (r2 = 0.86) than simply regressing MLd on TeO volume
(F(1,78)= 235.54,p < 0.01,r2 = 0.75).

An ANOVA of residuals derived from a least-squares lin-
ear regression of MLd on TeO volume also found a sig-
nificant difference among the three auditory specialists and
the generalists (Table 4, Fig. 5a). Post hoc Tukey–Kramers
revealed that relative to TeO, MLd is significantly larger in
owls compared to all other groups and is significantly smaller
in vocal learners compared to generalists. No significant differ-
ence was detected between the echolocating Swiftlet and the
other swifts (single samplet(2) =−2.20, p = 0.16) or between
the Oilbird and the caprimulgiforms (single samplet(4) =−1.55,
p = 0.20).

An ANOVA of the residuals also yielded a significant dif-
ference among orders (F(8,58)= 15.89,p < 0.01). The pair-wise
comparisons revealed that the owls have relatively larger MLd
volumes than all other orders (Table 4). The order Caprimulgi-
formes also had significantly larger MLd residuals compared to
the shorebirds, raptors and all vocal learners and the Galliformes
h irds.
I d
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3.3. MLd and brain volume

An examination of the allometric relationship between MLd
and brain volume corroborated both analyses presented above.
The asymmetrically eared Saw-whet and Barn Owls lie above
all other species in a scatterplot of MLd against brain volume
(Fig. 4b), although the difference between these owls and other
birds is not as marked as the plot of MLd and TeO (Fig. 4a).
An ANCOVA using brain volume and auditory specialization
(owls, vocal learners and generalists) as covariates indicated no
significant interaction term, but there was a significant effect
of specialization (Table 3). Thus, there is a significant differ-
ence in relative MLd size amongst the auditory specialists and
generalists. Furthermore, ther2 for a regression model includ-
ing auditory specialization was higher (0.86) than a regression
of simply MLd against brain volume (F(1,78)= 248.72,p < 0.01,
r2 = 0.76).

ANOVAs of the residuals from a least-squares linear regres-
sion line for all species also corroborated these findings
(Table 2). A significant difference in relative MLd volume was
found among the auditory specialists and generalists (Fig. 5b).
Post hoc Tukey–Kramer tests revealed the owls have signif-
icantly larger MLd residuals than the generalists and vocal
learners and vocal learners have significantly smaller MLd resid-
uals than generalists. No significant difference in MLd residuals
was detected between the echolocating Pygmy Swiftlet and the
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In summary, relative to TeO, MLd is significantly larg
n owls than in other groups. MLd is not, however, re
ively larger in echolocaters or either of the orders contai
cholocating species (Apodiformes, Caprimulgiformes). M

s also not significantly larger relative to TeO in the vo
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ant difference was detected (F(8,58)= 19.27,p < 0.01). Pair-wise
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Fig. 5. Boxplots of residuals from least-squares linear regressions of log-
transformed nucleus mesencephalicus lateralis, pars dorsalis MLd volume
against (a) log-transformed tectum opticum (TeO) volume, and (b) log-
transformed brain volume minus MLd volume grouped according to: echolo-
caters, owls, vocal learners and auditory generalists. The boxes represent the
95% confidence interval for each category, the horizontal line is the median and
the filled circles are outliers.

MLd residuals than the swifts, shorebirds (Charadriiformes),
raptors (Falconiformes) and all three orders of vocal learners
and the Caprimulgiformes have significantly larger MLd resid-
uals than all three vocal learners. As with the previous analysis
of MLd and TeO, this difference among orders was not sup-
ported by a comparison of the calculatedF with the phylogeny-
corrected criticalF (31.13).

Based on this final analysis, it is clear that relative to brain
volume, MLd is significantly larger in owls than in other birds.
The Oilbird and its putative relatives, the caprimulgiforms, also
have relatively large MLds, but only in comparison with the
vocal learners. The other echolocaters, their relatives and all
three groups of vocal learners do not, however, have relatively
large MLds.

4. Discussion

Overall, our analyses show that compared to other birds, MLd
is significantly larger in owls, but smaller in vocal learners. One
of our analyses indicated that MLd is slightly larger in echolo-
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caters compared to vocal learners and auditory generalists, but
this was not corroborated by subsequent analyses. We therefore
conclude that MLd is hypertrophied in owls, but not in vocal
learners or echolocaters.

Although Cobb[13,14]and Rylander[73] reported that MLd
was hypertrophied in both echolocaters and songbirds, there are
several problems with their analyses (also see below). First, both
authors used ratios to express the relative size of MLd. Ratios are
problematic in allometric analyses because they are often corre-
lated with the denominator and therefore do not reflect the true
relative size of a structure[79]. Second, relatively few species
were sampled in either study and therefore are unlikely to be
representative of the variability in birds as a whole. For exam-
ple, the relative size of MLd was not known for any of the vocal
learning parrots and hummingbirds. Lastly, previous studies did
not include any information on phylogenetic relatedness, which
can have a significant effect on the analysis and interpretation of
interspecific data[32]. Our analysis therefore represents a more
comprehensive account of size variation in MLd among birds.

4.1. Vocal learning

Contrary to our prediction and the findings of Cobb[14] and
Rylander[73], we found no evidence of MLd hypertrophy in
songbirds, hummingbirds and parrots. In fact, vocal learners
tend to have significantly smaller MLds relative to both brain
a ten
t tho
o re
i t of
t Ld
w entir
o ptic
l ction
A nta
p ion o
M to
o ture
a is i
a MLd
v d th
e

The relatively small size of MLd in songbirds, parrots
and hummingbirds might reflect their basic auditory abilities.
Although songbirds can localize sounds well[59,60], their spa-
tial resolution is not as fine as that of owls and some other
birds (Table 5). The audiogram of songbirds is not any broader
than that of auditory generalists, despite being shifted towards
slightly higher frequencies[21]. In addition, songbirds do not
have particularly sensitive hearing in so far as the minimum
audibility thresholds are quite high[21, Table 5]. They share
these same characteristics not only with parrots (Table 5) and
hummingbirds[70], but also many auditory generalists, such as
galliforms, ducks and raptors (Table 5). Given that vocal learn-
ers have generally unremarkable hearing compared to auditory
generalists, it is perhaps not surprising that MLd tends to be
of average to below average size in vocal learners, despite the
findings of previous studies[14,73]. In fact, the tuning proper-
ties of MLd neurons are not different to that reported in auditory
generalists[88,89], unlike those of owls[82,83]. Although MLd
must play some role in vocal learning because of its connections
with the rest of the auditory system[47,81], it does not appear
to be specialized for this role. This could reflect the prominent
role that forebrain nuclei play in vocal learning, perception and
discrimination (see review in[42]). In fact, the relatively large
forebrains of both parrots and songbirds appear to result from the
enlargement of multimodal regions, such as the caudo-medial
nidopallium and caudo-medial mesopallium[36,38,39,71], both
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as present. The danger of using such criteria is that the
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able 5
he auditory abilities of some of the taxa sampled (data from[20,48,52])

roup Minimum absolute resolvable a

symmetrically eared owls 1–6
ymmetrically eared owl 7
ongbirds 20–101
udgerigar (Melopsittacus undulatus) 45–95
ilbird (S. caripensis) –
igeon (Columba livid) 4–25
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allard (Anas platyrhynchos) –
aptors 2–14

he minimum absolute resolvable angle refers to the minimum angle dif
utoff is the frequency still detectable by the bird at 60 dB. The auditory s
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f which are involved in the learning and perception of vo
zations[42]. Volumetric analyses have demonstrated that
arrots and songbirds have particularly large forebrains
mall TeO for their brain size[36,38,39]. Thus, vocal learn
rs appear to have hypertrophied forebrain regions involv
uditory integration rather than MLd.

.2. Echolocation

Cobb [13] reported that MLd was enlarged in the echo
ating Black-nest Swiftlet and Oilbird compared to three sw
nd three nightjars, respectively. Our study partially suppor
ndings. Using the MLd:TeO ratio, we found a significant dif
nce between echolocaters and vocal learners and a sign
ifference between echolocating and non-echolocating sp
ithin the Caprimulgiformes, but not in the swifts. Although

( Higher frequency cutoff (kHz) Auditory sensitivity at 500 Hz (d

12.5 <5
7 <5
7–12 12–48

8 ≈18
>8 ≈35
<6 23
6.5 32

≈6.5 35
7.5 25

ce that a bird can distinguish within a sound-attenuated room. The highrequency
ivity measure is the minimum dB detectable at a frequency of 500 Hz.
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Oilbird did have a significantly larger MLd relative to brain vol-
ume than the caprimulgiforms, it should be noted that whether
the Oilbird truly is a caprimulgiform or not is questionable[56].
From these mixed results and the fact that there were no sig-
nificant differences detected between echolocating birds and
auditory generalists, we conclude that echolocating birds may
have slightly enlarged MLds compared to their relatives, but this
enlargement does not differ in magnitude from that of other birds
that do not echolocate. Therefore, unlike most bats, echolocating
birds do not have a significantly enlarged MLd/IC, which likely
reflects differences in the structure and function of echolocating
vocalizations between bats and birds.

In both Oilbirds and Swiftlets, the echolocating calls are noisy
broad-band clicks[15,22,24,53,66]and these calls are not used
for the detection and capture of prey. Oilbirds feed primarily
on fruit [19], which does not require echolocation to find, and
Swiftlets likely use a combination of visual (e.g., motion par-
allax) and tactile (e.g., somatosensation by rictal bristles) to
locate and capture insects in the air. The calls are primarily used
when entering and exiting roosting sites within caves and likely
function as an aid in navigating through dimly lit caves and
around conspecifics[57]. This is further supported by experi-
mental studies on the sensitivity and acuity of echolocation in
both Oilbirds and Swiftlets. Swiftlets are able to successfully
negotiate flight paths through large wooden dowels (6–10 mm),
but their performance drops off significantly for thinner dowels
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tions being the asymmetrically eared owls[54,86] and a simi-
lar hypertrophy of homologous cochlear nuclei also occurs in
echolocating bats, but not in non-echolocating bats[3]. It is
therefore likely that the echolocating Swiftlets also possess rel-
atively large La and MC, which would enable them to respond
quickly to ITDs in echoing calls without necessarily requiring a
large MLd.

4.3. Auditory localization

Of all the species sampled, the owls were the only group
to have a significantly larger MLd, regardless of the statistical
method used. As predicted, this likely reflects the use of acoustic
cues to locate prey. Owls can resolve smaller azimuthal angles
than other birds[49, Table 5], possess a detailed map of audi-
tory space in MLd[82] and have the broadest and most sensitive
hearing of any group of birds[21], Table 5. In addition, all owls
possess specializations in the peripheral auditory system, such
as unique malleus morphology[75], a long cochlea[74,76]and a
relatively large tympanic membrane[74,75]. Given the precision
of sound localization in owls[63] and this assortment of audi-
tory specializations, it is not surprising that MLd is significantly
enlarged. This therefore represents a third case of central ner-
vous system structure hypertrophy in owls, the other two being
the Wulst[39,84]and the cochlear nuclei La and MC[54,86].
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16,22,29,57,78]. Similarly, Oilbirds can avoid large objects
heir flight path using echolocation, but not smaller objects[53].

In contrast to birds, the echolocation system of most ba
ar more sensitive. Similar experiments to those conducte
wiftlets have shown that bats are able to detect dowels/
s thin as 0.06 mm[61]. In addition, most bat species do not
road-band echolocating calls; instead, bats produce call
onstant frequency (cf), frequency sweeps (fm) and a co
ation of constant frequency and frequency modulation (cf

61]. One notable exception to this is echolocating in fruit ba
he genusRousettus, which employ broad-band clicks[35] when
ntering and exiting cave roosts and not for prey capture.Rouset-

us bats are therefore comparable to both the Swiftlets an
ilbird in terms of the structure and function of their echolo

ng calls. These fruit bats also cannot resolve azimuthal ang
ccurately as other echolocating bats[34], lack the spectral ac

ty of other echolocating bats[30] and do not have an enlarg
C (Fig. 1). Currently we do not have information on minimu
esolvable angles of echolocating birds, which would pro
urther insight into how comparable echolocating birds are
ousettus.

It must also be emphasized that our mixed results do
ndicate that there are no neural specializations for echo
ion in birds. Given the broad-band structure of both Swi
15,22,24,66]and Oilbird calls[53], they may rely upon inte
ural timing differences (ITDs) more than interaural inten
ifferences (IIDs) to navigate. In birds, both ITDs and IID
re processed by MLd, but only after they are receive

he cochlear nuclei, nucleus laminaris (La) and nucleus
ocellularis (MC) (see review in[52]). The Oilbird does hav
ignificantly larger La and MC than most other birds, the ex
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f the Barn and Saw-whet Owls and this appears to relate
ypertrophy of both MLd and the cochlear nuclei. Asymme
ally eared owls, such as the Barn Owl, Saw-whet Owl, G
rey Owl (Strix nebulosa) and Long-eared Owl (Asio otus), not
nly have asymmetrical ear openings[62], but also the longe
ochleae, basilar membranes and papillae[74]. Behaviourally
ll of these species can hunt in complete darkness[63] and
an discern angular differences at a fine level (Table 5). Neu-
ons within MLd of these species encode for both azimuth
levation[82,87]. In contrast, the symmetrically eared ow
uch as the Boobook Owl, Screech Owl (Otus asio), Burrowing
wl (Athene cunicularia) and Great-horned Owl (Bubo virgini-

nus), do not have markedly asymmetrical ears[62]. Although
detailed description of their inner ear anatomy is wan

he symmetrically eared owls only have moderately enla
ochleae[74]. These species also tend to be more diurnal in
abits, are unable to capture prey in complete darkness[63] and
annot resolve azimuthal angles as finely as the asymmetr
ared owls (Table 5). Electrophysiological studies in the Bu
owing Owl and Great-horned Owl also failed to find neur
hat were tuned to elevation[81,82]. In this study, we also foun
hat the hypertrophy of MLd was far less in the Boobook O
han it was in the Barn and Saw-whet Owls relative to both
nd brain volume. Comparisons of cochlear nuclei found sim
ariation; all of the symmetrically eared owls had smaller nu
han the asymmetrically eared owls[54,86]. Thus, it appears th
he symmetrically eared owls do not share the same spectr
eripheral and central specializations for auditory localiza
s the asymmetrically eared owls.

The difference between asymmetrically and symmetric
ared owls highlights the importance of MLd function in
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hypertrophy. In owls, IIDs and ITDs are combined to construct
a map of auditory space within MLd[50,82,83]. As discussed
above, the asymmetrically eared owls appear to use a more pre-
cise and detailed auditory map and therefore require a relatively
large MLd. In other birds, such as vocal learners, auditory inte-
gration appears to take place in the forebrain rather than MLd.
Thus, there may be a functional difference in the computations
that MLd is performing among different taxa that underlies the
variation in relative size. Further research into MLd tuning and
function is, however, required amongst a range of avian species
to support this hypothesis.

5. Conclusions

Despite the fact that two of our predictions were not supported
by the data, the results do provide a better understanding of the
function of MLd is acoustically mediated behaviours. Specifi-
cally, it appears that specialized tuning and hypertrophy of MLd
is only present in asymmetrically eared owls and this is directly
correlated with their ability to precisely locate prey using only
acoustic cues. In doing so, our study supports a broader pattern
observed in the evolution of behaviour and sensory systems in
mammals and other vertebrates; the enlargement of a sensory
region is correlated with the sensitivity of that sensory modal-
ity. As mentioned previously, Jerison[45] first suggested that
the enlargement of brain regions is correlated with behavioural
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