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The Optic Tectum of Birds: Mapping Our Way
to Understanding Visual Processing
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Over the past few decades there has been a massive amount of research on the geniculo-striate visual
system in primates. However, studies of the avian visual system have provided a rich source of data
contributing to our understanding of visual processing. In this paper we review the connectivity and
function of the optic tectum (homolog of the superior colliculus) in birds. We highlight the retinotopic
projections that the optic tectum has with the isthmal nuclei, and the functional topographic projections
that the optic tectum has with the nucleus rotundus and entopallium (homologs of the pulvinar and
extrastriate cortex, respectively) where retinotopy has been sacrificed. This work has been critical in our
understanding of basic visual processes including attention, parallel processing, and the binding problem.
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“A good map is both a useful tool and a magic carpet to faraway
places” (Anonymous).

Visual Capabilities of Birds

Since the seminal studies of Hubel and Wiesel (1968), there has
been an enormous amount of work on the visual system in mam-
mals, particularly in primates, which are regarded as having a
sophisticated visual system. However, an extensive amount of
research into the avian visual system should not be overlooked.
There are about 10,000 known species of birds, over three times
the number of mammalian species, and it is therefore not surpris-
ing that birds present numerous visual specialisations that require
sophisticated visual processing. For example, eagles and falcons
have visual acuity that is double that of primates (Fox, Lehmkuhle,
& Westendorf, 1976; Gaffney & Hodos, 2003; Reymond, 1985;
Shlaer, 1972); owls and a few other birds have global stereopsis
(Fox, Lehmkuhle, & Bush, 1977; Nieder & Wagner, 2001; J. D.
Pettigrew, 1979; van der Willigen, Frost, & Wagner, 1998); the

peculiar oilbird (Steatornis caripensis), which spends much of it’s
life deep in caves in total darkness, has a retina comprised almost
entirely of densely packed rods for scotopic vision (Martin, Rojas,
Ramirez, & McNeil, 2004; Rojas, Ramirez, McNeil, Mitchell, &
Marin, 2004); Budgerigars (Melopsittacus undulatus) have excel-
lent colour discrimination (Goldsmith & Butler, 2005); and a wide
range of species are capable of detecting ultraviolet (UV) wave-
lengths (Odeen & Hastad, 2003). Even the generic pigeon
(Columba livia), although certainly not a visual specialist in any
respect, displays an extensive array of visual abilities. This is not
surprising given that they have more than 2.5 million retinal ganglion
cells and only a fourfold decrease in the density of ganglion cells
between the central fovea and the periphery (Binggeli & Paule, 1969).
These abilities include: good detection of static and dynamic stimuli
in noise (Kelly, Bischof, Wong-Wylie, & Spetch, 2001), detection of
biological motion (Watanabe & Troje, 2006) and other complex
motion (Frost, Wylie, & Wang, 1994; Sun & Frost, 1998), colour and
UV vision (Palacios & Varela, 1992; Remy & Emmerton, 1989; Vos
Hzn, Coemans, & Nuboer, 1994), and stereopsis (McFadden & Wild,
1986). The pigeon visual system, particularly the tectofugal sys-
tem, has been studied extensively (see below). Although a lot of
emphasis is placed on the exquisite topography in the primate
visual system, such as the presence of up to 30 cortical maps
(Chklovskii & Koulakov, 2004; Kaas, 2008), the multiple topo-
graphic projections within the pigeon visual system are equally
impressive. Moreover, the division of function in the pigeon tect-
ofugal system is reminiscent of the visual streams in the cortex of
primates (Milner & Goodale, 2008). These aspects of the pigeon
visual system are highlighted in this article.

Visual Pathways in Birds

As in other vertebrates, there are three major visual pathways in
birds, shown in Figure 1. The thalamofugal pathway proceeds
from the retina to the principal optic nucleus of the thalamus
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(OPT) to the visual Wulst. The OPT and Wulst, are the putative
homologs of the lateral geniculate nucleus (LGN) and primary
visual cortex (V1) in mammals, respectively (Butler & Hodos,
2005; Medina & Reiner, 2000; Reiner, Yamamoto, & Karten,
2005). The tectofugal pathway proceeds from the optic tectum
(TeO), to the nucleus rotundus (nRt) of the thalamus, to the
entopallium in the telencephalon (Benowitz & Karten, 1976).
While the nRt and TeO are respectively homologous to the pulv-
inar complex and superior colliculus in mammals, the entopallium
is likely equivalent to several areas of mammalian extrastriate
cortex (Butler & Hodos, 2005; Karten & Shimizu, 1989; Mpodozis
et al., 1996; Nguyen et al., 2004). The third visual pathway
consists of nuclei in the Accessory Optic System (AOS) and
pretectum, which are highly conserved in vertebrates (Butler &
Hodos, 2005; Fite, 1985; Giolli, Blanks, & Lui, 2005; McKenna &
Wallman, 1985; Simpson, 1984). The retinal-recipient nuclei in the
AOS and pretectum project to numerous areas in the brain (Brecha,
Karten, & Hunt, 1980; Gamlin & Cohen, 1988), but most studies
have focused on projections to the cerebellum (Lau, Glover,
Linkenhoker, & Wylie, 1998; Pakan & Wylie, 2006; Wylie, 2001).
The AOS and pretectum are important for the analysis of optic
flow and the generation of the optokinetic response to control
posture and stabilising eye movements (Giolli et al., 2005; Simp-
son, 1984; Simpson, Leonard, & Soodak, 1988).

There are differences with respect to the relative sises of
visual nuclei that are correlated with species typical visual
behaviours. For example, the sise of visual Wulst is correlated
with the amount of binocular overlap and shows a massive
hypertrophy in owls and other species (e.g., frogmouths and
owlet-nightjars) that are thought to possess global stereopsis
(Iwaniuk, Heesy, Hall, & Wylie, 2008; Iwaniuk & Wylie, 2006;
Pettigrew, 1986; van der Willigen et al., 1998; Wagner & Frost,
1993). Hummingbirds show a massive hypertrophy of the pre-
tectal nucleus lentiformis mesencephali, as the optokinetic re-
sponse and the analysis of optic flow is critical to hovering
(Iwaniuk & Wylie, 2007). However, generally speaking, the
tectofugal pathway would be described as the major pathway in
birds. With a glance at an avian brain, the massive optic tectum
is hard to dismiss (Figure 2C): compared to other vertebrates

the tectum is quite large (Butler & Hodos, 2005), and the
tectofugal pathway is generally regarded as the primary route of
visual information to the telencephalon (Bischof & Watanabe,
1997; Shimizu & Karten, 1991). As a result of its sise and
importance in many aspects of visual processing (see below),
there have been numerous anatomical, immunohistochemical,
developmental, and electrophysiological studies of the avian
tectum (e.g., Khanbabaie, Mahani, & Wessel, 2007; Letelier et
al., 2000; Luksch, 2003; Manns, Freund, Patzke, & Gunturkun,
2007; Metzger, Britto, & Toledo, 2006; Sebesteny, Davies,
Zayats, Nemeth, & Tombol, 2002; Wang, Luksch, Brecha, &
Karten, 2006).

The optic tectum is responsible for the generation of orient-
ing movements to stimuli of interest. As stimuli of interest in
the environment tend to be moving (e.g., prey, predators), it is
not surprising that many tectal neurons respond to moving
stimuli (Frost, Cavanagh, & Morgan, 1988; Frost & Nakayama,
1983; Frost, Wylie, & Wang, 1990). The tectum is a laminated
structure with 15 layers (Figure 2A; Ramon y Cajal, 1911), and
is retinotopically organised (Figure 2B), with the nasal-
temporal dimension of the retina represented along the rostro-
caudal axis of the contralateral optic tectum. The tectum has
efferent and afferent connections with numerous parts of the
brain, and the retinotopy is maintained in some of the connec-
tions, but not others (see below). We (Gutiérrez-Ibáñez, Pakan,
& Wylie 2008) have been examining the connections of the
tectum using fluorescent-tagged biotinylated dextran amines
(miniruby: red, cat no. D-3312 or miniemerald: green, cat no.
D-7178; 10,000 mol wt; 10% solution in 0.1 M phosphate
buffer; Invitrogen, Carlsbad, CA), which are effective as bidi-
rectional tracers. With injections of red and green tracers at
adjacent points in the tectum (Figure 3A), we can examine the
topography of the projections directly.

Topographic Projections of the Optic Tectum

Of the connections of the tectum where retinotopy is maintained,
the isthmal nuclei have been studied in the most detail (Brecha, 1978;
Güntürkün & Remy, 1990; Hellmann, Manns, & Gunturkun, 2001;
Hunt & Kunzle, 1976; Wang, Major, & Karten, 2004; Wang et
al., 2006; Tombol, Alpar, Eyre, & Nemeth, 2006). The isthmal
nuclei include the magnocellular and parvocellular portions of
nucleus isthmi (Imc, Ipc) and the nucleus semilunaris (SLu).
The topographic projections in this system are impressive, and
both Ipc and Slu possess reciprocal topographic efferent and
afferent projections. From injections of red and green tracers in
the tectum tight bands containing anterogradely labelled termi-
nals and retrogradely labelled cells can be seen in coronal
sections through the Ipc and SLu, (Figure 3A, B, C). Imc has a
spatially topographic efferent projection from the tectum (Fig-
ure 3D, E). From tectal injections, there are retrogradely la-
belled cells in the Imc, however, this connection is not topo-
graphic (Figure 3F) and there are many cells that are double
labelled. This is because Imc cells project widely throughout
the tectum, with the exception of the area from where they
receive projections. That is, whereas there are homotopic re-
ciprocal connections reciprocal connections between the tectum
and SLu and Ipc, and a homotopic projection from the tectum to
Imc, the projection from Imc to the tectum is heterotopic.

Figure 1. A reduced schematic, showing the three major visual pathways
in birds. In parentheses, the equivalent mammalian structures are shown.
AOS � accessory optic system; dLGN � dorsal lateral geniculate nucleus;
LM � nucleus lentiformis mesencephali; MTN � medial terminal nucleus;
nBOR � nucleus of the basal optic root; NOT � nucleus of the optic tract;
V1 � primary visual cortex.
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Indeed, other cells in Imc also have heterotopic projections to
the Ipc and SLu. This is summarised in Figure 3E (Wang et al.,
2006).

The functions of some the connections within the isthmo-
tectal circuitry have been revealed with electrophysiological
experiments. Most tectal cells have a centre-surround organi-
sation, and respond best to a spot moving through the excitatory
centre, as a background simultaneously moves in the opposite
direction in the surround (Frost & Nakayama, 1983; Frost et al.,
1988, 1990). Pharmacological inactivation of the Imc and Ipc
with injections of lidocaine respectively abolishes the excita-
tory centre and inhibitory surround of tectal cells (Wang, Wang,
& Frost, 1995; Wang, Xiao, & Wang, 2000). Imc and Ipc
neurons have receptive fields consisting of a central vertically
oriented excitatory strip flanked by inhibitory regions (Wang &
Frost, 1991). Li, Xiao, & Wang (2007) have shown how tectal
afferents, with the classic centre-surround receptive fields, are
combined to create orientation-selective cells in Imc, similar to
how lateral geniculate afferents are combined in mammalian

primary visual cortex. Pharmacological inactivation of adjacent
sites in the tectum, resulted in deletions at adjacent sites of the
excitatory receptive field of Imc neurons. Injections of biccucu-
line in the Imc abolished the inhibitory receptive fields of Imc
neurons, suggesting that these are mediated by intranuclear inhib-
itory mechanisms.

On a grander scale, the focus of isthmo-tectal studies has ex-
amined this system’s role in visual attention via a winner-take-all
mechanism (Marin, Mpodozis, Sentis, Ossandon, & Letelier, 2005;
Marin et al., 2007; Gruberg et al., 2006). How this might occur is
inherent in the connectivity shown in Figure 3E. The retinal input
to the tectum is to the superficial layers (Angaut & Reperant,
1976; Hunt & Webster, 1975; Remy & Gunturkun, 1991) and
neurons in layer 10 project to SLu, Ipc, and Imc (Hunt &
Kunzle, 1976; Wang et al., 2006). The reentrant signals from the
SLu and Ipc are cholinergic and provide a positive feedback to the
tectum. Concurrently, Imc neurons, which are GABAergic, project
heterotopically to the tectum, SLu, and Ipc, effectively inhibiting
activity throughout the tectum, except at the one locus (Wang et

Figure 2. The optic tectum in birds. (A) is a photomicrograph through the optic tectum (TeO) showing the 15
layers according to Ramon y Cajal (1911). (B) illustrates the retinotopic map in the TeO. On the top, a lateral
view of pigeon brain (right) shows the optic tectum, indicating the gross topography of the retina (left; from
McGill, Powell, & Cowan, 1966). Below, a detailed map of the visual field projected on the tectum is shown
(from Clarke & Whitteridge, 1976). (C) shows a lateral view of the pigeon brain, to indicate the impressive sise
of TeO. CB � cerebellum; Te � telencephalon; M � medulla.
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al., 2004, 2006). Together, these excitatory and inhibitory
mechanisms would augment activity associated with stimula-
tion at a point in the visual field. The reentrant signals from Ipc
and SLu are directed toward the dendrites of layer 13 cells
(Wang et al., 2006), which are known as tectal ganglion cells

(TGCs). It is interesting that the spatial topography is not
maintained with the projections of TGCs (see below).

The tectum has other projections where the retinotopy is main-
tained (see Figure 4), although the functions of these projections have
yet to be determined. There is a reciprocal projection with the ventral

Figure 3. Connectivity of the isthmal nuclei with the tectum. (A) shows a coronal section through the tectum
showing typical injections of fluorescent biotinylated dextran amines (BDA). A retrogradely labelled cell and
anterogradely labelled terminals from the red injection can be seen in parvocellular nucleus isthmi (Ipc). The
arrowheads in the lower right highlight fibres travelling along the brachium of the superior colliculus (BCS). (B)
and (C) are photomicrographs showing retrogradely labelled cells set within tight clusters of fine terminals
indicating the reciprocal connections of the tectum with the Ipc and nucleus semilunaris (SLu), respectively. The
insets show the approximate locations of the injections of red and green fluorescent tracers in the optic tectum
(TeO). (D) shows retrogradely labelled cells in the magnocellular division of nucleus isthmi (Imc) from the
injections in the TeO as indicated in the inset for (C). This afferent projection is not topographic as Imc neurons
project widely to TeO and there are several double labelled cells indicated in the photomicrograph (white
arrows). (E) shows a schematic of the connectivity of the isthmal nuclei with the tectum (from Wang et al.,
2006). See text for a detailed description. In all figures the photomicrographs are of coronal sections, the left side
is lateral. A � anterior; P � posterior; D � dorsal; V � ventral. Scale bars: 600 �m in (A); 200 �m in (B–D).
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lateral geniculate nucleus (GLv; Figure 4B), although the number of
retrogradely labelled cells in GLv from tectal injections is always
quite small (Brecha, 1978; Crossland & Uchwat, 1979; Hu, Naito,
Chen, Ohmori, & Fukuta, 2004). This retinotopic map from the TeO
is in register with a retinotopic projection from the retina (Crossland
& Uchwat, 1979; Hu et al., 2004). The function of the GLv is not
known, although it has been linked to both the optokinetic reflex and
colour vision (Gioanni, Palacios, Sansonetti, & Varela, 1991;
Hossokawa, Araki, Hamassaki-Britto, Wallman, & Britto, 1996). The
tectum also has a reciprocal connection with the tectal grey (Figure
4C) and nucleus lentiformis mesencephali (LM not shown), which are
adjacent parts of the pretectum (Hunt & Kunzle, 1976; Gamlin &
Cohen, 1988; Hunt & Brecha, 1982). The function of the GT per se
is not known, but the LM is critical for the optokinetic response
(Gioanni, Rey, Villalobos, Richard, & Dalbera, 1983). The role of a
spatially topographic connection with the tectum toward this behav-
iour is unknown. The tectum also has a clear topographic projection
to the isthmo-optic nucleus (ION, Figure 4A) (Crossland & Hughes,
1978; Uchiyama & Watanabe, 1985). The ION provides a centrifugal
projection to the retina and is thought to be involved in attention
during feeding and the control of pecking (for review, see Repérant,
Ward, Miceli, Rio, Medina, Kenigfest, et al., 2006). The ventromedial
nucleus of the thalamus (VLT) receives nontopographic projection
from the tectum, but has a loosely topographic projection to the deep

layers of the tectum (Figure 4B) (Hunt & Kunzle, 1976; Brecha,
1978). The VLT is thought to play a role in coordinating bilateral
visuomotor behaviour (Schulte, Diekamp, Manns, Schwarz,
Valencia-Alfonso, Kirsch, et al., 2006).

Non-Topographic Projections of the Optic Tectum

One of the most extensively studied of the tectal efferent path-
ways is the projection to the nucleus rotundus (nRt), which is
homologous to the pulvinar complex in mammals (Benowitz &
Karten, 1976; Karten & Shimizu, 1989). Electrophysiological
studies have shown that, although the nRt is not retinotopically
organised, it has a clear functional topography. This is shown in
Figure 5A, based on recordings of neurons in response to visual
stimuli (Wang, Jiang, & Frost, 1993). Neurons in the dorsal-
anterior nRt are responsive to colour or luminance, whereas the
motion sensitive cells are found in the ventral, central and caudal
nRt. Neurons in the dorsal-posterior region of rotundus are spe-
cialised for the detection of motion in depth (“looming”; Sun &
Frost, 1997; Wang & Frost, 1992). Several studies have examined
the tectal projection to the nRt. The input arises from the layer 13
TGCs, and retinotopy is absent in this projection (but see
Hellmann & Gunturkun, 1999). Anterograde experiments show
that the projections of individual TGCs project diffusely to nRt

Figure 4. Nuclei having spatially topographic connections with the optic tectum (TeO). There are spatially
topographic projections from the TeO to the isthmo-optic nucleus (ION; A), the ventral leaflet of the lateral
geniculate nucleus (GLv; B) and the tectal grey (GT; C). There are also topographic afferent connections from
the ventral lateral thalamus (VLT; B) and the GT (C). The inset in (C) showing a drawing of the injection sites
in the TeO also applies to (B). A � anterior; P � posterior; D � dorsal; V � ventral; SP � nucleus
subpretectalis. Scale bars: 600 �m in (A); 200 �m in (B, C).
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(Figure 5C). Likewise, with retrograde studies, small injections of
tracer into any region in nRt results in diffuse labelling throughout
layer 13 (Figure 5D). Thusly, nRt neurons are sampling large parts
of the visual field for the processing of stimulus properties, rather than
location (Hellmann & Gunturkun, 1999; Hellmann, Gunturkun, &
Manns, 2004; Karten, Cox, & Mpodozis, 1997; Marin et al., 2003).
It would be incorrect, however, to conclude that the tectal-rotundal
projection is nontopographic. Injections of retrograde tracer at
adjacent sites in nRt, however close together, results in few
double-labelled TGCs (Marin et al., 2003). Most important, dif-
ferent regions of nRt label different classes of TGCs. Hellmann et
al. (2004) described five types of TGCs that project to nRt that can
be distinguished morphologically. Type II and type IV cells project

to the nucleus triangularis and dorsal anterior regions of nRt and
are thusly likely involved in the processing of colour and lumi-
nance. The Type I and III neurons project to the ventral half of nRt,
the same region where neurons respond to two-dimensional mo-
tion. Type V neurons project to the caudal nRt, corresponding
roughly with the region specialised for looming stimuli. Shown in
Figure 5B, Hellmann et al. (2004) proposed the tectal mosaic for
a comprehensive description of the various functional projections
of the tectum. The tectum consists of functionally distinct TGCs in
layer 13, arranged within the retinotopic map, but with indepen-
dent projections subserving different functions. That is, each point
in the tectum, which represents a point in visual space, gives rise
to several functional pathways. In this light, the tecto-rotundal

Figure 5. Functional topographic organisation of nucleus rotundus (nRT). A shows the topographical organi-
sation of nRt with respect to processing of 3-D motion (looming), two-dimensional motion, colour, and
luminance (from Wang, Jiang, & Frost, 1993). (B) shows the “tectal mosaic” proposed by Hellmann et al. (2004).
Any point in layer 13 of the tectum consists of numerous cell types, each having a different arborization pattern
in the superficial layers, and each projecting to different areas, either the subdivisions of nRt or to descending
tectobulbar and tectopontine pathways. (C) shows anterograde labelling in nRt from localised injections of red
and green fluorescent tracers in the tectum (TeO). Note that the labelling from both injections is very widespread.
(D) shows retrograde labelling of layer 13 tectal ganglion cells from injections in the central (Ce) and posterior
(P) regions of nRt. Note neurons are labelled throughout layer 13 from both injections (adapted from Marin,
Letelier, Henny, Sentis, Farfan, Fredes, et al., 2003). nBOR � nucleus of the basal optic root; Imc �
magnocellular nucleus isthmi. Scale bars; 300 �m in (C); 1 mm in (D).
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projection effectively transforms a retinotopy into a functional
topography.

The tectum also has other efferent and afferent connections with
several nuclei where the retinotopy is not maintained. These in-
clude parts of the dorsal thalamus (Figure 6B), the nucleus pre-
tectalis (PT; Figure 6D), nucleus subpretectalis (SP; Figure 6D),
the pontine nuclei (Figure 6C), and the archistriatum (Figure 6A;
Brecha, 1978; Dubbeldam, den Boer-Visser, & Bout, 1997; Gamlin,
Reiner, Keyser, Brecha, & Karten, 1996; Hunt & Brecha, 1982;
Hunt & Kunzle, 1976; Manns et al., 2007; Mpodozis et al., 1996;
Reiner, Brecha, & Karten, 1982; Theiss, Hellmann, & Gunturkun,

2003; Zeier & Karten, 1971). These nuclei are involved in various
visuomotor behaviours.

Topographic Connections from the Nucleus
Rotundus to the Entopallium

The nRt projects topographically to the entopallium in the telen-
cephalon, an area traditionally regarded as homologous with extra-
striate visual cortex of mammals (Karten & Shimizu, 1989): the
caudal nRt projects to the caudal parts of entopallium, and the rostral
nRt projects to rostral entopallium (Figure 7A; Laverghetta &

Figure 6. Nuclei having nontopographic connections with the optic tectum (TeO). From the injections shown
in the central drawing, retrogradely labelled cells are shown in the dorsal and ventral divisions of the arcopallium
(Ad, Av; A), the pretectal nucleus (PT; D) and lateral spiriform nucleus (SpL; D) and anterogradely labelled
terminals are shown in the posterior nucleus of the dorso-lateral thalamus (DLP; B) the medial and lateral pontine
nuclei (PM, PL; C) and the subpretectal nucleus (SP; D). Numerous fibres can also be seen coursing through the
SP and tecto-thalamic tract (TT) en route to nucleus rotundus (D). IPS � nucleus interstitial pretecto-
subpretectalis. A � anterior; P � posterior; D � dorsal; V � ventral. Scale bars: 200 �m in (A, B); 300 �m
in (C, D).
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Shimizu, 2003; Miceli & Reperant, 1985; Nixdorf & Bischof, 1982).
Thusly, one would expect a functional topography in the entopallium.
Generally speaking, because the caudal nRt is involved in motion
processing, the caudal entopallium should be involved in processing
visual motion. Likewise, as the rostral nRt is involved in processing
colour and luminance, the rostral entopallium should be involved in
spatial vision of some sort. We (Nguyen et al., 2004) examined the
effects of lesions to the entopallium on motion and spatial perception
using the stimuli shown in Figure 7B and C. The motion stimuli were
composed of moving dots in which the proportion of dots moving in
the same direction could be varied from 0% (i.e., 100% dynamic
noise) to 100% (all dots moving in the same direction). The spatial
task was similar in that it involved the detection of horizontal or
vertical bars imbedded in static noise, where the amount of noise
could be varied. Lesions to the caudal entopallium resulted in impair-
ments on the motion task (Figure 7D), whereas lesions to the rostral
entopallium resulted in impairments on the spatial task (Figure 7G).
Thusly, within the tectal-rotundal-entopallial pathway, there are sub-
pathways specialised for processing visual motion and spatial vision
(i.e., form and colour). Such a functional segregation of visual pro-
cessing is reminiscent of what occurs in the dorsal and ventral streams
of mammalian visual cortex (Milner & Goodale, 2008).

Concluding Thoughts

In this article, we have focused on a description of the topo-
graphic maps in the tectofugal visual pathway in birds. Although
much work remains for a comprehensive description of tectal
connectivity a great deal of study on tecto-isthmal connections and
the tecto-rotundo-entopallial pathways has deepened our under-
standing of topographic maps in visual processing. The tecto-
isthmal pathways involve an integral network of spatially topo-
graphic connections and speak to the selective attention when the
visual system is faced with a deluge of stimuli, and the concept of
a “winner-take-all process” in directing orienting movements to a
particular location in the visual field (Marin et al., 2005; Marin et
al., 2007; Wang et al., 2006; Wang et al., 2004). The tecto-
rotundo-entopallial pathway involves a functional topography,
concerned with stimulus attributes (motion, colour, form), but
sacrificing localisation information (Hellmann et al., 2004; Marin
et al., 2003; Wang, Luksch, Brecha, & Karten, 2005). It must be
emphasised that the spatially topographic and functional topo-
graphic systems are very much interconnected. Indeed, the reen-
trant signals from Ipc and SLu target the dendrites of layer 13
TGCs that project to the nucleus rotundus (Wang et al., 2006).

Figure 7. Visual streams in the rotundal-entopallial projection. A shows the topographic projection from the
nucleus rotundus to the entopallium (adapted from Laverghetta & Shimizu, 2003). Da, Ce, and P refer to the
dorso-anterior, central and posterior subdivisions of the nucleus rotundus. (B–G) shows data from Nguyen et al.
(2004) emphasising that there is a dissociation of motion and spatial vision in the entopallium. B and C
respectively show the stimuli used to test motion and spatial vision: unidirectional motion of random dots in
dynamic noise versus square wave gratings embedded in static noise. For both types of stimuli, the amount of
noise can be varied from 0% to 100%. In (D–G), the effects of lesions to the caudal (D, E) and rostral
entopallium (F, G) on performance on the motion (D, F) and spatial tasks (E, G) are shown. See text for details.
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Even at this point there seems to be a functional division as the Ipc
targets dendrites of Type I TGCs (Wang et al., 2006), which
innervate the ventral and posterior parts of nRT and are involved
in motion processing (Luksch, Cox, & Karten, 1998; Luksch,
Karten, Kleinfeld, & Wessel, 2001), whereas the SLu targets the
dendrites of Type II TGCs, which innervate the dorsal part of nRT
(Hellmann et al., 2004) and might be involved in colour processing
(Wang et al., 1995). Wang et al. (2006) have suggested that Ipc
and SLu serve, at least in part, to address the “binding” problem by
temporally coordinating spatially coincident visual information
(e.g., colour and motion of an object) that is processed in different
parts of the tecto-rotundal-entopallial pathway.

Résumé

Au cours des dernières décennies, un nombre important de travaux
ont été menés sur le système visuel géniculo-strié des primates.
Cependant, les études du système visuel aviaire ont fourni une
riche source de données contribuant à notre compréhension du
traitement visuel. Dans cet article, nous effectuons une revue de la
connectivité et de la fonction du tectum optique (homologue du
colliculus supérieur) chez les oiseaux. Nous soulignons les pro-
jections rétinotopiques entre le tectum optique et les noyaux isth-
miques, ainsi que les projections topographiques fonctionnelles
entre le tectum optique et le noyau rotundus et l’entopallium
(homologues du pulvinar et du cortex extrastrié, respectivement),
où la rétinotopie a été sacrifiée. Ces travaux ont été cruciaux pour
notre compréhension des processus visuels fondamentaux, incluant
l’attention, le traitement parallèle et le problème du liage.

Mots-clés : cartes rétinotopiques, voies visuelles, noyau rotundus,
entopallium, noyaux isthmiques
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