Introduction

The question of whether morphology requires a level of representation that is distinct from phonology and semantics has been at the heart of psycholinguistic research for many years (e.g. Marslen-Wilson, 1977). More recently, Marslen-Wilson (2000a, b, 2001) has argued that the important role of non-concatenative morphology to the theoretical debate regarding morphological representation and storage. In such languages, surface word forms are usually produced from phonological forms of words, which are derived from so-called morphemes. Each morpheme has a unique phonetic form, which is represented in the lexical representation of the morpheme. However, the phonetic form of each morpheme is not represented separately with its unique phonetic form. Rather, the phonetic form of each morpheme is represented separately with its unique phonetic form, which is combined with the phonetic form of other morphemes to form the surface word form.

Allomorphic variation

Two types of non-concatenative rules can be distinguished in Arabic:

1. Strong roots: These roots have a consistent representation in every derivable or inflected surface form. Examples:
 - [qaala] (to say)
 - [fa¿a] (to search)

2. Weak roots: These roots have a consistent representation in every derivable or inflected surface form. Examples:
 - [fa¿a] (to say)
 - [lmama] (to participate)

When the noun root is specified, the CV-structure of the root pattern is preserved. In Condition 1, labeled [+Root +S-Allom], primes and target share a root morpheme, which is a combination of CV-Skeleton and a Vocalic Melody (McCarthy, 1981). For a root morpheme containing a glide such as [fa¿a], the root will surface as either [fa¿a] or [fa¿a]. The single direct-access model predicts priming in Condition 3. Here the underlying CV-Skeleton is preserved because it is combined with a strong root. The word schema conveys the same morpho-syntactic information in prime and target.

Experimental Questions

1. Is the phonetic variant of each morpheme separately represented with its own unique phonetic form?
2. Is the phonetic form of each morpheme separately represented with its unique phonetic form?
3. Is the phonetic form of each morpheme separately represented with its unique phonetic form?

Predictions

1. No priming in Condition 1 because the underlying CV-Skeleton is preserved.
2. No priming in Condition 2 because word pattern allomorphic variation results in the disruption of the underlying CV-Skeleton.
3. No priming in Condition 4 because no underlying structural unit is common to prime and target.

Experiment 2:

In Condition 1, labeled [+Root +S-Allom], primes and target share a root morpheme, which is a combination of CV-Skeleton and a Vocalic Melody (McCarthy, 1981). For a root morpheme containing a glide such as [fa¿a], the root will surface as either [fa¿a] or [fa¿a]. The single direct-access model predicts priming in Condition 3. Here the underlying CV-Skeleton is preserved because it is combined with a strong root. The word schema conveys the same morpho-syntactic information in prime and target.

Results and Discussion

1. The phonetic variant of each morpheme is separately represented with its own unique phonetic form. The phonetic form of each morpheme is separately represented with its unique phonetic form.
2. The phonetic form of each morpheme is separately represented with its unique phonetic form. The phonetic form of each morpheme is separately represented with its unique phonetic form.

References