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Abstract

Rather than treating paired associate and serial learning as involving the acquisition of distinct types of information [e.g.

Murdock (1974). Human memory: Theory and data. New York: Wiley] I propose an Isolation Principle which treats the two as ends

of a continuum. According to this principle, consecutive pairs of items are relatively isolated from other studied items in paired

associates learning, but not isolated in serial list learning. The consequence is that variability that dominates forward and backward

probed recall is highly correlated in pairs but less so, due to differential interference, in lists. This can explain an important

dissociation: whereas forward and backward probes of pairs are nearly perfectly correlated, the correlation is only moderate for

serial lists. I demonstrate this in a chaining model by varying item-to-item associative strengths and in a positional coding model by

varying the similarity structure of item positions. This enables a range of models to account for data on pairs and lists, as well as

potential intermediate or hybrid paradigms, within a single theoretical framework.

r 2005 Elsevier Inc. All rights reserved.
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points being made here. Ultimately, one must address order-coding
1. Introduction

1.1. Associative and order information

Memory researchers have looked to paired associates
learning (PAL) paradigms to understand associative
memory, and to serial learning (SL) paradigms to
understand memory for order. However, Ebbinghaus
(1885/1913) proposed that serial order memory has an
associative basis. Formalized by Lewandowsky and
Murdock (1989), this class of associative chaining

models build ordered lists by linking together nearest-
neighbor items (and sometimes non-adjacent items) into
pairwise associative units. In contrast, the other class of
models of serial order memory, which we term positional

coding1models (e.g., Brown et al., 2000; Burgess and
e front matter r 2005 Elsevier Inc. All rights reserved.
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ellers have distinguished between positional and order

position being absolute while order being relative.

valid distinction, it is not critical to the theoretical
Hitch, 1999; Henson, 1998; Lee and Estes, 1977),treat
only serial list learning, thus tacitly implying that
associative and list memory need to be treated sepa-
rately.

First I discuss two apparent dissociations between
PAL and SL paradigms. Then I introduce the Isolation
Principle as a way of treating PAL and SL as ends of a
continuum, enabling a broad class of models to account
for data on PAL, SL and potentially, a range of
intermediate paradigms.
models separately from positional-coding models. However, a more

basic distinction is whether items are associated directly to one

another, as in the chaining class of models, or interact indirectly via a

separate, ordered structure, be it positional, order or something more

abstract like temporal context. Thus, I refer to such models as

‘‘positional’’ coding models as a short-hand to emphasize this

fundamental distinction between model classes.
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1.2. PAL: associative symmetry

Early research on PAL stemmed from stimulus–re-
sponse theory, so the prevailing assumption was that
paired associates learning possessed intrinsic direction-
ality. Backward associations were rarely discussed, and
some (e.g., Ebbinghaus, 1885/1913; Wolford, 1971) even
proposed that forward and backward associations are
independent. Opposed to this notion, Köhler (1947),
and later, Asch and Ebenholtz (1962), proposed the
Associative Symmetry Hypothesis, stating that, instead
of participants learning two separate directional asso-
ciations, paired items are encoded into a single, holistic
representation, with no meaningful distinction between
the forward and backward associations. They proposed
that asymmetries in measured behavior were the result
of asymmetries the experimental paradigms. Certain
experimental variables must be controlled for to test this
notion, including differences in type of material (e.g.,
adjectives versus nouns) between ‘‘A’’ and ‘‘B’’ items
from the ‘‘A–B’’ pair and ‘‘response availability,’’
referring to participants begin more practised at
producing the ‘‘B’’ than the ‘‘A’’ items. If one equates
these conditions, mean performance on forward and
backward probes is symmetric, supporting Associative
Symmetry (e.g., Horowitz et al., 1964; Murdock, 1962,
1965, 1966). See Kahana (2002) for a review. Taking a
different approach, Horowitz et al. (1966) presented
participants with double-function lists, where each item
is an ‘‘A’’ item of one pair and a ‘‘B’’ item of a different
pair (e.g., Primoff, 1938; Slamecka, 1976). They asked
participants to give two ‘‘free associations’’ to probe
items from the list. Participants responded with the
forward item just as often, on average, as with the
backward item. The exception was probing the terminal
pairs (first and last pairs from the serial list from which
the double-function pairs were derived), which were
single-function. These findings were used as evidence
that there is no intrinsic directionality in memory for
pairs.

However, Kahana (2000, Chap.4) pointed out that
both holistic and non-holistic models could produce
symmetry or asymmetry in mean performance. The
symmetry results could reflect that on average, forward
and backward associations are encoded with compar-
able strength, but for specific pairs, one directional
association could be learned without the other. Asso-
ciative Symmetry specifically requires that performance
on forward and backward probes of paired associates
should be perfectly correlated at the level of pairs
(Kahana, 2000). Using successive testing, Kahana
(2002) showed empirically that performance on indivi-
dual pairs is highly correlated between forward and
backward probes, directly supporting Associative Sym-
metry. These very high (nearly perfect) correlations were
obtained between successive tests that were separated
from each other and from study by substantial numbers
of other items.

Finally, Rizzuto and Kahana (2001) showed that a
model could only account for correlated forward and
backward probe performance if the encoded forward
and backward associations highly correlated in strength.
This held at three different levels of learning, so it could
not be attributed to floor or ceiling effects in accuracy.
They also compared a simulated model with and
without output encoding (storing correctly recalled pairs
during the first test) and found that when output
encoding was included, the model still required quite
highly correlated forward and backward stored associa-
tions in order to fit the data, ruling out output encoding
as the primary cause of correlated probed recall.

Thus, there is strong support for associative symmetry
in pairs as seen in the high forward–backward probe
correlation and modelling showing that this empirical
finding in behavior requires the underlying encoded
associations also to be highly correlated.

1.3. SL: associative asymmetry

If serial lists are built as a chain of simple associations
of the kind measured in PAL (Ebbinghaus, 1885/1913;
Lewandowsky and Murdock, 1989) then one might
expect to see similarly high correlations between
forward and backward probes of serial lists. Conversely,
the lack of such high correlations might support the
view that SL requires distinct study and/or recall
processes than PAL, or else that SL and PAL tap
different subsets of the information that was encoded
during study. Kahana and Caplan (2002) ran such a
probed SL experiment. Although they observed a
forward probe advantage in mean accuracy, they did
not analyze their data in a way that would directly speak
to the crucial question of the correlation between
forward and backward probes of a given pair. I now
report this re-analysis of the Kahana and Caplan (2002)
data; namely, I compute the correlation between
forward and backward probes of a serial list.

The experimental methods are outlined by Kahana
and Caplan (2002). Here I summarize the most relevant
methodological parameters and procedures. Each parti-
cipant learned 20 lists of 19 words. Following serial
learning of each list to a perfect recall criterion (with no
overlearning trials), the participant performed a brief
distractor task, followed by probed recall. The probes
were sequential probes (Murdock, 1967) of pairs of
items, where the pairs were originally presented in
adjacent serial positions in the previously learned serial
list. Participants were instructed to respond vocally both
to the distractor (deciding whether an equation was true
or false) and cued recall probes (with the target word)
and were encouraged to respond as quickly and
accurately as possible, with the knowledge that their
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Table 1

Mean accuracy for forward and backward probed recall of paired

associates [data from Kahana (2002)] of pairs of adjacent items in

learned serial lists [data from Kahana and Caplan (2002)]

PAL SL

1 pres 3 pres 5 pres Criterion

Forward 0.329 (0.225) 0.648 (0.291) 0.732 (0.230) 0.894 (0.010)

Backward 0.336 (0.222) 0.644 (0.237) 0.718 (0.209) 0.848 (0.009)

For paired associates (PAL) data, number of presentations was

manipulated within subjects; for serial learning (SL) data, lists were all

first learned to a criterion of one perfect recall before probing.

Standard errors (in parentheses) are corrected for between-subjects

variance (Loftus and Masson, 1994).

2Instead of computing a separate Yule’s Q value for each participant

one can collapse data across all subjects. When I did so, for both PAL

and SL data sets the qualitative pattern of findings was preserved while

the overall correlations tended to increase, as expected, due to

between-subjects variability that can inflate Q values (Simpson’s

Paradox; cf. Hintzman, 1993).
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responses and response times were being recorded. As
previously reported, forward probes showed a small but
significant advantage in accuracy over backward probes
(Table 1, last column), in contrast to symmetric mean
performance in Kahana’s (2002) PAL data (Table 1, first
three columns).

As is the case when mean accuracy is symmetric (i.e.,
in PAL), the asymmetric mean performance obtained in
SL does not necessarily tell us anything about associa-
tive symmetry. Again, it is the correlation that more
directly speaks to the question of associative symmetry.
In a re-analysis of the probed serial list data from
Kahana and Caplan (2002) I now report the correlation
between forward and backward successive probes of a
learned serial list. Each list was probed with seven
possible cue types, where cues could involve one or two
list items. Only the single-item adjacent cues (forward:
A? and backward: ?B) are considered here. The list was
probed completely (i.e., every item was involved in
exactly one probe, being either a cue item, a target item
or a skipped item in the case of remote probes) and then
probed completely once again, in a new random order. I
label these two sets of probes Test 1 and Test 2,
respectively. I define a ‘‘list transition’’ as two items in
adjacent serial positions. In each list, two list transitions
were probed with single-item adjacent cues, and if a list
transition was probed on Test 1 with a single-item
adjacent probe, it was probed again on Test 2 also with
a single-item adjacent probe. Probe direction was chosen
randomly on tests 1 and 2 (the rest of the list was probed
with other, more complex types of probes, which are
excluded from the present analysis). This yielded two
Test 1/Test 2 data points per list, for a total of 40 data
points per participant. One can measure the correlation
between accuracy on forward and backward probes
using Yule’s Q. Yule’s Q is equivalent to G for a
discrete correlation for a 2 � 2 contingency table (see
Kahana, 2002, for a review). For each 2 � 2 contingency
table, there are four different tallies of the possible
outcomes: a: Test 1=Test 2 ¼ Correct=Correct; b: Cor-
rect/Incorrect; c: Incorrect/Correct and d: Incorrect/
Incorrect. Yule’s Q ¼ ðad � bcÞ=ðad þ bcÞ. Note that in
the successive testing paradigm, Tests 1 and 2 cannot be
guaranteed to be independent tests. That is, Test 1 may
contaminate Test 2. For this reason it is important to
compare Yule’s Q for simple test/re-test effects, as well
as obtaining some sort of lower bound to the possible
obtainable value of Q. All reported t tests are two-tailed
and paired-samples except when comparing between
groups of participants.2

I compute the average Yule’s Q across participants for
three conditions: (1) ‘‘Same Direction,’’ condition
(QSame): cases in which direction was the same on Test
1 and Test 2 (A?/A? or ?B/?B), (2) ‘‘Different Direction’’
condition (QFB): in which probe direction was different
on Test 1 and Test 2 (A?/?B and ?B/A?) and (3) ‘‘Within-
List Control’’ condition (QControl): a bootstrap resam-
pling in which Test 1 and Test 2 performance measures
were drawn from different list transitions but from the
same list. This control is an estimate of Yule’s Q
produced by list-to-list variability, and was collapsed
across all combinations of probe directions. Note that
whereas for QSame and QFB, the same list transition (and
serial positions) are tested on Test 1 and Test 2, different
list transitions are probed on Test 1 and Test 2 to
compute QControl. I also recompute Yule’s Q for each
condition for Kahana’s (2002) PAL data, including
computing the Within-List Control. The control,
QControl, was calculated by re-pairing Test 1 and Test 2
within a given list (and within a given level of
#presentations). All such combinations were used except
for combinations where Test 1 and Test 2 probe the
same pair (i.e., those that were used to compute QSame

and QFB) and to avoid end-of-list artifacts, probes of
positions 1, 2, 18 and 19 were excluded from all
analyses. The critical measure is DQ ¼ QSame � QFB.

Table 2 shows the mean Yule’s Q values for each
condition, for Kahana’s (2002) PAL data (column 1),
and for Kahana and Caplan’s (2002) probed serial list
data (column 2). First, for the probed SL data, QFB is
significantly lower than QSame [Tð59Þ ¼ �4:98;
po0:0001], confirming that forward and backward
probed recall are not as correlated as the maximum
correlation one could expect (namely, the correlation
between Test 1 and Test 2 of the identical probe). QFB is
also significantly greater than QControl [Tð59Þ ¼ 4:74;
po0:0001], confirming that this correlation is not simply
produced by list-to-list variability.

For the PAL data, as previously reported, both QSame

and QFB are extremely high. These values, while close in
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Table 2

Yule’s Q between Test 1 and Test 2 for PAL [column 1, data from

Kahana (2002)] and probed SL [column 2, data from Kahana and

Caplan (2002)]

PAL SL

Same direction 0.993 (0.002) 0.85 (0.03)

Different direction 0.928 (0.011) 0.58 (0.03)

Within-list control 0.327 (0.061) 0.35 (0.04)

Yule’s Q for PAL are collapsed across #presentations. Q values are

averaged over participants (PAL: N ¼ 15; SL: N ¼ 60). Conditions

are: ‘‘Same Direction’’ (A?/A? or ?B/?B), ‘‘Different Direction’’ (A?/?B

and ?B/A?) and ‘‘Within-List Control’’ (different list transitions on

Test 1 and 2, regardless of direction). Standard errors (in parentheses)

are corrected for between-subjects variance (Loftus and Masson,

1994).
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Fig. 1. Yule’s Q between Test 1 and Test 2 for probed SL [data from

Kahana and Caplan, 2002]. Conditions are: ‘‘Same’’ (A?/A? or ?B/?B),

‘‘Different’’ (A?/?B and ?B/A?) and ‘‘Control’’ (different list transitions

on Test 1 and Test 2, regardless of direction). Q values are plotted for

the following median splits: (a) participants with high versus low QSame,

(b) participants who learned lists in few versus many trials, (c) probes

of lists initially learned in few versus many study–test trials and (d)

probes from early versus late serial positions. Error bars are standard

error of the mean across subjects and are thus conservative for the

purposes of paired-samples t-tests.
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magnitude, differ significantly [Tð14Þ ¼ 6:2; po0:0001].
Note that given that the correlations are near ceiling,
their variances may be artifactually low. Rizzuto and
Kahana (2001) showed that simulations of a neural
network model could only fit these correlations if the
correlation between the encoding strengths for forward
and backward associations was nearly perfect. This held
even when fitting individual participants’ data, so it
could not be explained by between-subjects variability.
We can further compare these previously reported
values to the new calculation of QControl. Compared to
this control, it is clear that both QSame and QFB values
are exceptionally high [QFB differs highly significantly
from QControl; Tð14Þ ¼ 10:6; po0:0001], and that these
near-perfect correlations cannot be accounted for simply
by list-to-list variability, nor by variability induced by
the number-of-presentations manipulation of pair
strength. It should be noted that the statistical
significance of QSame versus QFB comparison is stronger
for pairs than for lists. However, this has to due with
statistical power, and may be due to superficial
differences between the experimental paradigms. More
relevant to our discussion are the magnitudes of the
differences between Q values. With respect to the mean
values of Q, the value for QFB in the PAL data sits near
the upper end of the range set by QSame and QControl. In
contrast, for the SL data, QFB sits closer to the center of
the range set by QSame and QControl.

While the accuracy and correlation findings suggest a
dissociation between PAL and SL, one should bear in
mind not only that the comparison is across experi-
ments, but many aspects of the experimental design
differed. We can, however, test whether certain aspects
of the designs that differed between experiments could
have produced what appears like a dissociation between
PAL and SL. I briefly address these now.

The most worrying difference between the two
experiments is that the QSame (test/re-test correlation) is
near-perfect for the PAL data set but far from perfect
for SL. It is possible that the increased Test 1/Test 2
variability is somehow making it easier to observe the
substantially lower QFB in SL, but perhaps a SL data set
that had high QSame would show a much greater QFB,
weakening the evidence for a dissociation between PAL
and SL. To test this hypothesis, I median-split the
participants based on their QSame values. As Fig. 1a
shows, the DQ remains large for both groups of
participants. This was confirmed by t-tests: QSame

differed from QFB for both groups [High QSame Group:
Tð29Þ ¼ 6:63; po0:0001, Low QSame Group: Tð29Þ ¼
2:25; po0:05]. The difference in correlation, DQ was
greater for the high-QSame group [Tð58Þ ¼ �3:43;
po:01]. This is in the opposite direction than expected,
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thus arguing against the notion that the large value of
DQ is an artifact of low test/re-test correlation.

The most notable difference in experimental design
being the PAL and probed SL experiments is the perfect
serial recall criterion in the SL experiment compared to
imperfect levels of cued recall learning in the PAL
experiment. Thus, perhaps DQ increases as the materials
are overlearned. Similar to the previous comparison, I
median-split participants based on their median number
of trials to criterion (TTC) in the initial serial recall
phase of the probed SL experiment (median TTC ¼ 5
trials). As can be seen in Fig. 1b, DQ remains large for
both groups of participants. QSame was significantly
different from QFB for both groups [Low-TTC group:
Tð28Þ ¼ 2:97; po0:01, High-TTC group: Tð30Þ ¼ 5:56;
po0:0001]. DQ did not differ between groups
[Tð58Þ ¼ �1:48; p40:1]. Thus, the low correlation be-
tween forward and backward probes replicates across
participants with, on average, different numbers of
study trials.

I also asked whether degree of learning could be
modulating the forward–backward correlation across
lists by median-splitting lists within participants. Fig. 1c
shows that the DQ remains large for both rapidly and
slowly learned lists. Some participants had to be
excluded from this analysis if they had no range of
TTC values. QSame was significantly different from QFB

for both low- and high-TTC lists [Low-TTC lists:
Tð49Þ ¼ 3:68; po0:001, High-TTC lists: Tð49Þ ¼ 2:16;
po0:05]. DQ was greater for low-TTC lists than for
high-TTC lists [Tð49Þ ¼ �2:08; po0:05]. This suggests
that degree of learning, if anything, reduces our
observed effect.

Another way of asking whether degree of learning
could be modulating the forward–backward correlation
is by comparing serial positions within lists. I did this by
analyzing separately probes of early serial positions
(both probe and target items in serial positions 3–10),
which tend to be learned early in study-test trials versus
probes late serial positions (remaining positions) which
tend to be learned in later trials. Some participants had
to be excluded from this analysis if there was insufficient
data to compute one of the three Q values. Fig. 1d shows
that DQ is significant both for early and late posi-
tions [early: Tð59Þ ¼ 3:26; po0:01, late: Tð59Þ ¼ 3:95;
po0:001] and DQ did not differ between early and late
positions [Tð59Þ ¼ 0:52; p40:5].

In sum, despite the fact that the PAL and SL data
come from different experiments, the extremely high
correlation between forward and backward probes of
paired associates contrasts with the substantially low
forward–backward correlation found in probed serial
lists. The correlation is not a simple consequence of
lower test/re-test correlation in probed SL and replicates
across degrees of learning across participants, lists and
serial positions. While additional follow-up experiments
are warranted to further characterize the boundary
conditions of this dissociation, it stands as an empirical
finding to be addressed theoretically. The remainder of
this article will examine whether dissociations of this
nature can be reconciled with models that assume
common mechanisms for PAL and SL.
2. The isolation hypothesis

The near-perfect correlation in PAL simply means
that forward and backward probed recall are influenced
by common sources of variability. Whatever processes
account for the majority of the variance must influence
forward and backward recall in the same way. The
convolution/correlation formalism (Borsellino and Pog-
gio, 1971) naturally satisfies this condition (Murdock,
1979), and the Matrix Model formalism may be
constructed to satisfy this (Rizzuto and Kahana,
2001). For continuity with this latter work, I will follow
the Matrix Model formalism. Dissociations in perfor-
mance could suggest that PAL and SL obey different
basic principles. However, here I attempt to treat both
paradigms within a common framework, using a single,
continuous-valued parameter to move a memory model
from PAL to SL behavior.

I propose the following. Forward and backward
probed recall have similar dynamics in PAL as in SL.
What differentiates PAL from SL is that in PAL, paired
items at studied positions fx;x þ 1g, are relatively
isolated from other studied items at positions yax;x þ

1 (Woodworth, 1915; Murdock and Franklin, 1984).
Thus, what dominates the correlation between forward
and backward probe accuracy in PAL is variability in
storage operations involving x and x þ 1, which must be
highly correlated to account for the reliable data
showing high measured correlations in PAL. In a
chaining formalism this corresponds to the association
strength between item x and item x þ 1. In a positional
coding formalism, this corresponds to variability in
encoding of item–position and position–item associa-
tions for items x and x þ 1. In contrast, in SL, probed
recall is susceptible to competition from items that were
nearby in study. Under appropriate conditions (which
will become evident during exposition of the models),
the degree of competition from particular items can
differ for forward versus backward probe directions. If
these direction-dependent terms are relatively indepen-
dent, they will reduce the correlation. Next I elaborate
isolation in an associative chaining model and then in a
positional coding model.

Modelling strategy: The purpose of the model deriva-
tions is to test whether the Isolation Principle can
operate in models, and in particular, whether the
principle can function in both chaining and positional
coding formalisms. Rather than develop a complete
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model of SL and PAL that can account for a broad
range of existing data, I keep the models as simple as
possible without being blatantly unrealistic. This will
facilitate intuitions about how and why the Isolation
Principle functions in both classes of models without
being obscured by countless specific, debatable imple-
mentation choices. In particular, I consider it beyond
the scope of this manuscript to attempt to account for
serial position effects and learning over repeated
presentations, although one hopes that the effects
derived here are compatible with these sources of
variability.

Further, the particular correlational measures of PAL
and SL data considered here are not likely to select
associative chaining over positional coding or vice versa.
The aim in implementing Isolation in both positional
and associative chaining models is not to select them
against each other but rather, to demonstrate the
generality of the notion of Isolation. By implementing
this model-construction principle in a simple associative
chaining model, might understand what the necessary
conditions are for handling forward–backward probed
recall correlation data within associative chaining
frameworks. Likewise, by implementing the same type
of principle in a simple positional coding model, we
might find out how we have to constrain positional
coding models to account for the correlational data
presented here. While it would be ideal to make the
models as comparable to one another as possible, it is
not easy to do so; for example, the positional coding
model necessarily requires more machinery (i.e., a
representation of position) than the associative chaining
models.

While I refer to more general formalisms with full
vector representations, both the associative chaining and
positional coding models presented here are derived as
strength models. Importantly, both models both contain
a single continuous-valued free parameter that imple-
ments the Isolation Principle, allowing the model to
move from the perfectly isolated PAL regime to the
completely unisolated SL regime.

The chief way in which the models differ is that the
associative chaining model learns direct item–item
associations. In contrast, the positional coding model
learns no direct item–item associations; all item–item
interactions must be mediated by the positional code via
item–position and position–item associations. While it
may be controversial that in this framework, even PAL
involves no item–item associations, this is necessary to
treat PAL and SL within the same framework. The
notion of using positional coding to unify PAL and SL
is quite vulnerable to empirical evidence if it could be
demonstrated that PAL necessarily relies on direct,
unmediated item–item associations.

For each model I first analytically derive continuous
correlations between the outcomes of forward and
backward probe operations just prior to response
thresholding. Then, I solve for the discrete, Yule’s Q
values using simulations that include response-thresh-
olding.

2.1. Example 1: isolation in an associative chaining model

Consider a Hebbian matrix model of associative
chaining (e.g., McNaughton and Morris, 1987; Hum-
phreys, Bain, & Pike, 1989; Humphreys, Pike, Bain, &
Tehan, 1989; Rizzuto and Kahana, 2001). The model
shall store a list of L words, indexed by l. I begin with a
general storage equation to which I shall later add
constraints.

Assumptions:
(1) Item representation: The first assumption is that

items are represented as vectors with high dimension-
ality. I will follow the convention that vectors are set in
bold face and assumed to be column vectors, prime (0)
denotes the transpose, and vector dimensions are
indexed in parentheses whereas subscripts (e.g., k and
l) index different vectors. Thus, an item, f l (or fk) is an
Nf -dimensional vector whose elements are independent,
identically distributed (i.i.d.), Gaussian random vari-
ables with a mean of zero and a variance of 1=Nf . I
assume that the item representation vectors have high
dimensionality so that I can simplify the subsequent
derivations by taking the limit Nf ! 1. This implies
that fk � f l ¼ dkl , where dkl is Kronecker’s Delta
(equal to 1 when k ¼ l and 0 otherwise). This can be
viewed as a strength model. I nonetheless set up the
formalism of the model using vector notation to
emphasize that a realistic implementation of the model
would need to be based on some finite-dimensional
vector representation (e.g. Caplan, 2004). Insofar as this
dimensionality is high, the present derivations will be
relevant. If one were to reduce the dimensionality of the
item representation, that would allow for item–confu-
sion errors, which could differentially influence the
probe versus target word depending on probe direction;
if these effects are large, the correlation between forward
and backward probes should decrease substantially,
even for PAL.

(2) Forward versus backward associations: The second
assumption regards the problem of target ambiguity in
chaining models (Kahana and Caplan, 2002). That is,
when probed, the model cannot distinguish the forward
from the backward association. In serial recall, this can
be overcome by response suppression (Lewandowsky
and Murdock, 1989), but in the case of a single-item
probe, there are no relevant items to suppress. This
imposes a theoretical upper limit of 50% accuracy. To
enable the model to overcome target ambiguity and, in
principle, be able to perform better than 50% accuracy,
I assume that the model stores forward and backward
associations in separate memory matrices, Wþ and W�,
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3This is a no-forgetting chaining model. Lewandowsky and

Murdock (1989) implemented a chaining model with forgetting; upon

each encoding operation, a forgetting parameter, a, scaled down the

strength of the previously learned associative information, although

the fit values of a are typically just under 1 in order to explain the

asymptotic portion of the serial position curve (Murdock and Hockley,

1989). Including a sub-unity value of a in the chaining model discussed

here should provide a better fit to serial recall data. However, doing so

would complicate the derivations, without undermining the key

insights. In particular, any parameters that produce serial position

variability would increase correlations between forward and backward

probes of adjacent list items. Nonetheless, to explain dissociations

between cued recall of pairs versus lists, it is still necessary to analyze

of isolation and the effects of within-list interference. The present

model is also an unlimited capacity model; because we are not trying to

account for item–memory effects at this time, there is no need to

include the additional machinery necessary to account for tradeoffs

between learning and forgetting of item versus associative information

(Hockley, 1992; Murdock, 1993).

J.B. Caplan / Journal of Mathematical Psychology 49 (2005) 383–402 389
respectively. that participants can selectively and
accurately probe the correct memory matrix, Wþ or
W�, depending on the direction of the probe. One could
easily relax this assumption without substantially chan-
ging the outcome of the present derivations. For
example, instead of only probing the correct memory
matrix, the model could probe with a weighted sum of
the correct- and incorrect-direction matrix. This would
restore some target ambiguity at study or at test, but
would complicate the derivations while not adding
substantially to our intuition about how isolation
influences the forward/backward correlation.

(3) Remote associations: The third assumption is that,
for simplicity, and to model the effects of interference,
the model only stores associations between nearest-
neighbor items (Lewandowsky and Murdock, 1989;
Murdock and Franklin, 1984) and nearest-but-one
neighbor (the closest ‘‘remote’’ associations) items. In
the strict PAL regime (perfect isolation), these remote
associations will be zero. However, if isolation is even
slightly imperfect, the remote associations will be non-
zero (albeit weak). The same applies to between-pair
associations. Thus, in addition to modelling the strict
PAL and SL regimes, I allow for intermediate regimes
with moderate levels of isolation. These intermediate
regimes could correspond to real-life or experimental
situations in which participants may not follow strict
PAL or SL strategies. Further, allowing intermediate
regimes allows us to examine how model behavior
moves between the strict regimes. Also, because I am not
considering memory for item information here, I
assume, for simplicity, that no autoassociations are
stored in either PAL or SL.

(4) Response screening: The fourth assumption is that
the model prevents itself from recalling the probe item
which it is given. Rather than complicate the model by
implementing this as a fallible process, I simply assume
that the model can achieve this perfectly. This seems
plausible in most probe paradigms, in which the probe
remains visible on the screen until the response is made
or the time allowed for responding expires.

(5) Net retrieval strength: The fifth assumption is that
for each probe operation, every possible item has a
retrieval strength. The model will produce the correct
response if the retrieval strength of the target both
exceeds a response threshold and exceeds the sum of the
retrieval strengths over all incorrect items (excluding the
probe item; see previous assumption). Thus, recall
success depends on what I term net strength, defined as
the difference between retrieval strength of the target
and the sum of the retrieval strengths of all competing
items. This net strength can be seen as an approximation
of a probabilistic, competitive retrieval rule such as that
suggested by Luce (1959). That the target strength must
exceed the sum of the competitor strengths as well as a
threshold can be thought of as collapsing together
several types of response errors: (i) omissions due to all
strengths being weak, (ii) omissions due to large levels of
competition resulting in many items being sampled until
a stopping limit is reached before the (strong) target
item is sampled and (iii) intrusions wherein an incorrect
item’s strength alone exceeds the target strength as well
as a response threshold.

Study: The storage equation involves two symmetric
operations:

Wþ ¼
XL�1

l¼1

XL

k¼lþ1

Glkfkf
0
l ,

W� ¼
XL�1

l¼1

XL

k¼lþ1

Gklf lf
0
k.

Encoded associative strength is controlled by the
variables Glk. To emphasize the pattern of isolation, I
write G as the product of two variables

Glk ¼ Slkglk.

The glk is a randomly drawn encoding strength,3and
each strength is scaled by a constant Slk that depends on
l � k. Slk will control the degree of isolation, and are
further specified below. glk is an independent random
variable such that E½glk� ¼ 1 and var½glk� ¼ s2. Thus,
E½Glk� ¼ Slk and var½Glk� ¼ S2

lks
2. To make the basic

storage mechanism embody associative symmetry, I
assume that forward and backward association terms
are stored in a perfectly correlated manner; i.e.,

glk � gkl . (1)

The pattern of isolation is captured by Slk, which are
constant scalars that weight terms differently. By
constraining the values of Slk, one can mimic various
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standard models. For this model,

Slk ¼

Swithin jl � kj ¼ 1 within pair;

Sbetween jl � kj ¼ 1 between pair;

Sremote jl � kj ¼ 2;

0 otherwise;

8>>>>><
>>>>>:

ð2Þ

where Sremote ¼ Sr � Sbetween,

Srp1 and SbetweenpSwithin,

where Swithin, Sbetween and Sr are constant scalars. The
reason for defining Sremote as a product of Sr with
Sbetween is to ensure that if Sbetween is small, the remote
associations will necessarily be small; thus, the remote
associations are subject to the same effects of isolation,
over and above the remote association strength simply
being less than adjacent association strength. The degree
of isolation is defined as

I ¼ 1 �
Sbetween

Swithin
. (3)

In the SL limit, Sbetween ¼ Swithin and I ¼ 0, whereas in
the PAL limit, Sbetween ¼ 0, Swithin40 and I ¼ 1. Of
crucial importance is the distinction between within- and
between-pair association strengths. This distinction is
made in PAL but vanishes in the SL limit. The PAL
conditions are an implementation of associative chaining

isolation, where the strength of within-pair associations
is much greater than the strength of between-pair
associations.

Probed recall: Consider a specific list transition,
fx; x þ 1g. The probe operation begins by multiplying
a probe item vector onto the appropriate memory
matrix, Wþ or W� to obtain a retrieved item vector, fr:

Forward: fr ¼ Wþfx,

Backward: fr ¼ W�fxþ1.

The model computes a retrieval strength, al , for each list
item l, where similarity between the retrieved vector, fr,
and all list items, where

al ¼ fr � f l .

Accuracy depends on whether the target strength, axþ1

(or ax), can exceed the strengths of the distractor items,
ap, and a response threshold, y. For the forward probe,
the strengths axþ1 and ap are

axþ1 ¼ ðWþfxÞ � fxþ1 ¼
XL�1

l¼1

XL

k¼lþ1

Slkglkðf l � fxÞðfk � fxþ1Þ,

ap ¼ ðWþfxÞ � fp ¼
XL�1

l¼1

XL

k¼lþ1

Slkglkðf l � fxÞðfk � fpÞ,

pax;x þ 1.

Intrusions are possible but I only derive expressions
relevant to recall probability for the correct target item,
classifying all other types of outcomes as incorrect.
Probing in the backward direction, the target and
distractor strengths, ax and aq, are

ax ¼
XL�1

l¼1

XL

k¼lþ1

Slkglkðf l � fxþ1Þðfk � fxÞ,

aq ¼
XL�1

l¼1

XL

k¼lþ1

Sklgklðfk � fxþ1Þðf l � fqÞ,

qax; x þ 1.

Define net strength (denoted xF for forward and xB for
backward probes) as the strength of the target item
minus the sum of the strengths of all distractors. Then,
the target item will be correctly recalled if its xF (or xB)
exceeds the response threshold, y. Otherwise, either a
distractor item would be recalled or an omission would
be made. Recall that xF and xB rely on underlying
random variables. Thus, the probability of correct recall
in the forward and backward directions are, respec-
tively:

Forward: PðF Þ ¼ PðxF4yÞ,

xF ¼ axþ1 �
X

pax;xþ1

ap,

Backward: PðBÞ ¼ PðxB4yÞ,

xB ¼ ax �
X

qax;xþ1

aq.

For the model considered here, the only non-zero
distractor terms are those for the remote associations
p ¼ x þ 2 (forward probes) and q ¼ x � 1 (backward
probes). The net strengths can be rewritten:

xF ¼ axþ1 � axþ2 ¼ Sx;xþ1gx;xþ1 � Sx;xþ2gx;xþ2, (4)

xB ¼ ax � ax�1 ¼ Sxþ1;xgxþ1;x � Sxþ1;x�1gxþ1;x�1. (5)

Analytical solution for correlation in net strength: One
can anticipate the result at this stage by observing that
ax and axþ1 are identical (Eqs. (4) and (5)), because
gx;xþ1 ¼ gxþ1;x (Eq. (1)). However, for the competing
terms, this depends on the degree of isolation. In the
case of PAL, Sx;xþ2 ¼ Sxþ1;x�1 ¼ 0, which means that xF

and xB will be dominated by the perfectly correlated
axþ1 and ax. In the case of SL, however, ax;xþ2aaxþ1;x�1,
and with the present constraints, are independent. Thus,
item competition will tend to counteract the high
correlation induced by the retrieval strength of the
target. The less the degree of isolation, the greater Sx;xþ2

and Sxþ1;x�1 will be, and the lower the correlation
between xF and xB, and thus between forward and
backward recall.

First I will obtain a closed-form solution for the
continuous correlation between xF and xB. However, the
inclusion of a response threshold introduces an im-
portant nonlinearity into the expressions for retrieval
probability. I will examine the effect of the threshold by
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computing Yule’s Q in numerical simulations. To solve
for the continuous correlation I use

cov½gx;xþ1; gxþ1;x� ¼ 1,

cov½gx;xþ1; gx;xþ2� ¼ cov½gx;xþ1; gxþ1;x�1�

¼ cov½gx;xþ2; gxþ1;x�1� ¼ 0.

The continuous correlation, rFB, between xF and xB is

rFB ¼
cov½xF; xB�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var½xF�var½xB�

p . (6)

Given that

cov½xF; xB� ¼ cov½axþ1 � axþ2; ax � ax�1�

¼ s2Sx;xþ1Sxþ1;x,

var½xF� ¼ var½axþ1 � axþ2� ¼ s2ðS2
x;xþ1 þ S2

x;xþ2Þ,

var½xB� ¼ var½ax � ax�1� ¼ s2ðS2
xþ1;x þ S2

xþ1;x�1Þ.

Eq. (6) becomes

rFB ¼
Sx;xþ1Sxþ1;xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðS2
x;xþ1 þ S2

x;xþ2ÞðS
2
xþ1;x þ S2

xþ1;x�1Þ

q . (7)

Or, substituting the expressions for Slk (Eq. (3)),

rFB ¼
S2

within

ðS2
within þ S2

betweenS2
r Þ

.

Even if we were to add an asymmetry, a, such that

a ¼
Sy;x

Sx;y
where x4y (8)

the a factor is present both in the numerator and
denominator, canceling in both the PAL and the SL
regimes. This way of implementing asymmetry is one
example that shows that the measurement of (a)sym-
metry of mean performance does not necessarily tell us
what the correlation will be (and vice versa).

As an aside, one can easily follow the effect of added
remote associations by simply making the following
replacements:

E½xF� ¼ Sx;xþ1 �
XL

y¼xþ2

Sx;y

var½xF� ¼ s2
XL

y¼xþ1

S2
x;y, ð9Þ

E½xB� ¼ Sxþ1;x �
Xx�2

y¼1

Sxþ1;y

var½xB� ¼ s2
Xx

y¼1

S2
xþ1;y. ð10Þ

In computing rFB, the numerator remains the same, but
the denominator accrues extra terms due to the
additional remote associations. Thus, Eq. (7) becomes

rFB ¼
Sx;xþ1Sxþ1;xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðS2
x;xþ1 þ

PL
y¼xþ2 S2

x;yÞðS
2
xþ1;x þ

PL�1
y¼1 S2

xþ1;yÞ

q .

(11)

The effect is that adding increasing numbers of
competing associations drives down the correlation.
Again, in the PAL limit, the interfering terms approach
zero, making the correlation approach unity. In
contrast, in SL, those terms are non-zero, and the
stronger they are, the lower the correlation becomes.
Remote associations (or any uncorrelated associations),
thus, serve to further accentuate the difference between
PAL and SL regimes.

Yule’s Q solution by simulation: Next I simulate the
model with threshold by generating pseudo-random
Gaussian-distributed values for the g variables in the
expressions for the net strengths (Eqs. (4) and (5)).
Responses were considered correct if the net strength
exceeded the response threshold, y; i.e., xF4y or xB4y
for forward and backward probes, respectively. Yule’s Q
between forward and backward probes, QFB, was
computed from the contingency table assembled from
response correctness across 106 simulated item-pairs
fx; x þ 1g. Simulations were run for values of I (para-
meterizing isolation) ranging from 0.05 to 1 in steps of
0.05. Note that I (Eq. (3)) is, more specifically,

I ¼ 1 �
Sxþ1;xþ2

Sx;xþ1
� 1 �

Sx;x�1

Sxþ1;x
.

Fig. 2 shows the dependence of the correlations on I as
well as three model parameters of interest: y, the
coefficient of variation of encoding strength, CV g, and
the degree of asymmetry, a (Eq. (8)).The plots illustrate
the case where Sremote ¼ 0:9Swithin. If Sremote is lowered
(not shown), this would tend to reduce the sources of
uncorrelated interference, driving up the correlation;
increasing Sremote has the reverse effect. The dashed lines
plot the Pearson correlation, rFB between forward and
backward net strengths, illustrating that as degree of
isolation increases, rFB increases. All plots of rFB

overlap, reflecting the fact that y does not enter into
the analytic solution and CV g and a cancel out and thus
are absent from the final expression (Eq. (7)).

The thresholded model similarly shows that QFB as I

increases, reaching unity with perfect isolation. How-
ever, Yule’s Q does not, for reasonable parameter
values, take on as low values as does rFB. As can be
seen in Fig. 2a, as y increases (think of a very
conservative participant who only very high net-strength
items), the entire curve scales upward. Thus, the
thresholded model gives correlations between response
accuracy that are inflated relative to the correlations
between the underlying retrieval strengths.
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Fig. 2. Effect of isolation and dependence on parameters of the associative chaining model. In all panels, the relative strength of remote associations,

Sremote, is fixed at 0:9Swithin. Dashed lines plot the closed-form solutions for the Pearson correlation (rFB) between net strengths for forward and

backward probes as a function of the isolation parameter, I (Eq. (7)). Large values of I represent maximal isolation, in which competing association

strengths are near zero; small values of I represent minimal isolation, in which competing association strengths are of comparable to target

association strengths. Solid lines plot the results of the numerical simulations (see text for details), illustrating how QFB varies as a function of the I as

well as three parameters of interest: the response threshold, y (a, holding constant CV g and a), the coefficient of variation of encoding strength, CV g

(b, holding constant y and a) and a, where a ¼
Sðtx ;tyÞ

Sðty ;txÞ
; xoy (c, holding constant y and CV g).
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Encoding strength variability, CV g, has a small effect
on QFB, primarily at low levels of isolation (Fig. 2b). In
other words, if encoding is very reliable, then the
probe–target association will consistently exceed the
distracting association strengths, thus having a similar
effect as increased isolation.

Asymmetry (Fig. 2c) has no effect over a broad range
of a values, in the thresholded model as well as in the
unthresholded analytical model. This confirms the
mathematical fact that the symmetric mean performance
does not necessarily reflect correlated forward and
backward probes and vice versa.

Even at the lowest isolation level, rFB and QFB are
substantially positive. This is because in the present
formalism, forward and backward probes rely on
common, correlated sources of variance. Thus, the
Isolation Principle does not generally imply zero
correlations, but rather, differences in correlation
between experimental conditions.
2.1.1. Discussion

Paralleling existing chaining models of SL, I showed
that this approach indeed produces the desired dissocia-
tion in correlations between PAL and SL. The difference
between PAL and SL was modulated by a single
parameter that controlled the strength of between-pair
nearest-neighbor association terms. The success of the
derivations relied on the following properties of the
model.

First, forward and backward associations were stored
in the same manner at study and were probed in the
same way at test.

Second, the variability terms picked up by forward
and backward probes were the same. This was because
the forward and backward association strength terms
were perfectly correlated. In convolution/correlation
models, this is the only possible case (e.g., Lewandowsky
and Murdock, 1989); forward and backward associa-
tion terms are in fact the same term. In matrix
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implementations, one can make them different but even
low levels of independence begin to lose the near-perfect
correlation in PAL (Kahana, 2002).

Third, the dissociation in the correlation for PAL and
SL performance was a consequence of retrieval pro-
cesses, but relied on conditions at study (average relative
strength of between- to within-pair associations). For-
ward and backward probes used the same processes but
were differently susceptible to interference from neigh-
boring items depending on isolation established at
study.

Finally, consider the Within-List Control correlation.
In this chaining model, association strengths are
independent across a list. To match the considerable
levels of this control correlation seen in the data
(Table 2), one could introduce such correlations, for
example, by introducing list-to-list variability in E½glk�.

While simple associative chaining models have been
challenged by empirical findings (e.g., Baddeley, 1968;
Henson et al., 1996; Wickelgren, 1966) it is not clear that
more complex chaining models (e.g., with remote
associations) could not overcome such challenges.
Furthermore, the ability of participants to perform at
high levels of accuracy on circular lists, in which
positional information is disrupted (Addis and Kahana,
in preparation) suggests that chaining-like information
may be used in circumstances in which positional
information is less diagnostic, although relative-order
models could potentially accommodate certain features
of circular list learning. It may be that subjects use a
variety of cues to learn and retrieve serial lists, some of
them positional-like and some of them chaining-like
(e.g. Giurintano, 1973; Maisto and Ward, 1976; Wood-
ward and Murdock, 1968; Young, 1968). Thus, it seems
more useful to demonstrate the generality of the
Isolation Principle than to suggest that it is highly
model-dependent.

2.2. Example 2: isolation in a positional coding model

A positional coding model (e.g. Brown et al., 2000;
Burgess and Hitch, 1999; Henson, 1998; Lee and Estes,
1977; Lewandowsky and Farrell, 2000; Page and Norris,
1998) learns to link up a set of positions tk, indexed by k,
with a separate set of items f l , indexed by l, where f l and
tk are vectors with dimensionalities Nf and Nt,
respectively.

Assumptions:
(1) Item and position representations: While items and

positions might be written as vectors, I will not make
direct use of any particular vector representation,
reducing to a strength model. Thus, I drop the bold,
vector typesetting and write items and positional codes
as scalars, f l and tk, respectively.

(2) Position– item associations: The second assump-
tion is an extension to positional coding models to
enable the model to perform cued recall with sequential
probes, probing with one item for another item. To this
effect, I make the simplest possible extension to this
class of model—that is, that as the model learns
associations from tk to f l , it simultaneously learns
associations from f l to tk (cf. Brown et al., 2000). Upon
a sequential probe, the model retrieves the position
associated with the cue item, and moves to the desired
relative position and probes with this new positional
code to retrieve a target item.

(3) PAL in a positional coding model: The third
assumption extends positional coding models to paired
associates learning paradigms. My approach has some
similarity to that taken by Mensink and Raaijmakers
(1988), who use a contextual variable that is, in some
ways, an analogue of positional coding. This is done by
assuming that, in the PAL regime, paired items are
assigned to very similar positions relative to the positions
of other list items. This positional coding model differs
critically from the associative chaining model in that it
learns only item–position and position–item associations
but no direct item–item associations.

(4) Positional similarity: The fourth assumption is that
when the model manipulates positional codes, they may
be confused with one another according to a similarity
structure, where Sðtl ; tkÞ denotes the similarity between
two positions, tl and tk. I always assume that
Sðtl ; tlÞ ¼ 1. The only way in which PAL and SL shall
differ is in the similarity structure of the positional
vectors, tk across the list (see Fig. 3 for a schematic
representation). Without making specific assumptions
about the nature of the representations of positional
codes, I assume that the similarity between positional
codes is:

Sðtl ; tkÞ

¼

e�ð1�DÞ=t jl � kj ¼ 1 within pair;

e�D=t jl � kj ¼ 1 between pair;
Qk�1

m¼l Sðtm; tmþ1Þ jl � kj41;

8>><
>>:

ð12Þ

where 0:5pDp1.

Here, t sets the width of the positional similarity
function; the larger t, the more dissimilar are nearby
list items’ positional codes. However, for any given
comparison between PAL and SL (as well as inter-
mediate regimes), I hold t constant. t is thus assumed to
be fixed between paradigms, so I am relying on the
difference between within-pair positional similarity and
between-pair similarity to account for behavioral
dissociations. The scalar, D, relative to t, parameterizes
isolation from a maximally isolated model (D ¼ 1), in
which similarity of positional codes from one pair to
another is nearly zero, to a minimally isolated model
(D ¼ 0:5), in which there is no difference between
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Fig. 3. Positional isolation. In a positional coding model, the Isolation

Principle is embodied by relative spacing of the positional codes. In

paired associates learning (PAL), the positional codes for two items

within a pair are spaced close to each other, but far from other pairs.

In serial learning (SL), positional spacing is variable and there is no

distinction between within- and between-pair transitions.
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within- and between-pair similarity. For the SL case,
Eq. (12) reduces to

Sðtl ; tkÞ ¼ e�jl�kj=2t.

In SL, similarity decreases monotonically with increas-
ing lag. This is the effect achieved in the Perturbation
Model (Lee and Estes, 1977) as well as in certain
contextual models (e.g. Howard and Kahana, 2002;
Mensink and Raaijmakers, 1988). In PAL, positional
similarity is very high within a pair but very low between
pairs. This is equivalent to the statement that the A and
B items within a pair are associated with (almost)
identical positions. In this way, I implement positional

isolation.
(5) Shifting positions: The fifth assumption is that the

model can move perfectly from one positional code, tl ,
to another positional some relative distance away,
tl þ T , where T is an integer. This simplification (cf.
Brown et al., 2000) keeps the model tractable, but
remains to be tested.

(6) Response screening: As with the associative
chaining model, this model does not recall the cue item
that it is given, assumed to be an infallible process.

(7) Net retrieval strength: This assumption parallels
that for the associative chaining model: For each probe
operation, every possible item has a retrieval strength.
Recall success depends on net strength, the difference
between retrieval strength of the target and the sum of
the retrieval strengths of all competing items.

Study: The storage equations for a list of L items (or
L=2 pairs) are

wftðf lÞ ¼ gl ,

wtf ðtlÞ ¼ gl ,

where 1plpL.

If Npool is the number of items in the word pool then wft

is a Npool-dimensional vector that accumulates the
(scalar) heteroassociative strengths from positions tl to
items f l and wtf is a L-dimensional vector that
accumulates (scalar) heteroassociative strengths from
items f l to positions tl . The gl are independent random
scalar variables such that E½gl � ¼ 1 and var½gl � ¼ s2.
While I use the same gl for both storage equations,
cov½gl ; gk� ¼ 0; kal. That is, the storage strength for a
given list item is independent of the storage strength for
all other items. For the present derivations, all other
associations are set to zero.

Probed recall: Consider the pair fx;x þ 1g. Probing in
the forward direction, I follow the retrieval strength of
the correct target and distractor items:
(1)
 Probe with the item, f x. The ‘‘correct’’ position, tx is
retrieved with strength wftðf xÞ ¼ gx.
(2)
 ‘‘Roll’’ the positional code ahead from tx ! txþ1.

(3)
 Probe with txþ1 and retrieve the correct item f xþ1

with strength gxwtf ðtxþ1Þ ¼ gxgxþ1. Other items (dis-
tractors) are retrieved with strength Sðtxþ1; tyÞgxgy,
for yax;x þ 1.Recall that the model is prevented
from recalling the probe item, f x.
Note that I am assuming that even if the position of the
probe item is not recalled, the (noisy) outcome of Step 1
is nonetheless passed through Steps 2 and 3 to possibly
retrieve the target item (e.g. Lewandowsky and Mur-
dock, 1989). The retrieval strengths are the products of
the first and third steps.

For the backward probe, consider the same pair of
items, fx;x þ 1g:
(1)
 Probe with the item, f xþ1. The ‘‘correct’’ position,
txþ1 is retrieved with strength wftðf xþ1Þ ¼ gxþ1.
(2)
 ‘‘Roll’’ the positional code back from txþ1 ! tx.

(3)
 Probe with tx and retrieve the correct item f x with

strength gxþ1wtf ðtxÞ ¼ gxgxþ1. Other items (distrac-
tors) are retrieved with strength Sðtx; tyÞgxþ1gy, for
yax;x þ 1. The model is prevented from recalling
the probe item, f xþ1.
As in the associative chaining model, probability of
recall is equal to the probability that the net strength,
forward: xF or backward: xB (strength of the target
minus the summed strength of the distractors), exceeds a
response threshold, y. These are:

xF ¼ gxgxþ1 �
X

yax;xþ1

Sðtxþ1; tyÞgxgy, (13)

xB ¼ gxgxþ1 �
X

yax;xþ1

Sðtx; tyÞgxþ1gy. (14)

Analytical solution for correlation in net strength: I
derive the continuous correlation rFB ¼ cov½xF; xB�=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var½xF�var½xB�
p

, for L ¼ 1 (an infinite number of
interfering items) in Appendix. The expressions for
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variance and covariance are in Eqs. (19) and (21),
respectively.

Yule’s Q solution by simulation: Next I simulate the
model with threshold as done previously for the
associative chaining model, generating pseudo-random
Gaussian-distributed values for the g variables in Eqs.
(13) and (14). Responses are considered correct if the net
strength exceeds a threshold, y: xF4y or xB4y for
forward and backward probes, respectively. Terms
involving Sðtx; tyÞ were included only for
Sðtx; tyÞ40:001. Yule’s Q is computed from the con-
tingency table assembled from response correctness
across 106 simulated item-pairs fx;x þ 1g and for
varying degrees of isolation, parameterized by I ranging
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exclude negative values of net strength, perhaps remov-
ing some source of correlation). Nonetheless, the
thresholded simulation shows predominantly similar
dependence on parameters as the unthresholded, analy-
tic solutions. Most pertinently, increased isolation leads
to increased correlation. While for some parameter
values, the dependence of the correlation on I is very
slight, in no cases does the correlation decrease with
increasing values of I.

Unlike the associative chaining model, competing list
items provide both correlated and uncorrelated sources
of variance to forward and backward probes. In
particular, for forward and backward probes, the
sources of interference are identical; they are simply
weighted differently. This leads to richer dependence on
model parameters and their interactions, which makes it
difficult to intuit (without solving the model) what the
character of dependence on t, CV g (coefficient of
variation of encoding strength glk), I and y will be. This
characteristic also accounts for the weaker dependence
on I compared to the chaining model. However, this
does not reflect a fundamental difference between
positional coding and associative chaining models.
Indeed, the chaining model described above could be
amended to make it more like the positional coding
model by weakening the distinction between the forward
and backward memory matrices, Wþ and W� and
including additional remote associations (Eqs. (9)–(11)).

Increased y leads to increased correlation (Fig. 4a),
similar to the associative chaining model; this increases
the effective isolation of the model. Increased t leads to
reduced correlation (Fig. 4b), because the larger t tends
to increase the effective number of competing list items.
Increased CV g tends to increase the correlation (Fig. 4c)
because increased CV g offers more variability in probe
and target strengths with which forward and backward
probes can be correlated. The effect of varying CV g

diminishes at high values of I. However, at very high
values of y, the dependence of QFB on CV g can actually
flip direction (observe that the rank-order of the
different plots flips direction between panel d as
compared to panel c of Fig. 4). This happens because
at low levels of isolation, the decorrelating effect of the
interfering list items is amplified by increased CV g.
Again, the effect of CV g diminishes at high levels of I.
Thus, CV g increases or decreases the correlation
depending on how it interacts with other parameters
and whether it introduces more effective variability into
the probe and target terms or into the interference
terms.

2.2.1. Discussion

By incorporating the Isolation Principle into a
positional coding model, I was able to treat PAL and
SL in a single framework. The model moves between
PAL and SL by way of the similarity structure among
the positional codes, which was implemented as a single
parameter. This outcome depends on a number of
conditions.

First, forward and backward probes functioned in the
same way. This is analogous to properties of the
associative chaining model, in which forward and
backward associations were stored and retrieved in the
same way.

Second, forward and backward probes picked up the
same variability terms and, at least in the PAL regime,
they combined multiplicatively. Since scalar multiplica-
tion is commutative, the total accumulated noise was
independent of probe direction.

Third, the difference in correlation between forward
and backward probes arises at test, and not at study but
conditions at study (the relative positional spacing of
items) are crucial to account for the observed pattern.
Importantly, the strength of encoding of position-to-
item and item-to-position terms were identical for a
given list item. This was necessary; otherwise, forward
and backward probes would have picked up different
(and independent) noise terms, decorrelating them.
Meanwhile, encoding strengths were independent across
list items; this reduced the correlation for probed SL.

Finally, while the present model would produce zero
correlations on the within-list control, inconsistent with
Table 2, it would be straight-forward to add correlations
among gl at different list positions that could fit such a
non-zero baseline correlation.
3. General discussion

I first reported empirical evidence of a dissociation in
the correlation between accuracy on forward and
backward probes of SL as compared to PAL, presenting
a challenge to models that treat PAL and SL using the
same model processes and parameters. Then I showed
that associative or positional isolation, along with
constraints on noise terms within and between pairs,
can modulate this correlation. In both classes of model,
isolation was implemented as a single parameter that
moved the model continuously from PAL to SL via a
range of intermediate regimes.

In the case of an associative chaining model, I
implemented the Isolation Principle by assuming that
between-pair associations are stored more weakly than
within-pair associations. Pairs were ‘‘associatively’’
isolated from the rest of the list. In the case of a
positional coding model, I implemented the Isolation
Principle by assuming that the positional code varies
more between pairs than within pairs. Here pairs were
isolated ‘‘positionally’’ from the rest of the list.

Both types of isolation resulted in highly correlated
forward and backward recall in the PAL regime,
compared with lower (non-zero and not perfect, albeit
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still rather high) correlations in the SL regime,
with a single parameter continuously modulating this
correlation. Crucially, in this framework, paired associ-
ates and serial learning do not differ in the basic
assumptions or model processes, but only in the degree
to which certain list transitions are isolated from the rest
of the list. Thus, the Isolation Principle is a unifying
principle.

The generality of the Isolation Principle is evident
when one considers that it places quite different
constraints on positional than on chaining models. In
the chaining model, the high correlation in PAL derived
from the fact that the stored forward and backward
association terms were susceptible to identical noise
terms. In the positional model, there were no stored
forward and backward terms per se. Rather, each item
was stored in a separate operation, and had its own
independent noise term. However, at retrieval, forward
and backward probes accumulated the same noise/
variability terms from the probe and target items. In
PAL, those noise terms dominated, but in SL, noise
accumulated from competing list items differed between
probe directions.

3.1. The empirical dissociation between PAL and SL

Whereas high forward–backward probe correlation is
found for probes of pairs, supporting associative
symmetry (Kahana, 2002, Rizzuto & Kahana, 2000,
2001), here I report that this correlation is substantially
lower for probes of previously learned serial lists. While
this comparison is across experiments with many
procedural differences, the dissociation cannot be
explained by two prominent differences—namely, the
large value of DQ obtains even for participants with high
test/re-test reliability (Fig. 1a), and across levels of
learning between participants (Fig. 1b), between lists
(Fig. 1c) and between serial positions within lists
(Fig. 1d). These analyses also showed that the large
value of DQ in SL generalizes across level of learning.
This parallels the finding that the small-valued DQ in
PAL does not interact with number of presentations
(Rizzuto and Kahana, 2001).

3.2. General conditions for the Isolation Principle

The following conditions were necessary for the
Isolation Principle to produce near-perfect correlations
in PAL and imperfect correlations in SL:
(1)
 In the PAL regime, forward and backward probes
must be susceptible to the same sources of variability
when probing a given pair (or list transition). This
will most likely include encoding variability of the
pair of interest, but could potentially also include
some extra-pair noise.
(2)
 If the noise accumulates in a different order
depending on probe direction (as in the case of the
positional model), the noise terms must commute, at
least in the PAL regime.
(3)
 Noise must vary across the list to introduce the
possibility of reducing the correlation between
forward and backward probes.
(4)
 Extra-pair noise terms must be somewhat different
depending on probe direction. This is necessary to
obtain the moderate correlation in SL.
(5)
 There must be a parameter that, at some values,
‘‘isolates’’ a given pair from the rest of the list in the
sense that the noise terms due to extra-pair
competition become very small.
3.3. Forgetting

The near-perfect correlations obtained in the PAL
data suggests that there is little noise between successive
tests, or that the noise was perfectly correlated between
tests. In developing the models, we assumed the former,
and implement no noise between Test 1 and Test 2,
because the main goal of this work is to demonstrate
that the Isolation Principle can produce dissociations
like the one that has been observed. However, it will
ultimately be important to fit richer data in which
substantial noise is introduced between successive tests;
for example, by separating the tests by a large amount
of time or by considering the low-QSame participants in
Fig. 1a. One can make the conditions more generally
applicable. Namely, the forgetting terms must influence
the noise terms in a way that does not differentially
affect probes according to direction. For the positional
coding model presented here, adding a noise term to the
item–position and position–item association terms
would work, as long as the same noise was added to
both terms for a given list item. For the chaining model,
one could similarly add noise to the forward and
backward association terms, as long as the same noise
term was added to both terms for a given list pair.
Clearly, mechanisms for forgetting that substantially
altered the degree of isolation, whether positional or
associative, would alter the correlation between forward
and backward probed recall.
3.4. Symmetric versus asymmetric mean accuracy

Kahana (2000) showed that correlated models can
yield asymmetric accuracy, and independent models can
yield symmetric accuracy. For this reason, in a
mathematical sense, accounting for symmetry/asymme-
try in the expectations is a distinct problem from
accounting for the correlations. Still, however one
chooses to account for symmetric and asymmetric
means, one needs to ensure that this will not undermine
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how well the model fits the correlations. In this spirit,
one can place constraints on accounts of mean accuracy.

According to the Isolation Principle, within-pair noise
terms dominate probed recall in PAL, while in SL,
extra-pair noise terms are non-negligible. For PAL to
have symmetric mean accuracy, the expectations of the
within-pair terms must be identical for forward and
backward probes. Therefore, the asymmetry in SL must
be a consequence of unequal expectations of the extra-
pair terms.

As a concrete example of a mechanism that could
produce asymmetry in SL, consider the hypothesis that
at times of low confidence, participants guess using a
free-recall-type strategy. This type of guessing might be
driven by the similarity of an item’s positional code to
the end-of-list position, favoring later list items over
early list items. The probability of retrieving the target
by chance on the forward probe would be slightly higher
than on the backward probe in SL, when the similarity
of positional codes between an item and the end-of-list
position is substantially different between any two
adjacent items. In PAL, similarity to end-of-list position
would not change substantially across the pair; hence,
probability of a lucky guess would be comparable (and
correlated) between forward and backward probes.
Another consequence of this type of guessing would be
a forward advantage for intruded list items that is
comparable for forward and backward probes, a pattern
suggested by probed SL data (Kahana and Caplan,
2002).

An example for the positional coding model is to
assume that positional similarity does not commute. In
other words, Sðtl ; tkÞ4Sðtk; tlÞ for k4l. Asymmetry in
similarity judgements are common (cf. Medin et al.,
1993). In the case of SL, items are evenly spaced across
serial position; hence, position will be a better cue for
items with subsequent positional codes than for items
with earlier positional codes. However, in the case of
PAL, positional similarity for the two items within a
pair is already nearly perfect, so the non-commutative
nature of similarity will have a vanishingly small effect.

3.5. Rehearsal

An alternate hypothesis is that rehearsal processes in
both SL and PAL produce correlated forward and
backward probed recall. If a participant rehearses a pair
repeatedly, as in ‘‘A-B-A-B-A-B-A-B’’, then they are
rehearsing the forward pair A2B as often as the
backward pair, B� A. For PAL, this should result in
correlated forward and backward probed recall within
pairs because the forward and backward associations
(or positional codes) are rehearsed at similar times, and
are therefore susceptible to the same noise. In contrast,
during a SL task, rehearsal might be less symmetric, but
also, a given item could be rehearsed with more than one
other item (see the discussion of double-function lists
below), and so neighboring items will be susceptible to
different sources of noise. One could perform a strong
empirical test of the Rehearsal Hypothesis against the
Isolation Hypothesis (see the following discussion on the
continuum of isolation for an example). However, the
failure to find a change in associative symmetry as a
function of degree of learning (including, presumably,
amount of rehearsal) casts doubt on this alternate
account (Kahana, 2000; Rizzuto and Kahana, 2001, and
Table 2 of this manuscript).

3.6. A continuum of isolation

I have suggested that PAL and SL lie at ends of a
continuum of isolation, where paired associates are very
isolated from the rest of the list and in serial lists, pairs
of neighboring items are not at all isolated from the rest
of the list. This suggests that with careful experimental
design, one should be able to produce intermediate

degrees of isolation, thereby producing correlations
between forward and backward recall that lie between
the perfect correlations found in PAL and the moderate
correlations found in SL. This may in fact occur in
typical serial learning experiments, simply due to
participants’ encoding associations with variable
strengths in the case of an associative chaining model,
or spacing list items’ positional codes with some
variability.

One way to manipulate this would be to present lists
with serial recall instructions, with a grouped presenta-
tion schedule (along the lines of chunking experi-
ments; e.g., Bower, 1969; Brannon, 1997)—namely,
ISIwithin-pairbISIbetween-pair. The prediction is that prob-
ing within pairs should result in greater correlation than
probing between pairs. However, ‘‘pairs’’ are really
adjacent items in a serial list, so competition from extra-
pair items should reduce the within-pair correlation
relative to standard PAL presentation.

One should further be able to dissociate within- from
between-pair correlations by presenting an intralist
distractor task between pairs of items in the list (i.e.,
filled as opposed to unfilled grouping). The Isolation
Hypothesis would predict that within-pair correlations
should be greater in the filled than in the unfilled
condition, while between-pair correlations should show
the opposite pattern. A similar procedure was in fact
used by Glenberg and Swanson (1986) to test a temporal
distinctiveness theory of free recall. Their paradigm
differs significantly from our proposed paradigm, in that
instructions and tests were for free rather than serial
recall. It is noteworthy that they accounted for long-
term modality and long-term recency effects by use of an
adaptable-size temporal search set. The way in which
this mechanism produces interference has the same
flavor as the way in which manipulations of isolation
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influence the degree of interference from extra-pair list
items.

Interestingly, the Rehearsal Hypothesis makes the
exact opposite prediction. According to the Rehearsal
Hypothesis, it is rehearsal that produces correlated
forward and backward probed recall. Therefore, the
filled condition, because it suppresses this process,
should produce lower within-pair correlations than the
unfilled condition.

Finally, the Isolation Principle implies that very short
lists of length 3 (triples) should already begin to
dissociate from pairs in terms of forward–backward
probe correlation, and this should be entirely due to the
addition of an item in the case of triples (Caplan, 2004).
3.7. Double-function paired associates lists

In double-function PAL designs, each item acts as the
‘‘A’’ item in one paired associate and as the ‘‘B’’ item in
another (Primoff, 1938; Slamecka, 1976; Stark, 1968).
While this task has similarities to SL, transfer from
double-function PAL to SL is only moderate (Slamecka,
1976). Furthermore, forward and backward probes
show symmetric probability of recall on average
(Horowitz et al., 1966). However, according to the
Isolation Hypothesis, forward and backward recall
should nonetheless be only moderately correlated,
because there will be substantial competition from items
from other pairs, uncorrelated between forward and
backward probes. For example, consider the pairs A–B,
B2C and C2D. Now, probe the middle pair. First, in
the forward direction, probing with B and asking for C.
In this case, the dominant competitor is A, the other
associate of the probe. In the backward probe, probing
with C and asking for B, the dominant competitor is D,
the other associate of the probe. Hence, the near-perfect
correlation found in single-function PAL should be
significantly decorrelated in the case of double-function
lists, even in the presence of symmetric probability of
recall. According to our approach, double-function lists
show only moderate correlations for the same reason as
serial lists.
3.8. PAL with asymmetric accuracy

In early PAL research, experimenters presented
paired associates wherein the ‘‘A’’ and ‘‘B’’ items were
of different material types. Lockhart (1969) demon-
strated that one could produce asymmetry by varying
the abstractness of the ‘‘A’’ compared to that of the ‘‘B’’
items. He provided evidence that abstractness deter-
mines the effectiveness of words as cues. When
abstractness was controlled for, he could recover
symmetric mean accuracy. However, according to the
Isolation Hypothesis, even when average accuracy is
asymmetric, probed recall of such paired-associates lists
should be nearly perfectly correlated.

An example of this can be seen in the treatment of the
associative chaining model. As Fig. 2c illustrates, even
when backward associations are weaker than forward
associations, the correlation dependence on isolation is
unaffected. Thus, from a theoretical standpoint, it is at
least as reasonable to expect that pairs with asymmetric
mean accuracy will have high forward/backward corre-
lations as that they should have lower correlations.
4. Summary

I first presented empirical dissociations between PAL
and SL. I then introduced the Isolation Principle as a
means of accounting for these differences, treating PAL
and SL within the same theoretical framework. This
approach suggests a continuum of paradigms, modifi-
able by a single continuous parameter. I showed how the
Isolation Principle may be integrated into both posi-
tional and associative chaining models. In the course of
these derivations I uncovered constraints that must be
satisfied to account for the observed data patterns.
Finally, although the Isolation Principle can be im-
plemented in very different classes of models, it is
specific enough to be tested empirically.
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Appendix. Correlation for the positional coding model

First, we will use the following solutions to infinite
series (solved with the help of the MATLAB Symbolic
Toolbox, The Mathworks, Inc.):

Linear summations:

Slin ¼
X

yax;xþ1

Sðtxþ1; tyÞ

¼
X1
v¼0

e�ðDþvÞ=t½for y ¼ x þ 2; x þ 4; . . .�

þ
X1
v¼0

e�ð1þvÞ=t½for y ¼ x þ 3;x þ 5; . . .�

þ
X1
v¼0

e�ð1þvÞ=t½for y ¼ x � 1;x � 3; . . .�
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þ
X1
v¼0

e�ð2�DþvÞ=t½for y ¼ x � 2;x � 4; . . .�

¼
ðe�ðD�1Þ=t þ 1Þ2eðD�1Þ=t

e1=t � 1
. ð15Þ

Quadratic summations:

Squad ¼
X

yax;xþ1

Sðtxþ1; tyÞ
2

¼
ðe�2ðD�1Þ=t þ 1Þ2e2ðD�1Þ=t

e2=t � 1
. ð16Þ

Cross-term summations:

Scross ¼
X

yax;xþ1

X
zax;xþ1;y

Sðtxþ1; tyÞSðtxþ1; tzÞ

¼ A þ B þ C þ D þ E þ F

where

A : y4x þ 1; z4y;

B : z4x þ 1; y4z;

C : yox � 1; zoy;

D : zox � 1; yoz;

E : y4x þ 1; zox � 1;

F : yox � 1; z4x þ 1:

8>>>>>>>>><
>>>>>>>>>:

Due to symmetry; A ¼ B;C ¼ D;E ¼ F

A ¼
X

y4xþ1

X
z4y

Sðtxþ1; tyÞSðtxþ1; tzÞ

¼
X1
v¼0

X1
w¼0

e�ðDþvÞ=t

�ðe�ð1þvþwÞ=t þ e�ð1þDþvþwÞ=tÞ

þ e�ð1þvÞ=tðe�ð1þDþvþwÞ=t þ e�ð2þvþwÞ=tÞ,

C ¼
X1
v¼0

X1
w¼0

e�ð1þvÞ=tðe�ð2�DþvþwÞ=t þ e�ð2þvþwÞ=tÞ

þ e�ð2�DþvÞ=tðe�ð2þvþwÞ=t þ e�ð3�DþvþwÞ=tÞ,

E ¼
X1
v¼0

X1
w¼0

ðe�ðDþvÞ=t þ e�ð1þwÞ=tÞ

�ðe�ð1þvÞ=t þ e�ð2�DþwÞ=tÞ.

Substituting these expressions and solving the infinite
series,

Scross ¼ 2A þ 2C þ 2E

¼ 2½4e�3=t þ 2eðD�4Þ=t þ 2e�ð2þDÞ=t

þ 2e�2=t þ 2eðD�3Þ=t
þ 2e�ð1þDÞ=t þ eð2D�5Þ=t

þ e�ð2Dþ1Þ=t�=½ðe�1=t � 1Þðe�2=t � 1Þ�.

ð17Þ

Adjacent term summations:

Sadj ¼
X

yax;xþ1

Sðtxþ1; tyÞSðtx; tyÞ

¼
X1
v¼0

e�ðDþvÞ=te�ð1þvÞ=t½for y ¼ x þ 2; x þ 4; . . .�

þ
X1
v¼0

e�ð1þvÞ=te�ð2�DþvÞ=t½for y ¼ x þ 3;x þ 5; . . .�

þ
X1
v¼0

e�ð1þvÞ=te�ðDþvÞ=t½for y ¼ x � 1;x � 3; . . .�

þ
X1
v¼0

e�ð2�DþvÞ=te�ð1þvÞ=t½for y ¼ x � 2;x � 4; . . .�

¼ 2
ðe2=t þ e2D=tÞe�ð1þDÞ=t

e2=t � 1
. ð18Þ

Adjacent cross-term summations:

Sadj-cross ¼
X

yax;xþ1

X
zax;xþ1;y

Sðtxþ1; tyÞSðtx; tzÞ

¼ A þ B þ C þ D þ E þ F

where

A : y4x þ 1; z4y;

B : z4x þ 1; y4z;

C : yox � 1; zoy;

D : zox � 1; yoz;

E : y4x þ 1; zox � 1;

F : yox � 1; z4x þ 1:

8>>>>>>>>><
>>>>>>>>>:

A ¼
X1
v¼0

X1
w¼0

e�ðDþvÞ=t

�ðe�ð2�DþvþwÞ=t þ e�ð2þvþwÞ=tÞ

þ e�ð1þvÞ=tðe�ð2þvþwÞ=t þ e�ð3�DþvþwÞ=tÞ,

B ¼
X1
v¼0

X1
w¼0

e�ð1þwÞ=t

�ðe�ð1þvþwÞ=t þ e�ð1þDþvþwÞ=tÞ

þ e�ð2�DþwÞ=tðe�ð1þDþvþwÞ=t þ e�ð2þvþwÞ=tÞ,

C ¼
X1
v¼0

X1
w¼0

e�ð1þvÞ=t

�ðe�ð1þvþwÞ=t þ e�ð1þDþvþwÞ=tÞ

þ e�ð2�DþvÞ=tðe�ð1þDþvþwÞ=t þ e�ð2þvþwÞ=tÞ,
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D ¼
X1
v¼0

X1
w¼0

e�ðDþwÞ=t

�ðe�ð2�DþvþwÞ=t þ e�ð2þvþwÞ=tÞ

þ e�ð1þwÞ=tðe�ð2þvþwÞ=t þ e�ð3�DþvþwÞ=tÞ,

E ¼
X1
v¼0

X1
w¼0

ðe�ðDþvÞ=t þ e�ð1þvÞ=tÞ

�ðe�ðDþwÞ=t þ e�ð1þwÞ=tÞ,

F ¼
X1
v¼0

X1
w¼0

ðe�ð1þvÞ=t þ e�ð2�DþvÞ=tÞ

�ðe�ð1þwÞ=t þ e�ð2�DþwÞ=tÞ.

Substituting these expressions and solving the infinite
series,

Sadj-cross ¼ ½eð3�2DÞ=t þ 6eð1�DÞ=t þ e2ð1�DÞ=t

þ 2eð2�DÞ=t þ 6e1=t þ 6eðD�1Þ=t

þ 6 þ 2eD=t þ eð2D�1Þ=t

þ e2ðD�1Þ=t�=½ðe1=t þ 1Þ2ðe1=t þ 1Þ�.

Derivations for variance and covariance: To derive rFB,
we need expressions for the variance and covariance
between xF and xB. If we define the following terms:

T1 ¼ gxgxþ1,

T2f ¼
X

yax;xþ1

Sðtxþ1; tyÞgxþ1gy,

T2b ¼
X

yax;xþ1

Sðtx; tyÞgxgy,

m ¼ E½xB� ¼ E½xF�

¼ 1 �
X

yax;xþ1

Sðtxþ1; tyÞ ¼ 1 � Slin

then

var½xB� ¼ var½xF� ¼ E½ðT1 � T2f � mÞ2�,

cov½xF; xB� ¼ E½ðT1 � T2f � mÞðT1 � T2b � mÞ�.

We need to solve for the expectations of the correspond-
ing products of these terms, making use of the following:

E½g2
xg

2
y� ¼ s4 þ 2s2 þ 1; xay,

E½g2
xgygz� ¼ s2 þ 1; xayaz.

Common components:

E½T2
1� ¼ s4 þ 2s2 þ 1,

E½m2� ¼ m2 ¼ ð1 � SlinÞ
2,

E½T1T2b� ¼ E½T1T2f � ¼ ðs2 þ 1ÞSlin,

E½T1m� ¼ m ¼ 1 � Slin,

E½T2f m� ¼ E½T2bm� ¼ mSlin ¼ Slin � S2
lin.
Variance-only components:

E½T2
2f � ¼ ðs4 þ 2s2 þ 1ÞSquad þ ðs2 þ 1ÞScross.

Covariance-only components:

E½T2f T2b� ¼ ðs2 þ 1ÞSadj þ Sadj-cross.

Variance:

var½xB� ¼ var½xF�

¼ s4 þ 2s2 þ 1 þ ð1 � SlinÞ
2

� 2ð1 � SlinÞ � 2ðs2 þ 1ÞSlin

þ 2ðSlin � S2
linÞ

þ ðs4 þ 2s2 þ 1ÞSquad þ ðs2 þ 1ÞScross

¼ s4 þ 2s2 � 2s2Slin � S2
lin

þ ðs4 þ 2s2 þ 1ÞSquad þ ðs2 þ 1ÞScross. ð19Þ

Covariance:

cov½xF; xB�

¼ s4 þ 2s2 þ 1 þ ð1 � SlinÞ
2
� 2ð1 � SlinÞ

� 2ðs2 þ 1ÞSlin þ 2ðSlin � S2
linÞ

þ ðs2 þ 1ÞSadj þ Sadj-cross ð20Þ

¼ s4 þ 2s2 � 2s2Slin � S2
lin

þ ðs2 þ 1ÞSadj þ Sadj-cross. ð21Þ
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