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Rhythmic brain activity has been implicated in learning and memory.
Many models implicate theta oscillations (4–8 Hz) specifically in
learning of relational information such as pairings and ordered lists.
We tested this hypothesis in humans by recording electroencephalo-
graphic activity while participants studied nouns organised into pairs
or triples for a later cued recall test. If theta is critical in learning
structured information, then the amount of theta activity present
during study of pairs and triples should covary with subsequent
memory performance (accuracy and response times). Multivariate
partial least squares analysis revealed three patterns of oscillatory
activity associated with task conditions in different ways: a) Within
subjects, successful study of pairs but not triples was associated with
elevations in oscillations at multiple frequencies including theta, b)
Frontal theta oscillations, in conjunction with beta oscillations,
covaried with memory performance across subjects for both pairs
and triples and c) Right-lateralized gamma oscillations in conjunction
with low-frequency oscillations were associated with faster responding
at the expense of accuracy across subjects for both pairs and triples.
These findings support models that implicate theta oscillations in
learning structured information rather than item information alone
but similar to prior reports, suggest that theta oscillations explain
individual variability better than trial-to-trial variability in behavior.
Crown Copyright © 2007 Published by Elsevier Inc. All rights
reserved.

Introduction

Theta oscillations are rhythmic-wave activity observed in the
electroencephalogram (EEG) in many experimental settings (Jung
and Kornmüller, 1938). The theta rhythm has been implicated in
learning and memory function both in humans (e.g., Burgess and
Gruzelier, 1997; Doppelmayr et al., 2000; Guderian and Düzel,
2005; Jensen and Tesche, 2002; Klimesch et al., 1996, 1997;
Sederberg et al., 2003) and other animals (e.g., Adey et al., 1960,
1962; Berry and Thompson, 1978; Givens, 1996; Griffin et al.,
2004; Lee et al., 2005; O’Keefe and Recce, 1993). Memory
psychologists have long drawn a significant theoretical distinction

among memory for a) individual items, b) associations (pairings)
between items and c) ordered sequences of items (Murdock, 1970).
Some models of the theta implicate this oscillation specifically in
learning of relational rather than simple item information—
namely, the timing of the activations of neural representations
within the theta cycle (i.e., phase information) preserves informa-
tion about their pairings and ordering (e.g., Borisyuk and
Hoppensteadt, 1998; Fukai, 1999; Jensen and Lisman, 2005), a
notion first put forward by McLardy (1959) and then Adey et al.
(1962). For many of studies reporting study-related theta, the theta
activity could relate to relational rather than single-item learning.
However, these studies have only directly tested memory for single
items. Our chief objective was to test whether theta oscillations
would be specifically invoked during successful study of
associative and sequence information by analyzing EEG activity
during study of word pairs and triples.

Whereas hippocampal theta oscillations dominate the rat EEG
(e.g., Bland, 1986), it is more controversial whether the normal
adult human waking EEG contains theta oscillations as a distinct
physiological phenomenon (Niedermeyer, 1999). If theta rhythms
occur in human scalp-recorded EEG, they may be difficult to
make out by visual inspection amid the background signal, or
they may occur during specific cognitive events that are rare
enough that they may appear to be Type I error. The existing
literature is inconclusive on this question. Studies of theta have
typically been based on planned comparisons that focus
exclusively on the theta band making it impossible to test for
frequency-band specificity. Multivariate analysis encompassing a
broad frequency band attempts to best characterize the distributed
pattern of oscillatory activity, grouping together oscillations at
various frequencies and locations when they share a common
covariance structure. If the results group together theta-band
activity separately from activity at other frequencies, this would
confirm the validity of the theta band as a distinct construct. If
theta-band activity were always grouped with activity over a
broad band of neighbouring frequencies, this would suggest that
the theta band is simply a narrow window into a more complex
neural signature.

Several studies have taken this latter approach (Düzel et al.,
2003, 2005a, 2005b), applying a partial least-squares (PLS)
analysis to EEG and magnetoencephalographic (MEG) activity.
PLS identifies distributed patterns of brain activity (or correlation
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with extrinsic measures) that bear a specific relationship to the task
design (i.e., contrasting or relating task conditions with one
another). Each of these brain–behavior relationships, or latent
variables, implicated some activity within the theta band but also
activity at other frequencies. Most notably, a latent variable
showing a subsequent memory effect (SME; difference between
study activity for later recalled vs. later not-recalled information)
for a subsequent verbal priming test involved increases in theta-
band activity associated with priming along with decreases in beta-
band activity (Düzel et al., 2005a,b). Thus, for the priming-SME,
the theta band may represent a distinct type of activity but this is
coupled with concurrent decreases in beta activity. Using
independent components analysis, Onton et al. (2005) identified
a pattern of theta-band power combined with beta-band power that
increased with memory load during a single-item recognition
memory task, suggesting that theta activity may be coupled to beta
activity.

We investigated broadband oscillatory activity while partici-
pants studied for a subsequent explicit test of relational memory
(pairs and short lists). In cued recall, one can probe in the
forward or the backward direction. For example, a pair, A–B
may be probed forward by giving the first item as a cue and
asking for the second one (A–?) or backward (?–B). Forward
and backward probes of pairs and triples yield nearly the same
accuracy and response time, and moreover, are also nearly
perfectly correlated (Kahana, 2002; Caplan et al., 2006). That is,
if a participant can answer the forward probe accurately they can
almost certainly answer correctly to the backward probe. Further,
pairs are recalled more accurately and faster than triples, and
triples probed for the first portion of the triple (probes A–? or ?–
B) are recalled more accurately and faster than triples probed for
the second portion of the triple (B–? or ?–C). What makes the
triples more difficult than the pairs appears to be interference
from the additional item in the triple that needs to be ruled out
(Caplan et al., 2006). In previous time-domain analysis of EEG
activity during study of pairs and triples we found that three
classic event-related potential (ERP) components that have
exhibited SMEs for tests of single-item memory also showed
SMEs for tests of associations and order (Caplan et al.,
submitted), including an early potential (∼200 ms after stimulus
onset), a late positive component (∼550 ms) over posterior sites
and slow potentials involving left frontal and occipital
topographies. Here we analyze the same data set in the
frequency domain and ask whether oscillations in a broad
frequency range (2–38 Hz) relate to effective study of pairs,
triples or both.

Materials and methods

The experimental methods are identical to those described
previously (Caplan et al., submitted for publication).

Participants

26 healthy adult volunteers whose primary language was
English participated for monetary compensation (10 male, 16
female, 1 left-handed, age=29.7±9.4 years). Six participants were
excluded due to ceiling (percent correctN90%) or floor (percent
correctb10%) performance in at least one condition (pairs/AB-
Triples/BC-Triples; see Materials), leaving 20 included participants
(9 male, 11 female, 1 left-handed, age=27.6±7.7 years).

Behavioral methodology

Materials
The fixation (apart from those preceding a pair or a triple)

consisted of seven asterisks presented in the center of the screen,
displayed for 3750 ms and then erased for 250 ms.

The lists consisted of nouns from the Toronto Word Pool
(Friendly et al., 1982), randomly sampled without replacement.
Each noun was presented visually in the center of the screen. The
lists were grouped either into 9 pairs or into 6 triples, which kept the
total list-length at a constant 18 words. The order of pair lists and
triple lists was chosen randomly, with the constraint that each set of
three lists had to include one pair list and two triple lists. Each noun
was displayed for 1750 ms, followed by 250 ms blank inter-stimulus
interval (ISI). An additional interval of 4000 ms was inserted
between pairs and triples. During this inter-block-interval, the
participant viewed strings composed of a single digit enclosed by
three asterisks on either side: ∗∗∗2∗∗∗ (lists of pairs) or ∗∗∗3∗∗∗
(lists of triples). This inter-block cue served to remind the participant
of whether they were studying a list of pairs or triples.

The distractor consisted of 4 equations of the form A+B+C=?,
where A, B and C were randomly selected digits from 0 to 6, with
the restriction that the identical distractor could not be used twice
in succession. The equation remained on the screen for 3750 ms
and then was erased for 250 ms. The participant was asked to
respond vocally with the correct answer to the equation within the
entire 4000 ms interval given.

Cued recall consisted of a word with six question marks, ??????
either to the left or to the right of the probe word. The participant
was instructed to recall the word that followed or preceded the
probe item depending on whether the question marks were placed
to the right or left or the probe word, respectively. Each probe was
preceded by a fixation. The probe remained on the screen for
7000 ms and then was erased for 1000 ms. The participant was
asked to respond vocally within the entire 8000 ms interval given.
Each pair and triple was probed exactly once, and probe order was
selected at random. Triples could be probed for the first portion of
the triple (A? or ?B) or for the last portion of the triple (B? or ?C).
Triples probed in each way will be referred to as “AB-Triples” and
“BC-Triples,” respectively.

Procedure
Fig. 1 illustrates the procedure for a single trial. Participants

first viewed a fixation. Then, they studied the list in a single study
trial. Next, they performed the distractor task and finally, they
answered cued recall questions based on the list. A session
consisted of 26 lists.

For the first list, self-paced instructions preceded each of the
study, distractor and cued recall phases of the task. During the
instruction periods, the experimenter ensured that the participants
understood the instructions. The first two lists included one pure
list of pairs and one pure list of triples; the order of these was
randomized across participants. These first two lists were
considered practice and are excluded from all analyses.

EEG methodology

EEG signal was recorded from a 64-electrode cap (Electro-Cap
International), including the sites Fp1, Fp2, F4, F3, C3, C4, P4, P3,
O2, O1, F8, F7, T4, T3, P8, P7, Pz, Fz, Cb1, Cb2, TP7, TP8, Oz, Iz,
PO4, PO3, CP5, CP6, CP1, CP2, FT9, FT10, FC2, FC1, AF3, AF4,
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FC6, FC5, CPz, P1, POz, P2, P6, C6, P5, C1, C2, C5, F2, F6, F1,
AF8, F5, AF7, Fpz, and FCz (American Electroencephalographic
Society, 1991). Electrodes were also placed on the left and right
mastoids (TP9, TP10), on the left and right zygomatic arch (F9,
F10), at the outer canthus of the each eye (LO1, LO2), and on the
infraorbital ridges directly below each eye (IO1, IO2). An electrode
at AFz was used as ground and an electrode at Cz was used as
reference. Inter-electrode impedances measured at 10 Hz were
below 5 kΩ. EEG and EOG signals were amplified with Neuroscan
SynAmps at a gain of 2500 with an online analogue filter bandpass
of 0.05–100 Hz (−3 dB points; 12 dB/octave). Data were recorded
at 500 Hz. EOG compensation was applied using ocular source
components (Berg and Scherg, 1991; Picton et al., 2000). A
separate ocular calibration recording was obtained during which
participants blinked and made saccades in the up, down, right, and
left directions. Five saccades in each of the four directions and 10
blinks were averaged. An ocular data set was assembled by
concatenating average recordings of each of the saccades and the
blinks for each participant individually. A principal component
analysis of these data for each participant provided a set of
components that represented the variance related to the eye
movements. Three components, each explaining more than 1% of
the variance and each specifically related to the EOG waveforms
were used as source components to subtract EOG contamination
from the recorded EEG. The signal was then converted to an
average-reference montage with 65 channels. Traces were notch-
filtered at 60 Hz to remove line noise. Trials with voltage deviating
more than 300 μV from baseline were excluded from all analyses.

Oscillatory episode detection method

To measure levels of oscillations we wanted a method that
would be conservative about identifying EEG activity as
oscillatory and to exclude non-rhythmic signal (which can

nonetheless produce increases in power at a given frequency). To
this end, we used the method introduced by Caplan et al. (2001).
This method identifies epochs of EEG signal with high power at a
particular frequency lasting several cycles. The method excludes
much of the background noise by estimating the noise spectrum. A
minimum-duration threshold helps to exclude evoked potentials as
well as non-rhythmic artifacts. The analysis is performed
separately at each frequency of interest and each electrode. For a
given frequency, f ⁎, an oscillatory episode is defined as an epoch
longer than a duration threshold, DT (in numbers of cycles) during
which wavelet power at frequency f ⁎ exceeded a power threshold,
PT. The two threshold parameters were chosen as follows: (1) We
wavelet-transformed the EEG in the entire set of trials to be
analyzed (Morlet wavelet, window=6 cycles; Grossmann and
Morlet, 1985) at 22 logarithmically spaced frequencies in the range
1–54 Hz. The average of the log-transform of these wavelet values
yielded the wavelet power spectrum. Note that in contrast to prior
applications of this method we log-transform before averaging
rather than after; this reduces sensitivity to extreme values likely
due to noise or artifacts. This modification was introduced by van
Vugt et al. (2007). (2) We assumed that the background noise
spectrum has the form Power( f )=Af −α. We estimated this back-
ground by fitting the observed spectrum (at each electrode) with a
linear regression in log–log units. Because wavelet power values
are expected to be distributed like χ2(2) (Percival and Walden,
1993), the estimated background at f ⁎ should be the mean of its
corresponding χ2(2) probability distribution function (PDF). We
chose PT (f ⁎) to be the 95th percentile of the fit PDF. Power
thresholding should exclude about 95% of the estimated back-
ground signal. (3) We set DT to three cycles of f ⁎, or DT ( f ⁎)=
3/f ⁎. This was done to eliminate artifacts and nonrhythmic physio-
logical signals. (4) Finally, Pepisode ( f ⁎), or the proportion of time
in oscillatory episodes, was defined as the total amount of trial time
filled with detected oscillatory episodes divided by the total time in
the trial (namely, 2 s). In subsequent analyses, we considered the
2–38 Hz range, excluding frequencies at the ends of the spectrum
to keep clear of the bandpass filtering of the amplifiers (high-pass)
and the skull and scalp (low-pass). These Pepisode ( f ) values at
each electrode were averaged across trials within participants and
then analyses were performed across participants. For the purposes
of interpretation of the results, the following frequency band
conventions are used. Delta: b4 Hz, Theta: 4–8 Hz, Alpha: 9–
12 Hz, Beta: 13–30 Hz, Gamma: N30 Hz.

Note that the oscillatory episode detection algorithm applied
here evaluates rhythmic activity against what would be expected
based on an estimated of the background “noise” signal. Thus, we
can state that the levels of oscillatory activity reported here exceed
what would be expected given the null hypothesis that the EEG
contains only background signal. We do not know whether the
observed levels of oscillations are increases or decreases over a
“baseline” cognitive state. We can, however, make informative
statements comparing oscillatory activity between conditions and
correlations of oscillatory activity with individual differences in
behavior. For this reason, throughout the manuscript we only use
the terms “increase” and “decrease” in their relative sense.

Partial least-squares analyses

Overview
The motivation of this analysis was to identify distributed

patterns of oscillatory activity and characterize their relationship to

Fig. 1. Behavioral procedure. (a) A single pair-list trial. Each capitalized
letter represents a unique noun. In a study trial, words are presented grouped
in pairs. A mathematical distractor follows (denoted by the grey rectangle),
and then a set of cued recall probes of the list. Six of the nine pairs; the
remaining three pairs are not probed at all. (b) Procedure for a single triple-
list trial. All triples are probed.
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task conditions (pair vs. triple and recalled vs. not recalled) and to
individual differences in behavior (overall accuracy and correct-
response response time (RT) were used as behavioral covariates).
Multivariate methods can concisely summarize these effects and
allow us to ask questions regarding similarity and difference of
brain activity patterns without biasing the analysis based on
preconceptions about which components will be most relevant.
PLS is a multivariate technique that describes the relationship
between the input, e.g., task design, and output measures, e.g.,
brain activity or brain activity–behavior correlations as a function
of condition (McIntosh et al., 1996, 2004; McIntosh and Lobaugh,
2004). A Task PLS analyzes mean changes in brain activity as a
function of conditions to assess overall presence or absence of
distributed patterns of brain activity in each condition (the within-
subjects approach). In a complementary approach, Behavior PLS
analyzes the correlation between brain activity and behavioral
covariates (e.g., accuracy or response time) to identify distributed
patterns of brain activity that have relevance to behavior across
participants (the between-subjects approach). The combination of
the Task and Behavior PLS enables us to identify distributed
patterns of oscillatory activity that account for both within-subjects
variability across conditions (Task PLS) and between-subjects
variability as a function of condition (Behavior PLS).

PLS input
Task PLS (within-subjects approach). To compare pairs versus

triples and to look for the SME, we had four conditions: PAIR/
TRIPLE[2]×MEMORY[2]. For each condition, activity consisted
of Pepisode as a function of frequency (2–38 Hz band) and electrode.
Each row represents a different condition and columns represent
electrode×frequency, the values consisting of the corresponding
Pepisode values. Thus, the Task PLS input matrix has size 4 rows
(conditions) and 1220 columns (61 electrodes×20 frequency
samples). The columns of the Task PLS matrix are mean centered.

Behavior PLS (between-subjects approach). Two submatrices
were created, one for Accuracy and one for RT. The input to the
Behavior PLS is the columnwise concatenation of the Accuracy
and RT submatrices. Each submatrix is normalized separately. The
Pepisode values at each electrode and frequency were correlated with
accuracy or RT, respectively, across participants. Note that
accuracy for pairs referred to overall accuracy for pairs, thus the
same accuracy values were correlated with activity during study of
subsequently recalled pairs and subsequently not recalled pairs.
The same applies to triples, as well as to RTs for pairs and triples,
respectively. Each row represents a different condition and
columns represent electrode×frequency, the value consisting of
the correlation between Pepisode and either accuracy or RT across
participants. Thus, each of the two Behavior PLS submatrices (one
for accuracy and one for RT) has the same dimensions as the Task
PLS input matrix.

PLS procedure
A singular value decomposition (SVD) is applied to the input

matrix to compute an optimal least-squares fit. This produces a set
of mutually orthogonal latent variables (LVs), each consisting of
two parts: a singular image (“brain LV”, or the brain portion of the
latent variable) and a singular profile (“design LV” or “behavior
LV”, or the design/behavior portion of the latent variable),
connected by a singular value (the square root of the eigenvalue).
The singular value indicates how much of the covariance of the
input matrix is accounted for by its respective latent variable. Brain

LVs consist of a weighted linear combination of electrode/
frequencies that as a whole covary with each behavioral covariate’s
value across participants. The numerical weights within the brain
LV are called “saliences” and can be positive or negative,
indicating the degree to which each electrode/frequency is related
to the design/behavior LV. For Task PLS, the design LV reveals
how the brain LV varies across conditions, analogous to a contrast.
For Behavior PLS, the behavior LV reveals the nature of the brain–
behavior covariance, and in particular, how this covariance varies
across task conditions. The behavior LV thus tells us whether/how
the brain LV accounts for individual variability in performance.

Assessing reliability
The significance of each LV is assessed with a permutation

test (2500 iterations) in which task condition labels are shuffled.
This results in a distribution of singular values from shuffled
data sets, from which the cumulative 95th percentile is taken as
the significance threshold. The reliability of the contribution of
each electrode/frequency to the LV is assessed by a bootstrap
estimation of standard errors for the salience (500 iterations) by
resampling participants. Saliences whose 95% confidence inter-
vals (based on the standard error) do not include zero are con-
sidered reliable across participants; reliable electrode/frequencies
are denoted in brain LV figures with an asterisk. We also use the
results of the bootstrap to similarly compute 95% confidence
intervals on correlations between the brain LV and the behavioral
measures. The brain LV can be projected onto each participant’s
Pepisode(electrode, frequency) pattern as a function of condition to
obtain scalp scores (analogous to factor scores in a factor
analysis), to assess how consistent each individual participant’s
activity is with the brain LV derived from the population analysis.
Confidence intervals for mean scalp scores are computed over
scalp scores for each participant, corrected for between-subjects
variance following Loftus and Masson (1994).

Results

To investigate the brain–task and brain–behavior relationship
we ran two partial least squares (PLS) analyses, a Task PLS and a
Behavior PLS. PLS breaks down either brain activity as a function
of condition (Task PLS; within-subjects approach) or the
correlation between brain activity and relevant behavioral measures
(i.e., accuracy and response time) as a function of condition
(Behavior PLS; between-subjects approach). The method is similar
to factor analysis or PCA in that patterns of brain activity will
emerge from the analysis, but critically, it constrains the solution to
relate to the task design, striking a balance between hypothesis-
testing and exploratory analysis. Task PLS contrasts conditions
within subjects, whereas Behavior PLS explains how brain activity
covaries with individual variability in performance. The combina-
tion of the two analyses gives us a more complete picture of brain
activity related to successful study processes.

Task PLS (within-subjects approach)

Task PLS explains differences in mean activity levels across
conditions within participants. This analysis identified one
significant latent variable (LV), accounting for 52% of the cross-
block covariance (Fig. 2). The design LV (panel a) tells us whether
the identified activity pattern differed across conditions in overall
activity; this corresponds to a within-subjects contrast. This LV
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contrasted study activity for subsequently recalled pairs compared
to subsequently not-recalled pairs and to triples regardless of
subsequent memory. To complement the design LV, the scalp
scores (projection of the brain LV onto each subject’s average) tell
us the absolute levels of the brain LV. Panel b plots the mean scalp
scores as a function of condition and 95% confidence intervals
across subjects. By comparing confidence intervals we find that
this LV is reliably contrasting recalled pairs from the other three
conditions, although all conditions exhibited reliably positive
levels of this oscillation pattern.

The brain LV (panels c and d) gives the distributed pattern of
brain activity, and indicates at which electrodes and frequencies
this LV was reliable. It comprises multiple frequencies including
the theta and beta bands and involves numerous sites distributed
across the scalp. Scalp saliences are nearly all positive, thus
participants invoke additional power while studying subsequently

recalled pairs compared to subsequently not recalled pairs and
compared to both recalled and not-recalled triples. The brain LV
reveals higher-frequency theta-band activity (e.g., 6.73 Hz) over
left lateral frontal sites and lower-frequency theta-band activity
(e.g., 4.00 Hz) at lateral and posterior sites. Low-beta-band activity
(e.g., 13.45 Hz) suggests bilateral dipoles over central sites and
high-beta-band activity (e.g., 26.91 Hz) is focused at right anterior
sites.

Behavior PLS (between-subjects approach)

Behavior PLS explains between-subjects variability in behavior
(accuracy and RT) as a function of condition. This analysis
identified two significant LVs, accounting for a total of 77% of the
cross-block covariance.

Fig. 2. Task PLS (within-subjects approach), Latent Variable #1. (a) Design LV, salience is plotted as a function of condition, characterizing how the brain LV
pattern varies on average as a function of condition. (b) Scalp scores, the projection of the brain LVonto each condition. Error bars plot 95% confidence intervals
across participants, corrected for between-subjects variability. (c) Brain Latent Variable #1 at sample electrodes as a function of frequency. Red asterisks denote
frequencies for which the salience was reliable (bootstrap ratioN1.96, equivalent to z scores with a p value of 0.05). (d) Topographic spline maps plotting
salience across the scalp at sample frequencies, wherever the bootstrap ratio magnitude exceeded a threshold of 1.96 (unreliable saliences are plotted in black).
Color scale denotes bootstrap ratio.
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Latent variable #1
The first LV (Fig. 3) accounted for 52% of the cross-block

covariance. The behavior LVs (panels a and b) tell us how this
pattern of activity covaried with performance across participants.
Panels b and d plot the correlations between the brain LV and the
respective behavioral measure For all conditions, Accuracy-LV
saliences were reliably positive while RT-LV saliences were
reliably negative; thus, this LV was associated with good
performance (i.e., high accuracy and fast response times). The
brain LV (panels c and d) shows that this effect is predominantly
within the theta band, focused over frontal sites, but includes some
contributions from the beta band, also frontally.

Latent variable #2
The second LV (Fig. 4) accounted for 24% of the cross-block

covariance. Turning to the behavior LVs we find that invoking this
activity pattern was associated with better accuracy for both pairs

and triples regardless of subsequent memory (panel a). However,
RTs were lengthened during all conditions. Because correlations
with accuracy and RT are both positive, this suggests that this LV
reflects a strategy with a speed–accuracy tradeoff (see Discussion).
The brain LV (panels c and d) indicates that the oscillations
implicated in this LV are predominantly in the delta band over
posterior sites along with decreases in both beta and gamma
oscillations over anterior central and lateral sites. Thus, the LV
involves decreases in anterior delta and gamma activity with
increases in posterior delta activity for increased accuracy at the
expense of speed.

Pepisode ( f ) spectra and oscillations in the raw trace

While the findings of the two PLS analyses are statistically
reliable, one would like to know whether the patterns of
oscillations they identified reflect common features of the raw

Fig. 3. Behavior PLS (between-subjects approach), Latent Variable #1. (a) Correlation between the brain LV and accuracy as a function of condition. (b)
Correlation between the brain LVand RTas a function of condition. Error bars plot 95% confidence intervals. (c) Brain Latent Variable #1 at sample electrodes as
a function of frequency. Red asterisks denote frequencies for which the salience was reliable (bootstrap ratioN1.96, equivalent to z scores with a p value of 0.05).
(d) Topographic spline maps plotting salience across the scalp at sample frequencies, wherever the bootstrap ratio magnitude exceeded a threshold of 1.96
(unreliable saliences are plotted in black). Color scale denotes bootstrap ratio.
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EEG signal or rare, transient events. To assess this we can observe
the Pepisode( f ) plots at electrodes of interest. Fig. 5 shows that the
oscillations analyzed by the two PLS analyses comprise from about
5–25% of the study time. Thus, these are not rare events but
comprise a substantial proportion of the study signal.

Finally, theta oscillations are plainly visible in the raw,
unfiltered record in intracranial recordings from rats (e.g., Bland,
1986; Vanderwolf, 1969) as well as humans (Caplan et al., 2001,
2003; Ekstrom et al., 2005; Kahana et al., 1999). However,
whether theta rhythms appear as prominent oscillations in human
scalp recordings is less clear. Some reports of human frontal
midline theta during mental arithmetic did publish sample records
showing theta oscillations in EEG records (Mizuki et al., 1980;
Mizuhara et al., 2004; Mundy-Castle, 1951, 1957; Yamamoto and
Matsuoka, 1990). We wanted to find out whether the rather
prevalent segments of EEG identified by the oscillatory episode
detection algorithm would appear like those classic records. Fig. 6

shows examples of raw EEG (the filter was that of the amplifiers
plus a 60-Hz notch filter) that were identified by the oscillatory
episode detection algorithm at electrodes and frequencies exhibit-
ing reliable saliences in the Behavior PLS, LV 1. Thus, the theta
oscillations we identified by the oscillatory episode-detection and
PLS analyses are indeed features of the raw EEG record that are
clearly identifiable as rhythmic activity.

Discussion

Partial least squares (PLS) analyses identified three spatio-
spectral patterns of oscillatory activity related to study of word
pairs and triples. Task PLS revealed a pattern of oscillations
including the theta and beta bands that were specific to effective
study of pairs (Fig. 2). Behavior PLS revealed frontal midline
theta, along with oscillations at other frequencies, that covaried
with good performance (Fig. 3). That analysis also revealed a

Fig. 4. Behavior PLS (between-subjects approach), Latent Variable #2. (a) Correlation between the brain LV and accuracy as a function of condition. (b)
Correlation between the brain LVand RTas a function of condition. Error bars plot 95% confidence intervals. (c) Brain Latent Variable #2 at sample electrodes as
a function of frequency. Red asterisks denote frequencies for which the salience was reliable (bootstrap ratioN1.96, equivalent to z scores with a p value of 0.05).
(d) Topographic spline maps plotting salience across the scalp at sample frequencies, wherever the bootstrap ratio magnitude exceeded a threshold of 1.96
(unreliable saliences are plotted in black). Color scale denotes bootstrap ratio.
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pattern involving delta and gamma oscillations that reflect a speed–
accuracy tradeoff. We discuss each in turn.

Within-subjects activity for effective study of pairs

Task PLS identified a latent variable associated with effective
study of pairs compared to other conditions (Fig. 2). This latent
variable included contributions from several frequencies. Most
prominent were the theta and beta bands. Theta-band power has
been reported to exhibit a SME (Klimesch et al., 1996, 1997).
Theta oscillations modulate long-term potentiation and depression
(Hölscher et al., 1997; Huerta and Lisman, 1995; Orr et al., 2001;
Pavlides et al., 1988) and fluctuations in their presence at study
modulates conditioning rates in rabbits (Griffin et al., 2004); thus,
this latent variable may reflect a physiological state necessary for
effective learning of stimuli and their configurations (see also
Caplan et al., 2001).

An alternative, non-memory explanation is also plausible. This
pattern is similar to intracranial findings of theta along with beta
oscillations most prominent over the central sulcus (Caplan et al.,
2003). These prior findings revealed theta oscillations during a
spatial learning task, but did not explain trial-to-trial variability in
behavior and thus, it was proposed that those theta oscillations

relate to sensorimotor integration, one of the earliest proposed
functions of theta (Bland, 1986; Bland and Oddie, 2001;
Komisaruk, 1970). In the present task, this activity was recorded
while participants were studying words but not making overt
responses. Subvocal rehearsal is common in verbal memory tasks.
Thus, the theta oscillations reported here might relate to subvocal
rehearsal, requiring coordination of multiple brain areas analogous
to sensorimotor integration but in the absence of actual motor
responding (i.e., subvocal rehearsal), consistent with the experi-
mental findings that motivated Bland’s sensorimotor integration
hypothesis (Bland, 1986; Bland and Oddie, 2001).

A further possibility is that the presence of theta oscillations
has an inverse relationship with effective encoding, similar to
recent findings from extracranial (Sederberg et al., 2006) and
intracranial (Sederberg et al., 2007) recordings with measures of
average power in free recall, a test of single-item memory.
However, two things challenge this interpretation. First, the
condition with higher levels of theta oscillations (namely, pairs)
was more accurate, the reverse of this alternate hypothesis.
Second, prior behavioral analysis and computational modelling
using the pair/triple task dyad (Caplan et al., 2006) suggested that
lower recall accuracy for triples is attributable to increased
interference at time of test rather than differences in effectiveness
of study (e.g., accuracy on triples was lower in a mixed-list

Fig. 5. Pepisode ( f ) spectra for example electrodes of interest. Error bars denote standard error of the mean across participants corrected for between-subjects
variance (Loftus and Masson, 1994).
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paradigm, in which pairs and triples were studied together and the
subject did not know whether the upcoming words would form a
pair or a triple).

Frontal theta and individual variability

The first latent variable of the Behavior PLS identified a pattern
of oscillations that covaried with overall high accuracy and fast
RTs for both pairs and triples (Fig. 3). The most prominent
frequency band was the theta band, especially focused over frontal
electrodes. However, it also included lateral beta oscillations and
decreases in delta oscillations. It is important to note that this
activity pattern differentiated high-performing participants from
low-performing participants (between-subjects effect) but did not
differentiate well studied pairs and triples from poorly studied pairs
and triples, reminiscent of theta-band power correlations with

individual differences in (single-item) memory performance in
humans (Doppelmayr et al., 2000) and rabbits (Berry and
Thompson, 1978). It is also consistent with prior findings that
while other frequency bands may covary with instantaneous
memory demands, the theta band frequently does not (Caplan
et al., 2001; Howard et al., 2003; Raghavachari et al., 2001).
However, Summerfield and Mangels (2005) found frontal midline
theta to be associated with good retrieval of associative information
compared to item information alone. Other studies have found
frontal midline theta to covary with memory load in item-memory
tasks (Gevins et al., 1997; Jensen and Tesche, 2002; Onton et al.,
2005). We suggest that the frontal midline theta contributing to the
first latent variable of the Behavior PLS reflects the implementa-
tion of a strategy for effective learning of relational information,
but equivalently for simple associations (pairs) and short lists
(triples), without reflecting success or failure on any particular trial.

Fig. 6. Theta oscillations visible in the unfiltered EEG record for four example trials, two with high Pepisode (panels a–d) and twowith lower Pepisode values (panels
e–h). Panels a, c, e and g show raw traces of activity within a trial of interest; red-colored signal denotes signal times during which oscillatory episodes at the
frequency of interest were detected. Panels b, d, f and h plot the Pepisode ( f ) values computed for the respective trial only. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Oscillations related to rote processing

The Behavior PLS also identified a pattern of delta, beta and
gamma oscillations that were increased for participants with more
accurate but slower responses to both pairs and triples (second latent
variable). This may reflect a study strategy with a speed–accuracy
tradeoff, for instance rote rehearsal (as contrasted with elaborative
processing), which would result in reduced accuracy but faster RTs
for correct responses. This is consistent with findings implicating
gamma oscillations in working memory maintenance (Lutzenberger
et al., 2002; Tallon-Baudry et al., 1998, 1999) and increase with
memory load in a short-term recognition task (Howard et al., 2003)
perhaps reflecting activation of item representations.

Validity of the notion of theta

Is it appropriate to talk about theta as a distinct frequency band?
In research with rats and rabbits, the hippocampal theta rhythm is
exceptionally clear and easy to spot in unfiltered signal (e.g., Bland,
1986; Komisaruk, 1970; Vanderwolf, 1969) and can be defined not
only based on frequency but also based on physiological properties.
In humans, EEG is typically recorded at the scalp and theta is often
not visible as an oscillation in the raw signal. Evidence of theta
activity is generally more indirect, relying on Fourier analysis and
planned comparisons that focus a priori on specific frequency bands
of interest. Intracranial EEG recordings have confirmed that there
are task-relevant theta oscillations that can dominate the raw signal
in various areas of neocortex (Caplan et al., 2001, 2003; Kahana et
al., 1999; Raghavachari et al., 2001) as well as in hippocampus
(Ekstrom et al., 2005); these findings serve to demonstrate that
visually striking, task-related theta oscillations can be found in the
human brain. However, two questions remain.

Question 1: Are changes in theta-band power observed at the
scalp related to underlying oscillations or non-oscillatory activity
with similar spectral properties? Most research on oscillations in the
human EEG has used measures of average power. According to
Fourier’s Theorem, any signal may be decomposed into a weighted
sum of oscillations, but that does not mean the signal is best
explained by those oscillations. To focus more exclusively on
rhythmic signal, Caplan et al. (2001) developed the oscillatory
episode detection method employed here. This method is con-
servative about labeling signal as oscillatory, requiring power to
exceed a threshold (based on the background noise spectrum) and be
sustained for a minimum of 3 consecutive cycles of wavelet co-
efficients. Fig. 6 suggests that this method does identify segments of
signal that can even be dominant features of the EEG, bearing some
qualitative similarity to intracranially recorded theta rhythms and to
early reports of frontal midline theta (Mizuki et al., 1980; Mizuhara
et al., 2004; Mundy-Castle, 1951, 1957; Yamamoto and Matsuoka,
1990) and other prominent rhythms such as the alpha rhythm
(Berger, 1929). Thus, the present findings can be more aptly
interpreted as oscillations and not simply increases in theta-band
power.

Question 2: Does the theta band represent a distinct frequency
band or is it part of a family of oscillations that can vary continuously
across a broad band? Much of the human theta research, including
intracranial findings, focuses only on a single frequency band such
as theta (e.g., Guderian and Düzel, 2005; Kahana et al., 1999). This
approach may have given the false impression that prior authors
thought theta appears and acts somehow independent of activity at
other frequencies. Other studies find similar effects in numerous

frequency bands (e.g., Caplan et al., 2001; Raghavachari et al., 2001;
Sederberg et al., 2003) leaving open the question of how various
frequencies relate to each other. On this question, Klimesch and
colleagues (Klimesch et al., 1994; Klimesch, 1999) reported
examples of band-specific modulations of theta and alpha that are
anticorrelated, suggesting that theta and alpha reflect two mutually
exclusive physiological states. Similarly, using PLS, Düzel et al.
(2003) found theta and gamma power that covaried positively. The
limitation of these studies is that theymeasured average power rather
than rhythmic activity per se (see Question 1). The PLS method we
applied to detected rhythmic activity is exploratory with respect to
topography and frequency characteristics, thus not biased toward
frequencies of interest. The resulting decomposition of the
oscillation–behavior relationship identified a predominantly theta-
band pattern of oscillations (Behavior PLS) but these were
accompanied by beta or gamma oscillations, consistent with rat
electrophysiology findings (Bragin et al., 1995), intracranial
findings (Caplan et al., 2003; Sederberg et al., 2003) and models
of theta (Borisyuk and Hoppensteadt, 1998; Fukai, 1999; Jensen and
Lisman, 2005). This coupling of beta with theta oscillations is also
strikingly similar to a recent report by Onton et al. (2005), showing
that this dual-band pattern of activity increased with memory load
during a recognition task.

The theta rhythm is thought to be induced at least in part by
cholinergic modulation (Bland, 1986), and local increases in
acetylcholine levels may enable a target region to overcome
proactive interference (e.g., Caplan et al., 2007; De Rosa et al.,
2004; Hasselmo and McGaughy, 2004). Thus, our theta oscilla-
tions (especially in the Behavior PLS, LV 1) may reflect
cholinergic modulation that acts to resolve associative interference.

Neocortical interactions with the hippocampal theta rhythm

The hippocampus is thought to be involved in associative
learning (e.g., Bunsey and Eichenbaum, 1996; Moses and Ryan,
2006; O’Reilly and Rudy, 2001; Rudy and Sutherland, 1989). The
hippocampal theta rhythm in particular may be required for learning
structured information (Buzsáki 2005; Jensen and Lisman, 2005).
The topography of the study-related theta activity presented here
suggests frontal generators. Hippocampal theta is thought to
integrate activity in various cortical regions (Bland, 1986; Bland
and Oddie, 2001; Komisaruk, 1970) and Jensen (2001) suggested
how a theta-based phase code could transfer information from one
brain region to another if both regions have synchronized theta. The
theta oscillations reported here may coordinate with the hippocam-
pal theta rhythm to learn relational information. This integrative
function of theta is distinct, but not necessarily mutually exclusive
with the possible local-plasticity effects described above.

Theta and memory for order

Some theories of the function of theta oscillations implicate this
rhythm in learning not just of sets of items, but of their specific
order (Adey et al., 1962; Buzsáki, 2005; Jensen and Lisman, 2005;
McLardy, 1959). A natural prediction of such theories is that
successful retrieval of order information should be associated with
greater presence of theta oscillations at study, thus more theta
oscillations during study of triples than pairs and during study of
pairs than individual items, since cued recall consisting of single-
item probes relies on whether the participant can recover order
information for triples but not for pairs. Our findings do not
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support the notion that theta oscillations specifically preserve
order information, because theta contributes to the first latent
variable of the Behavior PLS similarly for pairs and triples. Theta
oscillations comprise part of the Task PLS latent variable as well,
but this activity was specific to successful study of pairs. This is in
contrast to time-domain analyses which have identified nonrhyth-
mic brain activity that facilitates subsequent performance on
triples but not pairs (Caplan et al., submitted for publication).
Thus, our findings are consistent with theta oscillations supporting
learning of relational information, but speak against the notion that
sequentially ordered lists are a privileged form of relational
information with respect to the function of theta. An important
caveat is that theta oscillations originating in the hippocampus or
other limbic areas may support the proposed order-specific
functions of theta while producing sources that are difficult to
detect at the scalp.

Unified models of associative and serial list memory

Certain classes of memory models treat either paired associates
learning or serial list learning alone, implying that a distinct model
is required to account for each paradigm whereas others account
for memory for pairs and memory for serial lists using the same
underlying cognitive processes (Ebbinghaus, 1885/1913; Lewan-
dowsky and Murdock, 1989) supported by behavioral evidence
(Caplan, 2005; Caplan et al., 2006). However, physiological
activity reflecting relevant cognitive processes could tell a different
story. Indeed, time-domain analyses of the present data set already
suggested that participants may invoke study strategies to differing
degrees or with different implications for subsequent memory
performance (Caplan et al., submitted for publication). Study
processes may differ in how precisely order information is stored;
for example, forming visual imagery may result in accurate
retrieval of the pairings of items but with poorer order information
compared to constructing sentences involving multiple items in
which the grammar constrains the items’ order to accurately
replicate their initial presentation order. Still, most of the
behaviorally relevant study activity identified using the multi-
variate PLS method pointed to commonalities rather than
differences between the two paradigms. The present findings tell
a similar but complementary story. Task PLS identified a multi-
frequency pattern of oscillations that were specific to well recalled
pairs, suggesting first, that participants invoke this oscillatory
pattern to a greater degree for pairs than for triples, and second, that
the cognitive process associated with these oscillations influences
subsequent recall accuracy for pairs but not for triples. However,
both Behavior PLS latent variables identified patterns of oscilla-
tions that predicted behavior similarly for triples as for pairs,
suggesting that a substantial portion of the crucial study processes
are shared between the two paradigms. Thus, cognitive models
must be able to incorporate the dissociation identified in LV 1 of
the Task PLS, but they may remain largely parsimonious by
reusing cognitive processes between two classic behavioral
memory paradigms.
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