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Abstract

Recent evidence suggests a basic dissociation between paired associates (PAL) and serial
learning (SL). Forward and backward probes of PAL are nearly perfectly correlated; for probed
recall of a learned serial list, the correlation is moderate. We suggest that SL and PAL are ends
of a continuum within a single theoretical framework. A single parameter controls the degree to
which pairs of list items are isolated from the rest of the list. This Isolation Principle may be
flexibly implemented into many models, and we demonstrate, in simulations, how Isolation can
account for the distinction between memory for pairs and triples.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Behavioural, physiological and connectionist models of paired associates learning
(PAL) and serial learning (SL) are primarily concerned with measures of accuracy,
errors and response latencies. However, the correlation between forward and backward
cued recall provides an important constraint to models of PAL [5] and this correla-
tion is nearly perfect [6]. One study measured the correlation in SL [1]. Participants
learned a serial list to a perfect recall criterion and then answered cued recall questions
about nearest-neighbour pairs derived from the list. The correlation between forward
and backward probe directions was moderate, substantially lower than the correlation
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between test/re-test in the same direction and substantially greater than a control for
list-to-list variability.

While this could be used to suggest that PAL and SL are subserved by distinct
systems with different dynamics, we argue that one can still treat SL and PAL within
a single theoretical framework. In this view, the PAL and SL paradigms represent
ends of a continuum spanned by a single parameter controlling the degree to which
neighbouring pairs of items are isolated from the rest of the list. In previous work we
showed analytically how this Isolation Principle may be straightforwardly integrated
into the two main classes of models of SL, positional and chaining models [1]. We
derived analytical expressions for the correlation between forward and backward probes
in a simplified chaining model and a simplified positional coding model and showed
that differences in a parameter that controls the degree of isolation can account for the
behavioural dissociations between PAL and SL. Here we simulate a chaining model
for simulated lists containing both pairs of and triples of items. We show how the
Isolation Principle predicts a dissociation in the correlation between probe directions
when moving from pairs of items even to the next smallest number of items: three.

2. The model

The model is an associative chain, which was the first structure proposed to link
memory for associative and order information [2,8]. It is a Hebbian matrix model
(e.g., [3,4,9,10]).

Study trial: In a study trial, the model stores a list of L words indexed by / by
summing the outer products between pairs of items, storing forward and backward
associations in separate memory matrices, Wy and W,, respectively:
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where f; are N-dimensional vectors whose elements are i.i.d., Gaussian random vari-
ables with mean=0 and variance=1/N. Sy, are scalars that determine the mean strength
of an association and 7y are independent random variables such that E[y;] =1 and
var[y] = a,f. For all simulations, we set S;, = Sy, that is, the stored forward and
backward associative terms are perfectly correlated. According to the Isolation Princi-
ple, we set S; ;41 =1 when {/,]+ 1} are within a pair or a triple, and S;; = 0 when
{l,k} are in different pairs or triples. To manipulate the effect of remote associations,
S1,142 = Stemote, Where [ and [+ 2 were the 4 and C items of a triple, respectively. For
the first simulation, we only include nearest-neighbour associations, so Semete = 0; for
the second simulation, remote associations are strong, Siemote = 0.8.

Cued recall: To probe the model, we multiply the memory matrices by the probe
word, f,. We assume that the model probes not only the matrix in the correct direction,
but also to some degree, the matrix in the opposite direction, to retrieve an item
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Table 1

Parameter values for both simulations

Parameter Value (Sim 1) Value (Sim 2)
N 500 500

N, pool 500 500

0 04 0.4

ay 0.5 0.5

r 0.6 0.6

N, samples 20 20

Sremote (Within triple) 0 08

vector, f,; this was a necessary condition for obtaining a near-perfect correlation be-
tween forward and backward cued recall in simulated [10] and analytically derived
[1,6] chaining models. Probing in the forward or backward directions:

(Wf+er)fx:frs (3)

(er + Wb)fx = frs (4)

where r weights the degree of associative ambiguity. Then, the response item is selected
using a competitive retrieval rule based on the match between f, and all the items in
the word pool. Similarity, &;. is computed as

Sir =1 -, (5)

and negative similarities &;- are set to 0. Items are sampled with replacement, with
probability equal to &,/ >, & If & > 0, where 0 is a strength threshold, item ; is
output; otherwise, sampling continues to a maximum of Ngmples.

3. Simulations

Each simulation learned 2000 lists containing 5 triples and 5 pairs each, in random-
ized order. Words were selected at random from a word pool. Each pair and each
AB and BC sub-pairs from each triple, was probed twice successively. The discrete
correlation, Yule’s Q, was computed for all pairs of probe directions on probes 1 and
2. Yule’s Q for the control was computed by selecting probes from different pairs on
tests 1 and 2, where the shuffling was done within lists and within pair types (AB,
AB_ and _BC) Table 1.

4. Results and discussion

Fig. 1a shows mean accuracy for forward and backward probes. Probes of pair blocks
show an advantage, due to the fact that they are isolated from the rest of the list, and
thus experience the least amount of interference. When probing with the middle item



742 J.B. Caplan/| Neurocomputing 58-60 (2004) 739-743

E =
(] Backward 6 0.9 @3 Diff
k3] 0.8 1 Control
] )
= Q
5 )
8 2
2 c
z S
E 8
o 2
a S
O
0
(a) AB AB BC (b) AB AB_ _BC

Fig. 1. Results for simulation #1, without remote associations. (a) Mean accuracy for forward and backward
probes, for sub-pairs taken from pair blocks (AB), the first sub-pairs of triple blocks (AB.) and the second
sub-pairs of triple blocks (-BC). (b) Correlations (Yule’s Q) between successive tests 1 and 2 where the
probe direction was the same on both tests (“same™) or opposite (“diff”), or else taken from different
sub-pairs within the same list (“control”).
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Fig. 2. Results for simulation #2, with remote associations (see caption for Fig. 1).

of a triple, B, mean performance suffers. This is a consequence of target ambiguity
[71.

Turning now to the correlation, Fig. 1b shows that, as expected based on previous
data on pairs, triples and long serial lists [1,7], performance on forward and back-
ward probes (“diff” condition) are correlated as highly as the are two probes in the
same direction (“same” condition). However, for sub-pairs of the triples, the correla-
tion between different probe directions is substantially lower than that for the same
probe conditions, but is much more positive than the control for the correlation due to
list-to-list variability.

The target ambiguity effects in Simulation 1 have not been detectable empirically
[7]. We propose that they were present but obscured by the effect of remote asso-
ciations, which would tend to equalize accuracy for different probe types within a
triple. We added remote associations to the second simulation. Fig. 2a shows this in-
deed removes the evidence for target ambiguity from the mean performance measures.
Fig. 2b shows that it does so without reversing the pattern of correlations. Also note
that the correlations for triples are lower than in the first simulation, because the ad-
ditional influence of the remote association differentially affects forward and backward
probes. In contrast, because pairs are isolated, the addition of remote associations leaves
the correlation for pairs unchanged.



J.B. Caplan| Neurocomputing 58-60 (2004) 739-743 743

These simulations confirm our prior analytic arguments that the Isolation Principle
can account for apparent dissociations between PAL and SL [1], and further, question
the notion that associative chaining models are challenged by failures to find empirical
evidence for associative interference such as target ambiguity effects.
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