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Abstract
Mathematical models explaining production effects assume that production
leads to the encoding of additional features, such as phonological ones. This
improves memory with a combination of encoding strength and feature-
distinctiveness, implementing aspects of propositional theories. However, it
is not clear why production differs from other manipulations such as study
time and spaced repetition, which are also thought to influence strength.
Here we extend attentional subsetting theory and propose an explanation
based on the dimensionality of feature spaces. Specifically, we suggest phono-
logical features are drawn from a compact feature space. Deeper features are
sparsely subselected from a larger subspace. Algebraic and numerical solu-
tions shed light on several findings, including the dependency of production
effects on how other list items are encoded (differing from other “strength”
factors) and the production-advantage even for homophones. This places
production within a continuum of strength-like manipulations that differ in
terms of the feature subspaces they operate upon and leads to novel predic-
tions based on direct manipulations of feature-space properties.

Keywords: Production effect, list-strength effect, recognition memory, selec-
tive attention, matched filter model

Introduction

The prototypical production effect, where words read aloud are remembered better
than words read silently (MacLeod et al., 2010), has been obtained with a healthy range
of memory tests, including item recognition, free recall, cued recall, associative recognition
and serial recall (Bodner & MacLeod, 2016; Saint-Aubin et al., 2021). Theoretical accounts
have mostly focused on two classes of mechanism (MacLeod et al., 2010): 1) “Strength
Theory” assumes produced items are encoded more in memory and thus have a competitive
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advantage. 2) Inspired by Dodson and Schacter (2001), the Distinctiveness Heuristic holds
that production during the study phase leads to participants sometimes remembering the
act of production. They use this as the evidence they studied the word (“old”).

Mathematical modellers have begun to test how these principles might be concretely
instantiated. To our knowledge, apart from the model we describe here, which was begun
by Caplan (2023) and Caplan and Guitard (n.d.), there are only two published mathemat-
ical models of the production effect in recognition memory, an adaptation of MINERVA 2
(Hintzman, 1984) by Jamieson et al. (2016) and an adaptation of REM (Shiffrin & Steyvers,
1997) by Kelly et al. (2022), Kelly et al. (2023); and just one for serial recall, an adaptation
of the Feature Model (Nairne, 1990) by Saint-Aubin et al. (2021). These models all explain
production advantages by assuming production results in more encoded features— namely,
features in a separate feature subspace that are encoded in produced conditions only. This
improves memory by increasing effective strengths, because the added features produce an
effect similar to a scalar multiple of an encoded vector, a conventional way of modelling
strength. But it also increases distinctiveness of encoded items because the additional fea-
tures will differ in their values across items. Thus, mathematical models speak to both
Strength Theory and the Distinctiveness Heuristic via a single mechanism, and have been
able to explain a large range of empirical findings related to the production effect.

Our model inherits these design principles from those models, which we elaborate as
we introduce the mathematical formulation of our vector representation and attentionally
subsetted adaptation (Caplan, 2023; Caplan et al., 2022; Caplan & Guitard, n.d.) of the
matched-filter model (Anderson, 1970). More detailed derivations can be found in Caplan
(2023) and Caplan and Guitard (n.d.). For exposition purposes, unless otherwise noted, we
assume production is via vocalization, so phonological features are modulated by produc-
tion. The model can easily be generalized to other forms of production by swapping out the
functions of the feature subspaces, for example, production by typing would presumably
influence orthographic features and not so much phonological features. This makes our
account appropriate across the impressive continuum of “production” (MacLeod & Bodner,
2017) that has found similar findings with typing, writing and even whispering (albeit with
smaller effects).

As we fully unpack in the Discussion, Strength Theory was challenged because
production did not seem to function like other manipulations of strength, particularly in
old/new recognition, where participants judge whether each probe word was on the list
(target) or not (lure). In recognition, standard ways of “strengthening” items, such as
spaced repetitions and lengthening study duration, show a so-called null list-strength effect.
A list-strength effect describes a large effect of strength on memory success when they are
mixed within a single list, but which becomes quite small when lists are composed only
of one strength. Because strength leads to a relative competitive advantage, competing
against other strong items cancels out most of the benefit of increased strength of a given
item, so pure-non-produced lists are, overall, nearly as accurate as pure-produced lists
(Caplan, 2023 showed this in model version 6, as did Jamieson et al., 2016). Thus, the
“strength of the list” (strengths of other items within the list) matters to recognition of a
given item. This result is found for production (Bodner et al., 2016; Hopkins & Edwards,
1972; MacLeod et al., 2010) but not (or minimally) for traditional manipulations of strength
(Ratcliff et al., 1990). If repetition, stimulus duration and production all influence memory
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in the same way, one would expect these manipulations all to produce similar effects. Our
main proposal here is that we may be able to explain why production differs from other
strength manipulations not by assuming different proceses, but by closely examining the
characteristics of the feature-spaces likely influenced by these experimental factors. The
characteristics of the affected feature subspaces may explain the ways in which production
differs from stimulus duration and repetition. The consequences of production in a given
experiment will depend specifically on how many features are stored, the size and properties
of the production feature-space, and how this relates to other relevant feature subspaces.

We focus on recognition because of the need to explain the diversity of list-strength
effects, which is less controversial for other tasks (Ratcliff et al., 1990). Also, the simplicity
of recognition distills memory down to the pattern of similarity (and confusibility) between
items in memory. Developing our ideas with recognition lets us more easily trace the con-
sequences of our assumptions through the mathematical derivations. However, the insights
will carry through to other memory tasks, because they depend on these same principles of
similarity of vector representations of items.

Next we describe our model, how it derives from previous model and what it adds.
We then apply the model to several empirical phenomena that have otherwise not been
addressed by models. We show how attentional subsetting theory can explain large list-
strength effects with production in contrast to other strength manipulations, whether there
should be a speed–accuracy tradeoff with production, and whether production effects can be
influenced by semantic aspects of words without needing to assume production acts directly
on semantic features.

Conceptual walk-through and summary of the model. In plain terms, we
consider each item to consist of a set of features (Figure 1. As reasoned by Caplan (2023),
the number of features representing full knowledge of a word must be quite large (tens of
thousands to avoid linear dependence). It seems implausible that in an episodic memory
task, we process and encode all such features (and indeed, typical vector models of memory
function within a low-dimensional working space, with tens or hundreds of features). Rather,
we assume that when studying an item, one attends to a small subset of all known features
of an item.1 Only attended features can be encoded. Those features will be particular
to the item and differ across items. But in addition, task conditions can bring attention
toward or away from particular kinds of features, which we refer to as feature subspaces.
When reading aloud, more phonological features are attended than when reading silently.
These subsetted feature vectors get added up in a memory structure.

Then recognition is done by a comparing the probe item to memory. The more
features of the probe match features stored in memory, the greater the matching strength
will be. This already explains some of the production effect, common to the previous
mathematical models. Produced items will tend to have more features stored in memory
and thus available to match, like strength, but the additional features will also be somewhat
item-specific, adding distinctiveness. But we also assume people process the probes similarly
to how they studied the list. The probe thus also consists of a subset of features. In a pure
list (all silent or all aloud), the subsets will be consistent with the subsets during the study
phase, but when tested on a mixed list, the participant needs to decide whether to process

1We do not make strong claims about whether such attention is automatic or conscious, but rather, stick
to the mathematical formulation of the model.
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a Item Representations b Silent c Vocalized

Figure 1

Schematic depiction of item representations and how they differ across production condi-
tions. a) The full vector representation of five items (i.e., “lexicon” or “knowledge”). Each
circle represents a feature and the colour of the circle denotes its numerical value (arbitrary
scale). We depict two (but there could be more) subsets of “shallow” features, phonolog-
ical and orthographic. We depict one larger-dimensional feature subspace to stand in for
deeper features such as those related to semantics/meaning, imagery, etc. b) Silent condi-
tion (words are not “produced”). Grey unfilled circles denote features that are not attended
(and thus not encoded). We assume that the shallow features are dense, not sparsely sub-
setted, whereas the deep features are sparsely subsetted. In the silent condition, we assume
that typically, some deep features, some orthographic and some phonological features are
attended (those that are coloured in) and thus encoded in the memory. The example list
here consists of items A through D, where the memory is their sum, A+B+C+D. E is an
example of a lure probe. c) Vocalized condition (words are “produced,” by reading aloud, in
this example). Because production is an additional process the participant is instructed to
do, we assume that this results in more features overall attended and encoded (more coloured
circles in panel c than in panel b). Most of the extra features are phonological. We also
allow for a tradeoff (but we do not implement it in this manuscript); production might partly
displace attention and encoding of both orthographic and deeper features, so for some items,
fewer orthographic and/or fewer semantic features are coloured in. Note that for pure lists
(all silent or all vocalized), we assume that the probe item is attended in the same way
as if it had been a studied item; the participants’ meta-knowledge leads them to seek more
phonological evidence following vocalized lists and less phonological evidence following silent
lists. For mixed lists, there mask might be a one or the other or a union or mixture of the
two.
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a probe item as though it were aloud or silent or some combination of both.
Finally, the added features offered by production are thought to be accessed early

in processing an item. Production thus enhances memory by acting on early-accessed fea-
tures. In contrast, other manipulations of strength may enhance memory through addi-
tional encoding of features that take longer to access, such as semantic or imagery-related
features. This may explain why production increases accuracy without a cost to response
time whereas other strength manipulation produce a speed-accuracy tradeoff.

Assumption 1: Features of different types should be distinguished. All
three prior models explicitly separate item features into subclasses, and in particular, those
related to production and those unrelated to production (Figure 1a). Let each word be an
n-dimensional vector, fi, where boldface denotes (column) vectors and the subscript indexes
unique word. Each feature of word i is indexed by k in parentheses, fi(k). One can think
of very concrete properties of words, such as TURTLE— feature “animacy” = true, feature
“colour” = green, feature “appearance” = cute, etc. In general features are not specified;
they are treated as mathematical entities, and thus, in our derivations and simulations, we
generally assume features are independent, identically distributed (i.i.d.), in other words,
each drawn at random from a normal distribution2 with mean=0 and variance=1/n. We
implement Assumption 1 by partitioning the n features into a number of feature subspaces.
Let n denote the full set of features that are considered in the model (i.e., the maximum set
of features that might be relevant for the task), and n with a subscript denote the number
of features within a given subspace. We define:

nπ = Number of phonological features
nω = Number of orthographic features

nσ = Number of semantic features,

depicted in Figure 1a. To keep things organized, we fix n = nπ + nω + nσ so that no fea-
tures are unassigned to a subspace, and we number the features consecutively; phonological
features: k = 1..nπ, orthographic features: k = (nπ + 1)..(nπ + nω); semantic features:
k = (nπ + nω + 1)..n. This idea is not new; models have long drawn distinctions specifically
amongst phonological, orthographic and semantic features (e.g., Burgess & Hitch, 1999;
Seidenberg & McClelland, 1989).3 We build from the very simple matched filter model
introduced by Anderson (1970), where the memory is a vector, m that is simply a sum of
the L (list length) vectors representing list-items,

m =
L∑

i=1
fi. (1)

2This variance ensures that on average, the vector length will be 1, so vectors are approximately (but
not strictly) normalized, especially when n is very large.

3We will use the words “deep” and “semantic” interchangeably, but there is more nuance. “Deep” refers
to features that take longer to access than “shallow” features, and from a larger feature space. Deep features
could include features related to meaning, but also related to things like imagery or even associations
between studied items. Conversely, some semantic features might be accessed as quickly as orthographic
and phonological features, and perhaps from a small, compact semantic subspace. We use these terms
simplistically to keep the exposition clear but this nuance will need to be tackled in the future.
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Normally a scalar value would multiply each term to add variability in encoding strength.
We omit these so that the derivations remain clear and easy to follow. Recognition is done
by computing the dot product between a probe-item vector, fx and the memory vector to
obtain a matching strength, for the probe item, sx,

sx = fx · m (2)

The model compares this strength to a threshold, θ, also call a criterion, and responds{
“Old” sx > θ
“New” sx ≤ θ

(3)

One can compute the mean matching strength of lures and targets (Anderson, 1970),

µlure = E [slure] = 0 (4)
µtarget = E [starget] = 1, (5)

where E [ ] denotes the expectation (mean) and variances are denoted var [ ]. Strength
variances can be calculated in two steps. First we write Vxx, the variance for the case of
i = x, the encoded term that matches the probe item. There will be only one of those for
target probes and none for lure probes. We also write Vxy, x ̸= y, the cross-term between
the probe item and all terms associated with encoding of non-matching items. The lure has
only such terms, L of them. The target has L − 1 of them.

Vxy = var [slure] = 1/n (6)
Vxx = var [starget] = 2/n, (7)

as derived elsewhere (Caplan, 2023; Weber, 1988). Adding up the variance contributed by
each encoded item’s term,

σ2
lure = LVxy = L/n (8)

σ2
target = Vxx + (L − 1)Vxy = 2/n + (L − 1)/n = (L + 1)/n, (9)

and the feature subspaces are handled easily because the means and variances summate, so
µtarget = (nπ/n + nω/n + nσ/n) and Vxy = (nπ/n + nω/n + nσ/n)(1/n), etc.

Assumption 2: Production influences encoding of production features
in particular. The previous models also assumed that production increases encoding of
production-related features— phonological features in the case of vocal production (depicted
in Figure 1b,c) or orthographic features in the case of typed production (or motor codes,
which we consider in the Discussion). For this to make sense, it comes with the assumption
that not all “known” features of each item are stored, which departs from the original
matched-filter model, but was introduced by Murdock (1982). An unencoded feature is
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multiplied by zero, which in attentional subsetting theory, we think of as an attentional
mask (Caplan, 2023; Caplan et al., 2022; Caplan & Guitard, n.d.).

Whereas nπ, nω and nσ denote the full feature subspaces, respectively, νπ,c, νω,c, and
νσ,c will denote the number of features attended within each subspace: the corresponding
attentional subset. We also index the ν variables by c, standing in for the task condition. So
in this notation, we denote the idea that production condition results in more phonological
features attended (and encoded) than the non-production condition like this: νπ,aloud >
νπ,silent, illustrated in Figure 1, comparing panel c to panel b.

Considering, for a moment, the full vector, let Fi,c denote the set of attended features
of item i under conditions c. The attentional mask, wi,c is an n-dimensional vector with at
each dimension included in Fi,c and 0 elsewhere:

wi,c(k) =
{

1 k ∈ Fi,c

0 k /∈ Fi,c
(10)

and this mask vector then simply multiplies elementwise (denoted ⊗) the corresponding
item vector before encoding, so Equation 1 becomes

m =
L∑

i=1
wi,c ⊗ fi. (11)

The same elementwise multiplication is applied at test, either with the same wi,c or in some
circumstances with a different mask. Because the means and variances for each feature
subspace simply add, we can partition the model by subspace (π, ω and σ) and then add
the results at the end.

A scalar multiple of a vector increases the vector’s “strength” by increasing its
length. But if unencoded features multiply by zero, then if more features are encoded,
that also increases its length. If a production condition increases the number of features
stored, one effect is thus to increase the length and thus the effective strength of the encoded
memory (Caplan, 2023). At the same time, encoding more features will tend to increase the
distinctiveness of one studied item from another, and in the case of differentiation models
(Criss, 2006; Shiffrin & Steyvers, 1997), even of the studied items from the lures. The
additional features thus capture both strength and distinctiveness.

Where previous modellers have already found value in segregating out production-
related features, we add a few additional concrete assumptions about the nature of
production-feature spaces versus feature spaces comprised of different types of informa-
tion. The other models of production effects are all local-trace models. Here we formulate
our ideas and demonstrate them in an attentionally masked matched-filter model (a simple
vector sum of studied items— after applying an item-specific attentional mask). We do
this not to argue against other models (nor local-trace or differentiation assumptions), but
because the matched-filter model is mathematically extremely simple— so simple that its
limitations are easy to identify and well known. It distills recognition memory down to
the effective similarity relationships between items. This makes it easy to understand how
it works through both analytic derivations and simulations. And because any model that
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starts with representations of items as sets of features is really a vector model, most of the
insights gained will propagate when attentional subsetting is implemented in those more
complete, fleshed-out models. The framework we work within, attentional subsetting the-
ory, aside from the production effect, has been shown to explain why near-null list-strength
effects are so common in recognition, why small positive list-strength effects are expected
and how even inverted list-strength effects (larger effect of strength in pure than in mixed
lists) can arise (Caplan, 2023; Caplan & Guitard, n.d.). Caplan and Guitard (n.d.) also
showed how a response threshold (criterion) could be tuned based on immediate processing
of the current probe, with the potential to produce symmetric strength-based mirror effects
(but also asymmetric ones in some conditions), without requiring local traces, differenti-
ation or unrealistic knowledge of expected strength distributions. Those were continuum
accounts of list-strength effects and strength-based mirror effects. Likewise, our account of
production effects in recognition will be a continuum account, with guideposts as to which
factors could relatively enhance or reduce production-based advantages.

Assumption 3: Sparseness of the attentional subset matters. New to mod-
els of the production effect, attentional subsetting theory assumes production features have
different properties than other features such as semantic, imagery-based, etc. (Caplan, 2023;
Caplan & Guitard, n.d.). Here we investigate the idea that a few formal assumptions about
the characteristics of produced features, and how they differ from other features, can explain
why a production effect occurs and why it produces a list-strength effect and a mirror effect,
but also why certain factors attenuate it, such as long study time. Jamieson et al. (2016)
viewed production effects as belonging to a family of phenomena including the generation
effect (when participants are indirectly cued to think of the item) and the enactment effect
(acting out items) and we align with this. In line with Jamieson and colleagues, we do
not view production effects as as categorically different or special cases compared to other
phenomena, but as particular conditions. The peculiarities of the production effect are not
due to the peculiarity of production but to the particularities of the feature-subspace that
production emphasizes.

In our formulation, we assume the attentional subsets within the different feature
spaces, which we denote νπ,c, νω,c and νσ,c, respectively, may not be identical in number but
are roughly of the same order of magnitude. That is, people tend to attend to a handful of
phonological features, a handful of orthographic features and a handful of semantic features
of a given item. To explaining why list-strength effects are large for the production effect but
small for other manipulations of strength (Caplan, 2023), we assume that nσ ≫ nω ≃ nπ.
This means that a subset of features attended on a given item, i, in condition c, will be a
sparse subset for semantic features, which we write Fσ,c,i. The σ features are masked by
multiplying every feature by zero if it is not contained in Fσ,c,i. Because νσ,c,i ≪ nσ, the
chance of there being semantic features common to two items, i and and j, is extremely
small and nearly zero. Sparseness causes the Vxy terms to be mostly zeroes as well. Vxx

remains unaffected by sparseness; it is only influenced by the number of attended features,
νσ,c,i. Essentially, sparseness reduces noise due to “cross-talk” from other studied items,
and leads to very minimal influence of other list items on recognition of a probe.

What makes sparse subsetting work is that we also assume that the subset of fea-
tures attended during study will tend to be quite similar to those attended when the same
word later appears as a probe (a target), itself. The idea is that if seeing the word HUM-
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MINGBIRD causes you to think of the hovering, fast wings, iridescent colouring and sharp
beak when you first see the word, then when you later encounter HUMMINGBIRD again,
you will very likely attend to those same features. It is a principle of (approximate) tau-
tology; features that come to mind readily at one time are likely to come to mind readily
at another time. This tendency needs to be explained in a full model of semantic memory
or knowledge, but here we only presume its existence. Some support for the consistency
of attended features across participants on the one hand, and their modulation by task
demands on the other, can be found in explicit feature-listing experiments (Wu & Barsalou,
2009) and similarity and prototypicality judgements (Medin & Shoben, 1988).

For “shallow” features, including phonological and orthographic features, we assume
that the feature space is far smaller and as a consequence, subsetting a handful of features
will not be sparse. This means there is a large amount of chance-overlap between the
attended feature subsets of one item and another; Fσ,c,i ∩Fσ,c,j is non-negligible when j ̸= i.
Each of those common features increases Vxy, adding to noise contributed by the cross-terms
(other studied items).

Hit and false-alarm rates. Next, by adding the criterion heuristic suggested by
Caplan and Guitard (n.d.), we can apply a threshold, θi,c (recall that c stands for an
experimental condition) and solve for the hit rate and false-alarm rate separately. The
theory already assumes participants process the probe very much as they would have if
the probe item had been presented during the study phase, including application of an
attentional mask, wi,c, before computing similarity by dotting the masked vector with
the memory vector, m. As Caplan and Guitard (n.d.) reasoned, it is plausible that the
participant has access to the (approximate) number of features they attended on the probe
item, itself, νi,c, given that this feature-extraction is happening in real-time. This could
be as overt as a rough count of the number of features that come to mind in response
to the current probe, or it might be more of a vague feeling about how much matching
there might be (this could be tested in future experiments), but seems to demand less of
the participant than expecting participants to have accurate access to characteristics of the
memory, itself, or cumulative knowledge about what happened on other test trials. Given
this, the participant can then straight-forwardly compute an optimal value halfway between
the expected mean strength for targets (µtarget) and lures (µlure):

θi,c = (1/2)νi,c/n. (12)

For pure silent and aloud lists, these will be:

θi,pure silent = (1/2)(νω + νσ)/n (13)
θi,pure aloud = (1/2)(νω + νσ + νπ)/n. (14)

For mixed lists, the threshold might be based on the smaller or the larger of the two
conditions or an average of the two. For duration, we have assumed the threshold is based
on the larger of the two (Caplan & Guitard, n.d.), but as we shall see in the first fit of
the model to production-effect data, the model fit substantially better when the average
threshold was used. Since we have already solved for the variances that target and lure items
are subject to, we can then compute the hit rate and false-alarm rate by integrating the
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respective normal distribution from the corresponding threshold upward to infinity (Caplan
& Guitard, n.d.).

Outline. Having introduced the model and the core assumptions, next we solve for
the hit rate (proportion of target items responded “old”) and false-alarm rate (proportion
of lure items responded “old”) as well as d′ (the measure of sensitivity derived from signal-
detection, z-transformed hit rate minus z-transformed false-alarm rate). We see how the
assumptions lead to a list-strength effect and a strength-based mirror effect. We compare
this to a model-manipulation of stimulus-duration. This incorporates the assumption that
shallow features are processed and attended earlier than deeper features (e.g., Caplan, 2023;
Caplan & Guitard, n.d.; Gardiner et al., 1999; Mulligan & Hirshman, 1995). We then look
at the effects of extending stimulus duration on a production manipulation, itself. We briefly
address data from Fawcett et al. (2022) that was used to argue that production influences
encoding of more than production-related features. Then we wrap up with a re-evaluation
of Strength Theory and the Distinctiveness Heuristic in light of our account.

Attentional subsetting model of the production effect: Production increases
the number of encoded shallow stimulus-features

Caplan and Guitard (n.d.) modelled an experimental manipulation of stimulus du-
ration, by assuming that words presented for longer (e.g., 2 s) resulted in more deep features
attended and encoded than words presented for shorter durations (e.g., 1 s). They assumed
the number of shallow features was equivalent between long and short conditions. To model
the production effect, we turn this around. We assume no difference in the number of deep
(semantic) features encoded and no difference in the number of orthographic features. In
the core model we explore here, the only thing that will differ during the study phase is that
words read aloud will have more phonological features encoded than words read silently; as
we already wrote above, νπ,aloud > νπ,silent.

Fit to the list-composition experiment of Bodner et al. (2014). We start
by examining what happens in list-composition experiments. In the Discussion, we fully
unravel the recent history of so-called “list-strength effects” and the role played by research
on the production effect. Briefly, in a list-composition experiment, two item-conditions
are either segregated to pure lists or mixed (usually half of each condition) in one list.
If the experimental manipulation affects the encoded strength of an item (an assumption
that is often presumed but not directly tested), this is called a list-strength manipulation.
If there is any competition amongst studied list items during recognition tests, then the
advantage of strong over weak items is expected to be greater in mixed lists than in pure
lists. Ratcliff et al. (1990) were surprised when the expected list-strength effect was not
found. However, Caplan (2023) argued that the list-strength effect was not absent, but
rather, quite small. Sparse subsetting could explain the small magnitude of list-strength
effects, as well as why they might sometimes invert (greater effect of strength in pure than
in mixed lists, elaborated by Caplan and Guitard, n.d.) and alluded to the production effect
as being a possible counter-example, where positive and quite large-magnitude list-strength
effects are in fact observed (Bodner et al., 2016; Bodner et al., 2014; Hopkins & Edwards,
1972; MacLeod et al., 2010). Here we test that suggestion in an implementation of the
production effect in the attentional subsetting model.
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First we fit data from a list-composition production effect study reported by Bodner
et al. (2014) who had participants study lists of 50 words, presented for 2.5 s each (including
a 0.5 s blank inter-stimulus interval). Each word was either read aloud or read silently. Their
experiment had more conditions than we were interested in; we fit the mean hit rate and
mean false alarm rate for pure-aloud lists, pure-silent lists and mixed lists, separated by
whether the word was aloud or silent. Naturally, false-alarms for mixed lists were not broken
down by aloud/silent. This produced 7 independent data points that we fit the model to.

The model potentially has a very large number of parameters one could treat as
free parameters in a parameter optimization. And yet, as stated earlier, it is not meant to
be a complete model of recognition. The goal here was not to fit the data perfectly, but
to check whether the model could approach real empirically observed values and capture
the qualitative features seen in the data. Thus, we somewhat arbitrarily (and with some
continuity with previous explorations of the model) fixed the number of semantic features,
nσ = 512, the number of shallow features, ns = 128 such that half of those were devoted
to orthographic features and half to phonological, nω = nπ = 64. The total vector length
was thus n = 640. We conducted a direct search (comparing all combinations of integer
parameter values) of a three free-parameter space, varying the number of subsetted features
as follows. For semantic features, νσ varied from 1 to 32 features and this applied to both
aloud and silent words. For orthographic features, νω varied from 1 to 64 (nω) and applied to
both aloud and silent words. νπ also varied from 1 to 64 (nπ) but we assumed phonological
features were only stored while studying a word aloud. This is not to claim that the silent
condition results in zero encoding of phonological features, it is just a simplification to keep
the number of free parameters low. We also assumed that in the pure-silent condition,
participants would disregard the phonological features. This reduces the criterion used
in pure-silent lists, which offsets some of the reduction in hit rate due to fewer features
being encoded. The complete three-dimensional parameter space was solved for hit and
false alarm rates, then root-mean-squared deviation was computed relative to the data
and the maximum log-likelihood parameter-set was identified. As proposed by Caplan and
Guitard (n.d.), response criterion, θ, was determined by dividing the number of attended
features (νσ + νω + νπ for a given condition) in half, multiplying 1/n for scale (approximate
normalization).

The best-fitting parameter set, with log-likelihood=52.69, had νσ = 2, νω = 3 and
νπ,aloud = 3. This was assuming that for mixed lists, θ was the average of that used for
the pure-silent condition and that used for the pure-aloud condition. When the search was
re-run using the criterion for pure-silent lists, log-likelihood was considerably lower (46.44),
indicating a quantitatively worse fit. The fit was also worse (log-likelihood=47.36) if we
used the criterion for pure-aloud lists. Figure 2a plots the model and data hit rate and
false alarm rate in each condition. The hit rates are fit well, and even within the confidence
intervals, and importantly, they reproduce the list-strength effect, where the advantage due
to production is greater within mixed than within pure lists. The false alarms are fit well,
although the rate for pure-aloud is overestimated. Still, if one looks closely, the rank-order
of the three false-alarm rates is reproduced by the model. Without any refitting, when we
plot d′ computed from the hit and false-alarm rates, the qualitative pattern is reproduced
by the model (Figure 2b), especially the list-strength effect, where the advantage due to
production is greater in mixed lists than in pure lists.
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Figure 2

a) Fit of the model (denoted with x) to data (denoted with o, with error bars denoting the
95% confidence interval based on standard error of the mean) to the hit rate (green) and
false alarm rate (red) in each of the four experimental conditions. b) d′ computed from the
model (denoted with x) and the data (denoted with o). Note that the d′ values were not
fit to. Data d′ were computed from the authors’ reported hit and false alarm rates, which
the model was fit to, rather than the authors’ reported d′ values, which showed the same
qualitative pattern but were larger. For model parameter values, see main text.

Curiously, the model produced good fits using very few subsetted features within
each subspace. It is possible that this is a reasonable estimate of the effective number of
features that participants actually attend under these conditions (e.g., total study time
available was 3 s/word). Recall, however, that this model includes no variability and no
noise; in a more complete model, more features would presumably be needed to overcome
noise to match realistic performance levels. Also, consider that if three were the mean
number of features attended, that implies that some words have fewer, even sometimes no
features attended within a given feature subspace, and occasional item may have a lot of
features attended, averaging out to 3, which strikes us as plausible considering the swift
presentation rate. In any case, these fits can be seen as proof of principle that the idea
that only a handful of features are encoded for each item is sufficient both to produce
performance (d′, hit rate and false-alarm rate) in the observed ranges but also the capture
some key qualitative features of the data.

Sensitivity to parameters and experimental factors. With this best-fit to
the Bodner et al. (2014) data as a reference model, we next vary parameters to explore the
sensitivity of hit rate, false-alarm rate and d′ to hypothetical experimental manipulations.
The criterion used for mixed lists was again the average of that for pure-silent and that for
pure-aloud lists. The feature spaces were fixed at nω = nπ = 64 and nσ = 512.

Results of the simulation of the list-composition manipulation that is done in list-
strength effect studies are plotted in Figure 3a–c for a hypothetical manipulation of produc-
tion (for a visualization of the means, variances and thresholds that were used to compute
these, see Figure 4). As more phonological features are attended in the aloud condition,
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Figure 3

Sensitivity of the model to amount of production, stimulus duration and the interaction of
the two. Top row: the effect of increasingly more production (more phonological features
attended and encoded), while holding constant the silent condition. L = 50, νω = 3, νσ = 2
and νπ,aloud ranges from 1 to 16 (out of 64), plotted in proportion of nπ (64) in the x axis.
Note that for encoding of the silent items and recognition of pure-silent lists, νπ,silent = 0
and the x axis does not apply. Middle row: the effect of increasing stimulus duration of the
longer-duration condition (more deep, or semantic features encoded), while holding constant
the short-duration condition. For all words, shallow features (combining orthographic and
phonological) had νs = 6 out of ns = 128 features stored, and for the long duration only, an
additional nσ features were stored, ranging (on the x axis) from 1 to 32. Bottom row: the
effect of increasing stimulus duration on a putative production-effect manipulation, compar-
ing silent to aloud conditions. νπ,aloud = 3 and νπ,silent = 0. νσ was varied from 1 to 16
and νω = νσ but capped at 8. The left column of panels plots d′ and shows list-strength
effects nearly throughout. These list-strength effects are reflected in positive ratio-of-ratios,
plotted in the middle column. The right column of panels separates the model’s calculations
of hit rate and false alarm rate, showing mirror effects whose magnitude and (a)symmetry
are parameter-dependent.
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Figure 4

Visualization of distributions of matching strength, which is the match of a probe (attention-
ally subsetted) to memory. It is from these distributions that performance is computed (hit
rate, false-alarm rate and d′). Corresponding to the production effect sensitivity check plot-
ted in Figure 3a–c, these graphs plot mean matching strength and standard deviation (i.e.,√

variance, depicted in the error bars), for targets and lures, for pure-list (a) and mixed-list
(b) conditions, respectively. θ for silent and aloud probes are plotted in dashed lines in the
same colour as the matching strengths, themselves, but note that for mixed lists, only one
threshold line is visible because the threshold does not vary between conditions. Also note
that the x values have been shifted slightly to avoid error bars obstructing each other.

moving from left to right in panel a, the bigger the production effect (difference between
the red plots) becomes within mixed lists. Recall that we are assuming participants match
probes on phonological features when tested on mixed lists. For this reason, the presence
of phonological features in mixed lists, combined with the fact that the model cannot dis-
regard those, puts silent items at an increasingly bigger disadvantage. Aloud items benefit
more from being in mixed lists as we move from left to right, but d′ values saturate when
just a few percent of the phonological features are attended per word (this number may
seem low, but recall that 50 words are encoded). For pure lists, the picture is different. For
very few attended phonological features, more phonological features leads to more of a pro-
duction advantage. Once a few percent of the available phonological features are encoded
for each item, performance on aloud words starts to decrease. This can be understood as
an accumulation of cross-talk due to massive similarity of the phonological features with
other items. In pure-aloud lists, more phonological features (twice as many, because there
are twice as many aloud items) are stored than in pure-silent or in mixed lists, allowing
this disadvantage due to cross-talk to emerge. The ratio-of-ratios (panel b) was defined by
Ratcliff et al. (1990) as the ratio of the “strength” (here, production) effect in mixed lists
divided by that in pure lists, thus:

RoR = d′(Mixed Strong)/d′(Mixed Weak)
d′(Pure-Strong)/d′(Pure Weak) (15)



FEATURE-SPACES AND PRODUCTION 15

so that a null list-strength effect would have RoR = 1, and the expected (positive) list-
strength effect would have RoR > 1. Across the explored parameter range here, RoR >
1 throughout, but when the production manipulation is weaker, it converges toward an
approximate null effect, RoR ≃ 1 (left portion of the plot).

For pure lists, we can also check for a mirror effect; that is, do hits increase and false
alarms decrease together as more phonological features are attended? Figure 3c (blue plot
lines) shows that for low amounts of production (left portion of the graph), hits are greater
and false alarms are reduced by a comparable amount, an approximately symmetric mirror
effect. At higher levels of production (rightward on the graph), false alarms cross over so
that the aloud condition produces more false alarms than the silent condition, despite the
aloud condition producing greater d′ overall (see panel a). With even more production
features stored, the hit rate and false alarm rate both move toward the centre, producing
a kind of reverse mirror effect which, with these parameter values, also neutralizes the
production effect altogether (see the blue plots in the right portion of panel a).

This simulation illustrates that although this account of the production effect is
quite simple (only the number of encoded phonological features differs between silent and
aloud processing), slight variations in parameter values can change features of the results
that would be deemed to be theoretically informative qualitative features. Specifically, we
have shown that the list-strength effect can be positive or near-null and there can be an
approximately symmetric mirror effect, or production can primarily influence the hit rate
or even produce a reverse mirror effect. One intuitive lesson we can draw from this is that
due to the assumed compactness of the phonological feature-space, the advantage due to
production can often be offset or cancelled out, or possibly even reversed, due to increases
in false alarms that occur because the phonological features are maxed out and produce
a large amount of cross-talk interference. This sometimes self-sabotaging characteristic of
production in pure lists may also explain why pure-list production effects have often not
been confirmed and why meta-analysis was needed to establish their at least occasional
(very) robustness (Bodner et al., 2014; Fawcett, 2013).

For comparison, Figure 3d-f plots a simulation of a manipulation of stimulus-
duration. This was adapted from the simulation in Caplan and Guitard (n.d.) but with
parameters closer to our fit of the Bodner et al. (2014) data. In this simplified simulation,
it was assumed that longer duration leads simply to more deep (such as semantic) features
encoded. Thus, νσ was varied from 1 to 32 (out of nσ = 512 total features) for the long
duration condition and the shallow condition had zero semantic features stored. Both long
and short duration items were assumed to have νs = 6 ( = νω + νπ = 3 + 3 from the fit
to the Bodner et al., 2014 data) out of ns = 128 total features (combining the 64 each of
orthographic and phonological feature-spaces). As in Caplan and Guitard (n.d.), in our
model of duration, we assume that after studying a pure-long list, participants can largely
disregard the shallow (orthographic and phonological) features. Unlike production, increas-
ing duration does not saturate and introduce cross-talk because the additional features are
sparsely subsetted. Thus, after a non-monotonicity at very small numbers of semantic fea-
tures stored (left of the graph), the list-strength effect (RoR) increases swiftly above 1 and
the mirror effect becomes increasingly pronounced. And unlike production, disregarding
shallow features here helps the already-superior condition even more, but because disre-
garding only occurs on pure-long lists, this offsets some of the list-strength effect by further
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advantaging pure-long lists over long items in mixed lists.
Graded production. Forrin et al. (2012) found a rank-order of production: Vo-

calization > Whispering > Silence. Kelly et al. (2023) found that typing just two or three
letters of a word resulted in mid-level recognition-memory between silence and typing the
whole word. Our attentional subsetting account of production is compatible with these
results. For d′ and both hits and false alarms (Figure 3a,c, red plots of mixed lists), more
production leads to a monotonic improvement in all three performance measures as one
moves from left to right (increasing νπ,aloud) over a range of attended features that is rela-
tively small (but not sparse) compared to the production feature-space. When more than
a few phonological features are stored per item, as already noted, the aloud condition lev-
els off but the silent condition continues to be increasingly hurt by being present in a list
mixed with aloud (or produced) items. When production is manipulated between lists, the
production effect, itself, is more fragile, so a strict monotonic effect of graded production
would not necessarily be predicted (blue plots). It is interesting to note that this is different
for our model of duration, which predicts that more separation in duration will continue to
separate performance of long and short items, both in mixed lists and in pure lists.

Our account of production may explain some of the finer details of the results of
the two experiments reported by Kelly et al. (2023). In their Experiment 1, participants
either typed all the letters of a word (one quarter of the words) or 3 letters of the word (half
the words) or no letters (one quarter of the words. In Experiment 2, the middle condition
demanded just 2 letters. Production (with these three levels) was manipulated in mixed
lists. The hit rate was greater for the 3-letters-typed words in Experiment 1 than for the
2 letters-typed words in Experiment 2. However, in addition, the hit rate for the all-letters
words and silent words were lower. The authors did not comment on these features (and
they were not apparently produced by their simulated model). But this is what we expect;
more production leads to greater effective strength of an item, but introduces more cross-
talk via confusibility in the production domain, increasing competition within a list. If the
3-letters items have more production-related features stored than the 2-letters items, they
also compete more against the all-typed and non-typed items, reducing the hit rates of
those two item-conditions. That said, this is an explanation of a between-experiment effect,
which would need to be confirmed within a single experiment.

Interaction between study time and production. Next we consider the effect
of extending study time on the size of the production effect. In our formulation of stimulus
duration, we assumed that earlier processed features are superficial, subsetted from a com-
pact feature subspace, and later processed features are deeper, sparsely subsetted from a
larger feature subspace. The implication is that the longer the participant studies an item,
to a degree, the more sparsely subsetted, deep (e.g., semantic) features will be available to
rely on. Immediately we shall see that the additional sparse features will increase perfor-
mance but also will eventually outnumber the shallow features. It is the shallow features we
assume are responsible for the production advantage. So for long durations, as performance
increases, the relative advantage due to production will also reduce.

To visualize how all these effects interact, we simulated a simplified version of stim-
ulus duration, with and without production. Although it is probably the case that phono-
logical features are attended in the silent condition, for simplicity we fix νπ,silent = 0 and
νπ,aloud = 3 as in our previous model of production that we fit to the Bodner et al. (2014)
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data. That is the entire implementation of production in this model version. Meanwhile,
as delay increases, we assume both the number of processed orthographic features and the
number of processed semantic features increases (linearly, for simplicity) and also for sim-
plicity, we fix those rates to be identical. Thus, νω(t) = νσ(t) = rt, where t is time in ms
and r is the rate of processing of features per ms. The orthographic features will, however,
be truncated at νω = 8. They would have to be truncated at nω anyway, but it would
seem more realistic if the orthographic features were never fully attended. The semantic
features need no upper limit because they dwell within a much larger feature space and will
never extend beyond the sparse regime anyway. As before, we assume that participants
studying pure-silent lists largely disregard phonological features, and when tested on mixed
lists, participants tune their response criterion to be the average of that used for aloud and
silent items.

Figure 3g-i shows that if very few features are produced, a production effect is pre-
dicted for both pure and mixed lists, but with a substantial list-strength effect, a larger effect
in mixed than in pure lists (RoR > 1). As more deep features are attended, performance
increases and in fact takes drives increasingly more of correct performance. This eventually
reduces the RoR to a value very close to 1; because semantic features are sparsely subsetted,
they are rather immune from cross-talk due to other studied items (Caplan, 2023), so list
composition exerts less effect on recognition. The corner in the plot is at the maximum
value of νω we set (8). Thereafter, only the attended semantic features, νσ, increase in num-
ber. As they do so, the production effect persists and attenuates only very slightly. Panel
i also shows that the nearly equivalent d′ values in pure lists are due to slightly different
tradeoffs between hits and false alarms (compare the blue plots). The pure-aloud condition
has fewer false alarms and more hits (a mirror effect) at nearly all simulated durations,
similar to what Bodner et al. (2016) found.

In immediate serial recall, the effect of study time on the production effect reduces
but does not eliminate the production advantage (Murray, 1965) but this remains to be
tested in recognition. Although not direct, aligning with the prediction, Bodner et al. (2016)
manipulated study time only of silent items and found that that narrowed the difference
between produced and non-produced items.

Effect of restricted test time. Kelly et al. (2022) manipulated the time avail-
able to participants to process and judge each test probe. They gave participants a long
(5000 ms) response deadline or a short (800 ms or 750 ms) deadline, manipulated within
subjects but between lists (blocks). Production was manipulated within lists (mixed lists).
The hit rate was reduced (and false-alarm rate increased) in the shorter deadline lists, but
the advantage of aloud over silent items was comparable (∆hit rate=0.20 and 0.17 for long
and short deadline, respectively in their first experiment and 0.17 and 0.11 for Experi-
ment 2). Without modification, our model makes the same prediction for test time as it
does for study time, because masked-out features are set to zero. This multiplies through as
zeroes whether the masked-out feature is part of the memory or part of the attended probe.
Figure 3g-i thus could be reinterpreted as a prediction about the amount of test time— as
long as the study time were at least as long as the test-phase response deadline. Consistent
with the data, a sizeable effect of production on hit rate in mixed lists is produced at all
study or test times. Our model does not explain the interaction, especially in their second
experiment, where the advantage of production is greater at the longer deadline than the
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shorter deadline. Note that the persistence of the production advantage at short response
deadlines is inconsistent with the assumption that production-related features are itera-
tively retrieved (Jamieson et al., 2016). Still, the wrong prediction about the interaction
between production and response deadline shows us one way in which our very simple model
of response deadlines is incomplete.

Semantic processing. The model thus far predicts an additional kind of finding.
If participants were instructed to attend to deep or semantic features, for example by
instructions to form visual imagery or with a deep level of processing as an orienting task
(or even drawing; Fernandes et al., 2018), that may effectively shift the model rightward in
Figure 3g-i. In other words, if participants explicitly attend deeper features, a production
effect would still be present, but could be attenuated compared to a control condition.

Suggestive of this, MacLeod et al. (2010) found a robust production effect when
participants were given animacy judgements as an orienting task (their eighth experiment),
but without a direct comparison to a different orienting task or no orienting task, we cannot
know if the production advantage was relatively attenuated. Taikh and Bodner (2016) came
closer. In a between-subjects manipulation of production, participants had to imagine what
the word meant or imagine the word, itself, in capital letters. The imagery manipulation
was done within lists. Compared to their other experiments that manipulated font size
and generation, the production effect was far smaller when participants used imagery-based
strategies (their third and fourth experiments).

Proceduralism through the lens of feature spaces. The Distinctiveness
Heuristic was proposed by MacLeod et al. (2010), following Dodson and Schacter (2001), to
function not at the feature level but via conscious recollection. The idea is that the act of
production, itself, is stored in memory. Then, the participant can use a heuristic whereby,
if that act of production comes to mind, associated with the probe item, that can be used
as evidence that the word was studied. MacLeod and colleagues, starting with MacLeod
et al. (2010), have noted that this captures the spirit of Kolers’ proceduralist theory (Kolers,
1973). The idea that participants draw upon memory of the actions used while studying a
stimulus was in Kolers’ theory but Kolers thought of this not all-or-none, but proposed that
participants encoded specific action-related features. This was proposed for the production
effect by Forrin et al. (2012). Subsequently, Jamieson et al. (2016) implemented this kind
of adaptation of the distinctiveness heuristic mathematically, in a somewhat less explicit
way. Their assumption was that evidence of action/production dwells within the item rep-
resentation, but needs to be recovered through an iterative retrieval process. However, a
problem for this account is that the lengthened response times anticipated by this mech-
anism are not observed, and a fast response deadline does not come close to eliminating
the production advantage (Kelly et al., 2022). MacLeod et al. (2010) also differed from
proceduralist theory, along with Dodson and Schacter (2001), by proposing the heuristic is
applied consciously. but Kolers repeatedly asserted his view that recovery and comparison
of action features was not conscious.

We retain the concept of distinctiveness and production-related action features, but
stick closer to Kolers’ feature-level view and not assuming conscious application of a rule
is required. We suggest that the act of production draws attention to (and encoding of)
features related to actions involved in production. Thus, in addition to the nπ phono-
logical features, we assume there is a separate subset of nα features (where α stands for
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“action” features). For typing, the production space will undoubtedly be highly driven by
the spatial positions of the keys on the keyboard, hand and finger used, etc. (MacNeilage,
1964). For the more classic, vocal production, the features consist of the movements and
sensations of the mouth and vocal system. The similarity structure of the α subspace will
have some commonality with the similarity of the π subspace (or ω subspace, in the case
of typing) but it will not be identical (just as for the relationship between the orthographic
and phonological subspaces). In this way, production can be seen to add some feature-level
distinctiveness and similarity that is redundant with the stimulus-feature space (phonologi-
cal, in this example) but it will also add some distinctiveness and similarity contributed by
the action-space features that is not echoed in the stimulus features.

One implication of this implementation of proceduralism is that it still could lead to
sizeable production effects in pure lists or between subjects, contradicting the intuition Taikh
and Bodner (2016) had with respect to the Distinctiveness Heuristic. It also implies that the
advantage due to production should decrease with increasing list length, as the production-
feature space becomes more fully occupied, and as duration increases and semantic or other
deeper processing takes over.

Homophone lures. Next we address a recent finding that would seem to chal-
lenge the core idea we inherited from other models of the production effect. Fawcett et
al. (2022) conducted a very clever experiment aimed at testing the idea that production
only influences encoding of features that are directly related to production. Participants
made two-alternative forced choice judgements (2AFC) between a target and a lure based
on mixed-production lists. One group of participants always had randomly selected words
as lures (“standard lures”). The other group received only homophones as lures (such as
towed versus toad). Because homophones cause participants to make the identical sounds
(phonological features) as each other, they reasoned that if vocal production only influences
the encoding of phonological features, there should be zero production advantage for homo-
phone comparisons. Because those additional phonological features would be identical for
the homophone lure and the target, they should offer no net advantage for production. Con-
tradicting this, a large production effect was observed for participants in the homophone-lure
condition. This effect was close to the same magnitude as for participants in the standard-
lure condition. The authors viewed these findings as challenging the idea that production
only influences the encoding of production-related (superficial) features. They argued that
production must therefore not (or not only) increase encoding of production-related features
like phonological information, but also enhance semantic encoding of produced items.

A central assumption of attentional subsetting theory may provide a third account
of the homophone experiment that still does assume that production increases the number
of production-related feature encoded (such as phonological features), but does not require
any difference in encoding of semantic features. That is, we assume that not all phonological
features are stored, and the subset of features stored (in any feature subspace, but includ-
ing phonological features) is item-specific. The idea here is that despite the participant
producing the same phonemes, they will store a different subset of those phonemes while
pronouncing toad than towed (illustrated in Figure 5a). In other words, the orthographic
features and semantic features that differentiate towed from toad will also draw attention
to different subsets of the phonemes. Even if there is considerable overlap between those
subsets, and despite the fact that those overlapping features will also have the exact same
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a) Schematic illustration of how item-specific attentional subsetting can disambiguate homo-
phones. Depicted are hypothetical vector representations of TOAD and TOWED (left) and
attentionally subsetted versions of those vectors (right). We assume a pair of homophones
have identical values of all the phonological features as each other (phonological features,
top). We also assume that the spelling will be similar, so many orthographic features will
also match (middle feature space). The semantic features will tend to be quite different.
Because attentional subsetting is item-specific, by chance some of the same phonological
features will be attended on the two words, resulting in encoded features that are not diag-
nostic on a forced choice between the two. But other features will be attended for one but
not for the other, and the pattern of zero-valued features does afford some diagnosticity. b)
Best-fitting model plotted alongside the data from the homophone study reported by Fawcett
et al. (2022). Silent-X and Aloud-X are the data for participants who judged targets against
standard lures. Silent-Hom and Aloud-Hom are the data for participants who judged targets
against homophones.

values, the non-overlapping portions of the phonological-space masks may be sufficient to
add diagnosticity to the recognition judgement. In sum, the additional phonological fea-
tures, where they overlap, will increase the amount of similarity-based cross-talk across list
items, reducing accuracy, but the addition of the non-overlapping, item-specific features
will offset this reduction by improving the discriminability of the two homophones.

One additional observation may help to explain the homophone findings. From vi-
sual inspection of the homophone stimuli used by Fawcett et al. (2022), it is clear that
they possess quite a lot of orthographic similarity, albeit less than phonological (the ex-
ample, towed and toad, have three identical letters, also in the same relative order). The
reason silent items are duped by homophone lures, therefore, could be because of that or-
thographic similarity, or it could be due to subvocalization, the participant imagining saying
the word. Subvocalization is quite plausible given that the lists were mixed and there was
no experimentally induced articulatory suppression.
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We implemented the homophone paradigm in a simulation adapted from the one we
used to fit the Bodner et al. (2014) data. The feature space sizes were retained. L = 80 words
per list. All phonological features were assumed to be identical for the homophone probes.
Again, νπ,silent = 0. We searched four free parameters. νπ,aloud was varied from 1 to 16. νσ

was varied from 1 to 16. The number of identical orthographic parameters for homophones
was varied from 1 to 32.4 Finally, νω was varied from 1 to 8. The best-fitting model,
plotted in Figure 5b, had a log-likelihood=17.88, νσ = 4, νω = 7, #identical orthographic
features for homophones=32 and νπ,aloud = 4. These are close, but slightly greater in terms
of numbers of features fit to the Bodner et al. (2014) data. Especially the greater number of
semantic features is consistent with the longer study time per word here (4 s compared to
2.5 s). Even with four free parameters, the fit is not perfect. However, the surprising result,
a large (comparable-sized) production effect for the homophone group, was easily captured
by the model. The main qualitative feature missed by the model is that it underestimates
the lower d′ for the homophone group. However, that effect is present, although quite
small. Although this is a quantitative deficiency, it is unclear if this is a major miss by
the model, because the comparison, standard versus homophone, is between-subjects, and
the two groups of participants may have approached the task differently. Still, the model
fit stands as proof of principle that a large production advantage can be expected for
target–homophone comparisons even if one assumes that production only affects encoding
of phonological features and does not have any effect on semantic features. To be fair, we
have implied not that semantic processing is irrelevant, but that it is the same for both aloud
and silent words, and semantic processing modulates encoding of phonological features.

Discussion

We have built on other mathematical models of production that assume that produc-
tion results in more phonological (or orthographic, in the case of typing or writing) features
being stored in memory (Jamieson et al., 2016; Kelly et al., 2022; Kelly et al., 2023; Saint-
Aubin et al., 2021). We extended this view by integrating additional assumptions from
attentional subsetting theory (Caplan, 2023; Caplan et al., 2022; Caplan & Guitard, n.d.),
that only a small subset of features are attended and thus encoded within any given feature
subspace, that those subsets are item-specific and often will reiterate quite well, especially
at test, and that phonological and orthographic features are attended earlier than semantic
features and are excerpted from low-dimensional subspaces as opposed to high-dimensional
semantic and imagery subspaces.

This reconciles the large list-strength effects in recognition that are found with
production, with the very small or null list-strength effects found with other manipulations
of “strength,” especially stimulus duration and spaced repetitions. Other findings that
are compatible with the theory included graded effects of amount of production on the
production effect, the effects of both study time/presentation rate (suggestive in Bodner
et al., 2016; Murray, 1965) and test time/response-deadline (Kelly et al., 2022), the effect of
deep encoding instructions (MacLeod et al., 2010; Taikh & Bodner, 2016) and the finding
of a large production effect even for homophone lures (Fawcett et al., 2022).

4It fit at 32. We considered raising the search range but felt that too much orthographic similarity would
deviate from the spirit of this account so we left the cap at 32, one half of the total number of orthographic
feature space.
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Our theory of production shares some characteristics with each of the two major
propositionally formulated theories: Strength Theory and the Distinctiveness Heuristic.
Next we relate our theory with each of those in turn, and then discuss broader implications
and predictions that follow from the theory.

Strength Theory

In their landmark paper, MacLeod et al. (2010) reference the so-called “null list-
strength effect” in recognition as a major argument against strength theory of production:

We are convinced of their difference because of a striking dissociation: The list-
strength effect does not occur in recognition, yet the production effect has been
observed primarily in recognition, where it is large and easily obtained. This
is important because the fact that relative strength does not affect recognition
despite the production effect being solid in recognition indirectly suggests that
the production effect is not due to relative strength. (p. 681)

From our perspective, this is rather backwards. Caplan (2023) noted that list-strength
effects that were described as null were generally slightly positive (RoR > 1, often around
1.1), albeit non-significant. So the first point is that those findings are more accurately
described as near-null list-strength effects. The challenge to theory is really to explain why
the list-strength effect is so small, not why it is strictly absent.

With the attentional subsetting framework, Caplan (2023) reformulated list-strength
effects as continuum phenomena. The small magnitude of those effects was seen as resulting
from the stronger condition (e.g., repeated presentation of items) adding features that
were subsetted from a high-dimensional space, leading to sparse functional representations
encoded in memory, which introduced very little additional cross-talk interference compared
to the weaker condition (see our model of duration here; Figure 3, top and bottom panels).
This explanation also presumed that there is cross-talk due to shallower features such as
orthographic or phonological features, but that those features were comparably present in
the strong and the weak conditions; “strength” manipulations do not increase or decrease
that source of interference from other list items.

In this account, the production effect is different because it improves memory by
encoding more superficial features, that cannot be sparsely subsetted and thereby introduce
more cross-talk interference in the better (produced) condition. In other words, the produc-
tion effect functions the way that previous researchers such as Ratcliff et al. (1990) thought
strength should function. So MacLeod et al. (2010) should have argued not that production
is not strength, but that previous strength manipulations were not functioning like strength
manipulations. Rather, production does function as one would expect of a manipulation
of strength, namely, producing a substantial positive list-strength effect. Later, Jamieson
et al. (2016) were duly confused about the strength logic, writing

Received wisdom is that the distinctiveness account predicts a much stronger
mixed-list than pure-list production effect whereas a strength account predicts
equally probable and equally sized mixed-list and a pure-list production effects
(see MacLeod et al., 2010). (p.160)
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They then go on to implement an “OG” strength model and naturally, it produces a list-
strength effect (see also the demonstration by Caplan, 2023). They conclude, in fact,
that both strength theory and distinctiveness lead one to predict a list-strength effect with
production— which matches the data. Therefore, they warn that this demonstrates that
strength and distinctiveness are challenging to select between experimentally. They missed
the way in which the null list-strength effect story had bent over backwards, but from a
different angle than MacLeod et al. (2010). Jamieson et al. (2016) came closer to our view,
that production manipulates strength and with the implication that classic “strength” ma-
nipulations were weird. But in fact, their implementation of production, additional encoded
production-related features, captures both strength (through functional vector-length) and
distinctiveness (the additional functional dimensionality afforded by those longer functional
vectors) with one mechanism. We viewed this as an elegant theoretical proposal, and
adopted it. Although we added assumptions, this concept remains at the centre of our
account of the production effect.

Finally, the framing of near-null list-strength effects as strict-null effects, starting
by Ratcliff et al. (1990), led modellers to develop models that would automatically produce
null list-strength effects. The most influential of these is REM (Shiffrin & Steyvers, 1997).
REM assumes that each memory is stored in a separate, “local” memory trace. A recogni-
tion probe is matched to each local trace, computing a likelihood ratio based on both the
matching and mismatching features, and then these are averaged across all traces to pro-
duce the evidence used to decide on the response (old versus new). They also assumed that
strengthening results in more (correct) features stored in the item’s trace. This produces
a differentiation effect, where a stronger trace both matches itself more when presented as
a target, and matches other (lure) items less because of the presence of additional features
that could mismatch those lure stimuli. Among other things, this produces the effect they
desired: negligible influence of the strength of one item on recognition of another, hence a
null list-strength effect. However, in accommodating null list-strength effects, one must be
careful that the model has not to lost the ability to predict substantial list-strength effects
when they are observed. Interestingly, Kelly et al. (2023) fit their data with REM, and
although they were rightly pleased that it could explain increased hit rates for items that
were produced more (a graded effect, discussed earlier), their simulated model produced
nearly no within-list competition effects. In their data, when the middle condition was
produced more (3 letters typed rather than 2), hit rates of both the all-typed and none-
typed reduced, differing from their REM-based model. As noted by Caplan (2023) and
Caplan and Guitard (n.d.), a continuum account, such as ours, has the chance to explain a
diverse range of magnitudes, and even signs, of list-strength effects. REM does have ways
of producing list-strength effects, such as by storing multiple traces of an item rather than
strengthening a single trace (Ensor et al., 2021; Shiffrin & Steyvers, 1997). But another
approach might be to incorporate our assumptions about feature subspace characteristics
into the representations used in REM, which might produce large production list-strength
effects due to cross-talk because production-features increase similarity across traces.

The Distinctiveness Heuristic

As authors like Jamieson et al. (2016) have already noted, storing more features does
generally increase distinctiveness. This speaks to the general concept of distinctiveness. But
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the heuristic referred to something quite different: a process more akin to “recollection”
in dual-process theories of recognition (Yonelinas, 1999). MacLeod et al. (2010) drew a
connection to Kolers’ proceduralism, but Kolers explicitly assumed proceduralist effects
were not deliberate or conscious. Both recollection/re-experiencing and proceduralism have
an air of mystique around them. But attentional subsetting theory provides a very non-
mystical, uncomplicated and concrete way these proceduralist-like effects might come about.
Namely, production draws attention to features that dwell within a production action-
feature space (or possibly a combination of action-features, phonological, orthographic and
mappings amongst them, which could be adjudicated in future experiments). That feature
space usually bears some similarity to its corresponding stimulus-feature space, but they
are not strictly equivalent. For this reason, production-space features may afford additional
distinctiveness beyond the distinctiveness present in the stimulus feature-space. This idea
could be tested in future experiments. For example, similarity-based errors due to keyboard
position of letters (MacNeilage, 1964) should be more frequent in typed than non-typed
conditions. The prediction is not so clear-cut, though, because at the same time, typed
words achieve higher accuracy.

Jamieson et al. (2016) had an equally non-mystical implementation of proceduralism,
where production-related features were retrieved iteratively while processing a probe. This
leads one to expect longer response times for pure-aloud lists than for pure-silent lists,
but such effects are not found and fast response-deadlines do not seem to eliminate the
production advantage (Kelly et al., 2022). Interestingly, when we manipulated stimulus
duration, participants often produced longer response times for the longer condition (Caplan
& Guitard, n.d.). This was consistent with our assumption that longer study time leads
participants to process more deep features that are sparsely subsetted. Thus, taking more
time at test will pay off in terms of a speed-accuracy tradeoff; taking longer to process those
additional deeper features will be likely to support better recognition accuracy. When items
are studied for less time, processing the probe longer has diminishing returns. From the same
perspective, if production enhances memory accuracy by encoding additional phonological
or orthographic features, those are features that are processed early, so there is little reason
to predict longer response times to recognize produced items.

Limitations and future directions

Tradeoffs across feature spaces. Saint-Aubin et al. (2021) explained produc-
tion effects in serial recall partly as a modality effect, supplementing visual processing
with auditory processing of words. But the second major element of their model account
was the assumption that production displaces rehearsal, itself known to improve mem-
ory. Conceivably, production may displace other processes, as well, that would otherwise
have benefitted memory, such as deep levels of processing like visual imagery and semantic
elaboration. This notion could be incorporated into the attentional subsetting framework
as applied to recognition memory. It could lead to more nuanced predictions. Offsetting
some of the benefits to recognition memory of production due to increasing the number
of encoded stimulus-features, production may reduce the number of orthographic or even
semantic features attended, as illustrated in Figure 1. The prediction might be similar to
those we presented here, but the production advantage may be further reduced as semantic
or imagery processing, or even multi-item rehearsal or associative processing, become more
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feasible for participants, such as when study time increases.
Compatibility with other models. Our continuum view is quite flexible, and

anticipates (as well as postdicting) a few dependencies of the production effect on other
variables such as study time, list length and study strategy. Although we implemented the
ideas in a distributed, global-matching model, the same principles could be implemented
in any model with a vector representation of items, including local-trace models (note that
MINERVA 2 and the Feature Model, which have been applied to the production effect,
do not normally produce null list-strength effects, different than REM). That said, the
distributed model also has a lot of flexibility. With the sparse-subsetting assumption, it can
produce several of the phenomena that local traces were invoked in part to solve, such as the
apparent null list-strength effect and (combined with differentiation), pronounced strength-
based mirror effects. Sparseness achieves what the local traces, along with differentiation,
achieve, that matching is carried out with little cross-talk across studied items.

Conclusion. We view production effects not as a set of phenomena that need cus-
tomized theoretical accounts, but as a special case of attentional subsetting theory, where
the pecularities of production-related memory are assumed to be driven by the peculiari-
ties of the feature space that production acts upon. This led us to reconsider production
as a form of memory strengthening. As a particular case of “strength,” our account uni-
fies production with other strength manipulations like stimulus duration and repetition,
explaining how they differ. As such, our theory both addresses the production effect in
recognition and provides a framework for understanding a broad range of experimental ma-
nipulations through the lens of attended feature subsets and their respective dimensionality.
Our specific application of the theory to the production effect in recognition memory that
assumes little more than that production results in additional, production-related features
stored in memory, borrowing from other models of production effects (Jamieson et al.,
2016; Kelly et al., 2022; Kelly et al., 2023; Saint-Aubin et al., 2021). The assumptions of
attentional subsetting theory add to this: 1) that small subsets of features are encoded, 2)
that the subset attended during test will tend to be similar to the subset attended during
the study phase, 3) that production increases encoding of shallow, non-sparsely subsetted
features, whereas otherwise, additional study time increases encoding of deeper, sparsely
subsetted features. Numerous empirically observed phenomena are produced with just these
assumptions, even when implemented in an overly simplified vector-summation model, but
could easily by incorporated into virtually any model that assumes some kind of vector
representation of items. This account is quite different from the dominant propositional
theories of production effects, Strength Theory and the Distinctiveness Heuristic, but em-
bodies some desirable attributes of each. This simple view of production avoids the need
for more complex or strategic accounts, including suggestions that production enhances en-
coding of features beyond superficial features related to production. Finally, by providing
some contrasting empirical phenomena, the production effect has extended the generality
of attentional subsetting as a theoretical framework for understanding memory.
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