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a b s t r a c t

Anderson (1970) introduced two models that are at the core of artificial neural network models as well
as cognitive mathematical models of memory. The first, a simple summation of items, represented as
vectors, can support rudimentary item-recognition. The second, a heteroassociative model consisting
of a summation of outer products between paired item vectors, can support cued recall of associations.
Anderson recommended fixing the element-value mean to zero, for tractability, and with minimal loss
of generality. However, in a neural network model, if element values are represented by firing rates,
this mean-centering is violated, because firing rates cannot be negative. We show, analytically, that
adding a bias to item representations produces interference from other studied list items. Although this
worsens cued recall, it also tempts the model to make intrusion responses to other studied items, not
unlike human participants. Moreover, an unexpected feature appears: when probed with a constant
vector, containing no ‘‘information,’’ the model retrieves a weighted sum of studied items, formally
equivalent to Anderson’s item-memory model. This speaks to Hockley and Cristi’s (1996) findings that
associative study strategies led to high item-recognition, but not vice versa. We show that such a model
can achieve high levels of performance (d′), when the bias is greater than zero but not too large relative
to the standard deviation of element values. We demonstrate these effects in a two-layer spiking-
neuron network model. Thus, when modelers have striven for realism and relaxed mean-centering,
such models may not only still function at adequate levels, but acquire a spin-off functionality that
can actually be used, without the need for additional encoding terms specific to item-memory.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Anderson (1970) introduced two models that remain at the
core of artificial neural network models and cognitive mathemat-
ical models of memory to the present day (e.g., Howard & Kahana,
1999, 2002; Osth & Dennis, 2015; as well as their mathematical
cousins, convolution-based models, e.g., Eliasmith et al., 2012;
Franklin & Mewhort, 2015). These models start with the – now
standard – assumption that items (such as words) can be repre-
sented as vectors, where the elements of the vector are thought of
as feature strengths. First, the so-called ‘‘matched filter’’ model is
a simple weighted sum of vectors corresponding to list items. This
model, which we call the Item Model, can simulate rudimentary
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item-memory tasks, including item-recognition, which Anderson
(1973) developed further. In episodic item recognition, the par-
ticipant (or model) is asked to respond ‘‘old’’ to items that were
on the target list (target probes) and ‘‘new’’ to others (lure or foil
probes). The second, so-called ‘‘linear associator’’ model, which
we call the Association Model, is a heteroassociative model com-
prised of a weighted sum of outer products between paired item
vectors (later generalized to the tensor model by Humphreys,
Bain, & Pike, 1989). This model can support cued recall of asso-
ciations (having studied the pair AB: given A as a probe, respond
with B) and associative recognition (having studied pairs AB and
CD, respond ‘‘intact’’ to probes AB and CD; respond ‘‘rearranged’’
or ‘‘recombined’’ to probes AD and CB), earlier known as pair
recognition.

Anderson (1970) recommended fixing the mean element value
to zero, for analytic simplicity, and with minimal loss of gener-
ality, although he pointed out that the optimal signal-to-noise
ratio in his models was at a slightly positive mean element value.
In symbolic implementations of the matrix model, it is standard
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practice to follow this advice. Even if feature values are drawn
at random, as is often done, the expectation is zero. In prac-
tice, the mean will fluctuate around zero, but those fluctuations
are smaller, on average, as the dimensionality, n, of the vectors
increases, closely approximating mean-centering.

However, in a realistic neural network model, if element val-
ues are represented by firing rates, as is commonly done, mean-
centering is violated, because firing rates cannot be negative.
Raising this concern, Anderson (1970) suggested that this vi-
olation of mean-centering could be solved by incorporating a
population of inhibitory neurons, or by implementing a bias, such
that exclusively positive element values could be computationally
treated as positive above the threshold, and negative below the
threshold (but truncated at zero).

Here we consider what happens when one deviates from
mean-centered representations. We will show that although a
loss of optimality and algebraic simplicity may have disadvan-
tages, relaxing the mean-centering condition comes with some
advantages. Moreover, a non-mean-centered item representation
is congruent with non-negative firing rates, while still, in some
sense, remaining more parsimonious than an opponent-code,
which would double the number of neurons required. Finally,
other well supported models have been motivated by other con-
siderations to construct item representations from non-negative
feature values, such as geometric distributions of feature values
in REM (Shiffrin & Steyvers, 1997) and binary vectors (e.g., Cox
& Shiffrin, 2017; Tsodyks & Feigel’man, 1988). It may, therefore,
be important to understand how a memory model performs if
one has independent reasons to favor a non-negative, and thus
non-mean-centered, vector representation.

We were inspired to reconsider the effects of leaving vector
representations uncentered, due to an incidental finding in a
spiking-neuron network implementation of the matrix model. We
noticed that although our model, when given cued-recall probes,
was retrieving the firing-rate pattern that best resembled the
correct target item, the retrieved vector also moderately resem-
bled target items from other studied pairs. We understood this
geometrically, as depicted in Fig. 1. In two dimensions, consider
two vectors that are orthogonal. The angle between them, θ =

90◦, makes their dot product zero. Adding a constant value to all
vector dimensions is equivalent to shifting the origin. This causes
previously orthogonal vectors to lengthen, but more importantly,
their angle, θ ′, becomes smaller than 90◦, and they are thus no
longer orthogonal. Their dot product becomes non-zero, and this
‘‘similarity’’ between vectors has the effect that probes are less
selective for the one best-matching encoded term. In effect, the
model with non-zero bias retrieves not only the correct target
item, but a weighted sum of all studied target items. In the limit,
infinite bias forces all vectors to point in the same direction,
becoming identical. As the bias increases, therefore, items become
increasingly confusable with one another, suggesting the bias
should not be arbitrarily large.

In what follows, first we analytically derive recognition-
memory discriminability (d′) for the Item Model and show what
happens when a bias is added. We then turn to the Association
Model and show, analytically, that adding a bias to item repre-
sentations produces interference from other studied list items
and makes the model worse at cued recall. This also tempts the
model to make intrusion responses that are reminiscent of the
kinds of errors that human participants make. Then we propose
a simple way in which the Association Model, with a bias, can be
used to perform the item-recognition task, even without items
being explicitly encoded. Specifically: when probed with a con-
stant vector, containing no ‘‘information,’’ the model retrieves a
weighted sum of studied items, formally equivalent to Anderson’s
Item Model. This echoes findings that associative study strategies

Fig. 1. Schematic depiction of the effect of features values having a non-zero
mean. Two vectors, depicted in blue and green solid lines, respectively, start out
orthogonal relative the origin (thin axis lines). Thus, the angle between them,
θ = 90◦ . When a constant value is added to all cells of the vectors (in this
simple example, only two dimensions each), the geometric interpretation is that
the origin is shifted (thick axis lines). The new vectors (darker, dotted lines) now
have a much smaller angle, θ ′ , between them. Because cued recall starts with,
mathematically, a dot product between the probe item and the memory matrix,
the addition of a bias has the effect of cueing, to some degree (depending on
the magnitude of the bias itself), all other associations.

lead to high item-recognition, but not vice versa (Hockley & Cristi,
1996). We show that such a model can achieve high levels of
performance (d′), when the bias is greater than zero but not too
large relative to the standard deviation of element values. Finally,
although analytic derivations are informative and speak to the
generality of the results, the story can change when one builds
an actual model implementation that can be simulated, and
additional practical considerations need to be addressed. Indeed,
this was our initial inspiration. We therefore present a simulation
that demonstrates the presence of this kind of intrinsic item-
memory in a two-layer artificial neural network using realistic
spiking neurons.

2. The item model

Let items be represented by column vectors of length n, de-
noted in boldface, lowercase letters, such as f. We follow the
standard assumption that the cells of each item vector are com-
posed of independent, identically distributed values; thus, f(k) ∼

N(µ, σ 2). Anderson (1970) used this assumption throughout his
derivations, but then showed that little is lost if one simplifies
by assuming that µ = 0; in other words, that vectors are mean-
centered. Interestingly, he showed that the signal-to-noise ratio
of the model was optimal at a point where µ > 0, but still quite
close to zero. We will, instead, maintain µ ̸= 0 throughout, and
examine the dependence of the results on the value of µ. An-
derson (1970) proposed that memory for a list of items could be
stored as the vector sum of the corresponding item vectors, where
the weights, αi, stand in for variable encoding strengths, which
we assume are drawn from a Gaussian distribution with mean
µα and variance σ 2

α , written αi ∼ N(µα, σ 2
α ):

m =

L∑
i=1

αifi, (1)

where i indexes items and L is the list length. Item recognition
can be conducted by computing the dot product (also called the
inner product) between a probe item, fx, and memory,

s = m⊺fx. (2)

We set aside encoding variability to simplify the derivations
(i.e., setting αi = 1, ∀i). The dot product of an item with itself,
which Anderson (1970) termed its ‘‘Power’’,

f⊺i fi =

n∑
k=1

fi(k)2 (3)
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has mean:

Mii = E
[
f⊺i fi
]

=

n∑
k=1

(µ + Xk)(µ + Xk)

= n
(
µ2

+ 2µE [X] + E[X2
]
)

= n
(
µ2

+ σ 2) , (4)

where Xk (and likewise, Yk and Zk, used below) denotes a single
draw from a mean-centered distribution ∼ N(0, σ ), E[] denotes
the expectation and X (and below, Y and Z) denotes a standard
normal (Gaussian-distributed) random variable with a mean of
zero and variance σ 2. We have used the fact that the expectation
of odd powers of X is zero, due to odd symmetry (e.g., Anderson,
1970; Weber, 1988), and solutions from Weber (1988) including:
E[X2

] = σ 2, E[X4
] = 3σ 4 (also used in later derivations below).

Substituting the common assumption, σ 2
= 1/n, which produces

vectors that are approximately normalized (unit length), this
simplifies to:

Mii = nµ2
+ 1. (5)

Note that if µ = 0, the mean simplifies to 1. Its variance is:

Vii = Var
[
f⊺i fi
]

= E
[(

f⊺i fi
)2]

− E
[
f⊺i fi
]2

= E

[(
n∑

k=1

fi(k)2
)(

n∑
l=1

fi(l)2
)]

− M2
ii

= nE
[
(X + µ)4

]
+ (n2

− n)E
[
(X + µ)2 (Y + µ)2

]
− M2

ii

= nE
[
X4

+ 6µ2X2
+ µ4]

+ (n2
− n)

× E
[
X2Y 2

+ µ2X2
+ µ2Y 2

+ µ4]
− M2

ii

= n
(
3σ 4

+ 6µ2σ 2
+ µ4)

+ (n2
− n)

(
σ 4

+ 2µ2σ 2
+ µ4)

−n2 (µ4
+ 2µ2σ 2

+ σ 4)
= 2nσ 4

+ 4nσ 2µ2,

where Var [] = E
[
()2
]

− E [()]2 denotes variance. Substituting
σ 2

= 1/n, this simplifies to:

Vii = 2/n + 4µ2, (6)

reducing to 2/n if µ = 0, decreasing with n toward an asymptote
of 0. This variance term also increases with increasing µ, but
independent of the effect of n. The dot product between different
items (j ̸= i) has mean:

Mij = E
[
f⊺i fj
]

=

n∑
k=1

fi(k)fj(k) =

n∑
k=1

(µ + Xk)(µ + Yk)

= n
(
µ2

+ µE[X] + µE[Y ] + E[X]E[Y ]
)

= nµ2, (7)

Note that for µ = 0, Mij = 0. Its variance is:

Vij = Var
[
f⊺i fj
]

= E
[(

f⊺i fj
)2]

− E
[
f⊺i fj
]2

= E

[(
n∑

k=1

fi(k)fj(k)

)(
n∑

l=1

fi(l)fj(l)

)]
− M2

ij

= nE
[
(X + µ)2(Y + µ)2

]
+ (n2

− n)

× E [(W + µ)(X + µ)(Y + µ)(Z + µ)] − M2
ij

× nσ 4
+ 2nµ2σ 2

+ nµ4
+ (n2

− n)µ4
− n2µ4

= nσ 4
+ 2nµ2σ 2.

Substituting σ 2
= 1/n, this simplifies to:

Vij = 1/n + 2µ2, (8)

reducing to 1/n when µ = 0. For µ > 0, this variance increases
as the square of µ, again independent of n.

Fig. 2. Analytic solution for the Item Memory model: d′ for list length 10, as
a function µ (relative to σ ), for three example values of vector dimensionality
(n).

Departing from Anderson (1970), who derived the signal-
to-noise ratio, we derive d′ because it is the current standard
measure of recognition-memory performance. We explicitly as-
sume that lure items are generated in the same way as target
items, but that lure items were simply not presented during the
study phase. Thus:

d′
=

µtarget − µlure

1
√
2

√
σ 2
target + σ 2

lure

. (9)

For a target probe, there will be one term where i = x and L − 1
terms with i ̸= x. For a lure probe, there will be L terms with
i ̸= j. Because means and variances add:

µtarget = Mii + (L − 1)Mij

µlure = LMij

σ 2
target = Vii + (L − 1)Vij

σ 2
lure = LVij

∴ d′
=

Mii − Mij

(1/
√
2)
√
Vii + (2L − 1)Vij

. (10)

Substituting Eqs. (5)–(8),

d′
=

√
2

(2L + 3)µ2 + (2L + 1)/n
. (11)

Plotted for L = 10, at a few values of n (Fig. 2), one can see
that if µ = 0, this reduces to

√
2n

(2L+1) , which increases with
increasing n (as

√
n) and decreases with L (i.e., a list-length effect,

approximately 1/
√
L for large L). The effect of µ > 0 is to

increase the denominator independently of n, but proportionally
to µ itself, and to the square root of L. Thus, introducing a bias
reduces d′, but in addition, introduces a further cost for large list
lengths.

3. The association model

During the study phase of an association-memory task, asso-
ciations between pairs of items are stored in a memory matrix,
M , as a weighted sum of outer products between pairs of item
vectors (Anderson, 1970), where the weights, αi ∼ N(µα, σ 2

α ),
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stand in for variable encoding strengths, similar to the vector
model of item recognition:

M =

L∑
i=1

αigif⊺i (12)

where L is the list length (in the Association Model, this is the
number of pairs per list), fi is the left-hand item of pair i, and gi
is the corresponding right-hand item, constructed in exactly the
same way as the fi vectors. Probing with a given left-hand item
from the list, fx by multiplying from the right retrieves the vector
gr :

gr = Mfx =

L∑
i=1

αigi(f⊺i fx) (13)

If all fi and gi are mutually orthogonal, as is approximately the
case for large n and small L (5–20 are typical values of L) and
when fi and gi are mean-centered, retrieval is perfect, because
E[f⊺i fx] = 1 if i = x and zero if i ̸= x, thus yielding, on average,
αigi; in other words, the correct target item multiplied by a
scalar encoding strength. When the orthogonality assumption is
relaxed, as is the case here, when element values are drawn at
random, gr will still tend to include a gx as its dominant term,
but this will be contaminated by other items, αigi, in proportion
to (f⊺j fx), the degree of similarity of the probe item to each
corresponding left-hand item.

Now, to incorporate the bias by writing the corresponding
vectors with bias included as f̃i = fi + µI, where I is a vector
of length n, containing the value 1 as every element (following
Anderson, 1970), retrieval in the Association Model based on f̃i,
Eq. (2), becomes:

gr =

L∑
i=1

αi(gi + µI)(fi + µI)⊺(fx + µI)

=

L∑
i=1

αi
(
gi(f⊺i fx + µ2n) + I

(
µf⊺i fx + µ3n

)
+gi

(
µf⊺i I + µI⊺fx

)
+ µI

(
µf⊺i I + µI⊺fx

))
, (14)

The right-hand terms, colored gray, all have E[] = 0 because
E[fi · I] = 0. Cued recall is accurate if the model selects gx as the
response and incorrect otherwise. For models lacking an explicit
model of redintegration (‘‘cleaning up’’ the retrieved vector to
identify an acceptable response item from the lexicon consisting
of the set of known items), the standard assumption is that
the relative similarity (dot product) of the retrieved vector to
response candidates determines accuracy. Thus, for the target, on
average, and assuming large n:

E[g⊺
r (gx + µI)] = αx(1 + µ2n) + αxnµ2

+ Lµαn2µ4, (15)

where we have used E[f⊺i fx] = 1 if i = x and 0 otherwise.
Thus, the match to the correct target item vector is simply equal
to the tested pair’s encoding strength when µ = 0, but for
µ > 0, increases with n and L. Although the additional terms
introduced by µ increase the matching strength to the target
item, an additional typical assumption is that recall is inversely
related to the matching strengths to non-targets. Thus, this is
offset by increases in the match to incorrect target items (i.e., the
other gy vectors, y ̸= x, of which there are L − 1):

E[g⊺
r (gy + µI)] = αyµ

2n + αxnµ2
+ Lµαn2µ4. (16)

Again, if µ = 0, this reduces to zero. For µ > 0, the match to
each of the (L − 1) other studied targets increases with n and
L. Remarkably, the incorrect target item strengths also increase
partly in proportion to the strength of the correct target (middle

Fig. 3. Analytic solution for the Item Model, Eq. (11), with L = 10, n = 1000 (a);
cued recall of the Association Model (b), where matching strength (dot product
of retrieved vector, gr , with candidate response item vectors) is plotted relative
to strength of the correct target (Eqs. (15)–(17)), and item memory retrieved
from the Association Model (Eqs. (30)–(31)) (c). The horizontal axes (µ/σ ) are
aligned for comparison across panels.

term, proportional to αx). Thus, one can clearly see how increas-
ing µ swiftly reduces the discriminability of the correct target
item from other studied target items. To compare, the match to
other probe items (assuming an item cannot be both a left- and a
right-hand item) is lower; all that survives is the term ‘‘probed’’
by the bias itself, µI:

E[g⊺
r (fy + µI)] = αxnµ2

+ Lµαn2µ4, (17)

and reduces to zero when µ = 0. As the index y does not enter
into the result, this is true for the match to the probe itself,
fx, as well as all items that were not included in the study list
whatsoever.

To estimate the probability of a correct response would re-
quire additional assumptions, such as whether retrieval is winner-
take-all or probabilistic, and what constitutes the set of candidate
response items, which is beyond the scope of the current article.
However, the analytic solutions reveal some important insights.
Comparing Eqs. (15)–(17), visualized for L = 10 and n = 1000
in Fig. 3b, one can see that on average, gr will match best to the
correct target, less well to target items from other studied pairs,
and least to the probe items and any other non-studied items.
This immediately leads to the prediction that intrusions in cued
recall will be predominantly to incorrect target items, and only
rarely to probe items from other studied pairs.

In the limit of large n, the strength to the correct target
(Eq. (15)) and strength to each of the incorrect studied target
items (Eq. (16)) converge, suggesting that the model would be
correct on no more than 1/L cued recall tests. This could be
counteracted, of course, by a large encoding strength for a par-
ticular pair, αx, but this would not help performance over all
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pairs. As n becomes even larger, the rightmost term dominates
and all strengths approach equality; thus, for non-zero µ, vector-
dimensionality acts against probability of recall. As µ gets large,
again the strength of the target approaches the strengths of stud-
ied incorrect target items. For very large µ, again, the right-most
term dominates, introducing even more of a challenge from non-
studied items. As L increases as well, the three strength equations
quickly converge, as long as µ > 0.

Thus, although we will show that a small bias may offer some
benefit in the form of the availability of item-memory as a by-
product of encoding of associations, the bias must not be very
high, or else cued-recall performance will suffer quite drastically.

3.1. Item recognition by probing the association model with a con-
stant vector

The Item Model (vector-sum), itself, can be retrieved by sim-
ply probing this model with a pure bias vector, µI. This would
correspond to exciting the input-layer neurons of a 2-layer ar-
tificial neural network by injecting the same amount of current
to all input neurons (note that this will be an upper limit of
performance, because a realistic model would have to assume
additional noise on top of the µI vector, which would propagate
through to retrieval):

mr = M(µI) =

L∑
i=1

αi(gi + µI)(fi + µI)⊺µI (18)

=

L∑
i=1

αi
(
(gi + µI)(µf⊺i I + µ2I⊺I)

)
. (19)

Recognition judgments can be made using this retrieved vector
in the same manner as before, on the basis of the dot product of
a probe vector, g̃x, with the memory, mr :

g̃⊺
xmr =

L∑
i=1

αi
(
(gx + µI)⊺(gi + µI)(µf⊺i I + µ2I⊺I)

)
. (20)

If we maintain the assumption that I is a perfect, noiseless con-
stant vector, then we can substitute the scalar I⊺I = n. We can
then rewrite Eq. (20):

g̃⊺
xmr = T1 + T2

where

T1 = nµ2
L∑

i=1

αi(gx + µI)⊺(gi + µI)

T2 =

L∑
i=1

αi
(
(gx + µI)⊺(gi + µI)µf⊺i I

)
. (21)

T1 is the original item-recognition vector model multiplied by a
constant factor, nµ2. T2 is the same model multiplied by the dot
product of fi with I, equivalent to the sum over the elements of
fi. New expressions for µ′

target and µ′

lure are thus straight-forward
to calculate, since E[T2] = 0. Setting all αi = 1 for simplicity:

µ′

target = nµ2
+ Ln2µ4 (22)

µ′

lure = Ln2µ4. (23)

Next, the target-strength variance:

σ ′2
target = E[T 2

1 + 2T1T2 + T 2
2 ] − µ′2

target where x matches one i

Solving these terms:

E[T 2
1 ] =

(
L2 n4) µ8

+
(
2 L n3

+ n2 (L2 + 3 L
))

µ6

+
(
n2

+ (L + 1) n
)

µ4 (24)

2E[T1T2] = 0 (25)

E[T 2
2 ] =

(
L n2) µ6

+ (2 n + 2 L + 2) µ4
+

(
L + n + 1

n

)
µ2 (26)

For lures, many terms reduce to zero:

σ ′2
lure = n2µ4E[T 2

1 + 2T1T2 + T 2
2 ] − µ′2

lure where x matches no
i or j

Solving these terms :

E[T 2
1 ] =

(
L2 n4) µ8

+
(
n2 (L2 + L

))
µ6

+ (L n) µ4 (27)

2E[T1T2] = 0 (28)

E[T 2
2 ] =

(
L n2) µ6

+ (2 L) µ4
+

(
L
n

)
µ2. (29)

Finally, solving for d′ (Eq. (9), using Eqs. (22)–(29)), and illustrated
in Fig. 3c,

d′
= µ

√
2n/C, (30)

where C =
(
L2n3

+ 3L n3)µ4
+
(
(L + 3/2)n2

+ (2L + 1)n
)
µ2

+ (L + n + 1) /2. (31)

This can be seen by inspecting distributions of matching strengths
for targets and lures, produced by a numerical simulation used
to verify the analytic derivations. Fig. 4 shows that when µ is
too small (panel a) or too large (panel c), strength distributions
for targets and lures overlap considerably, resulting in fairly low
values of d′. For certain values of µ (panel b), the distribution can
separate far more, resulting in quite high values of d′.

In the limit where µ = 0, the model retrieves nothing. In other
words, by probing with the bias vector, µI, alone, the Association
Model retrieves the vector sum of all target items, weighted by
their corresponding pair-encoding strengths.

Note that the same αi multiplies the matching strength for
recognition of gi and retrieval strength for cued-recall of corre-
sponding pair, i. This leads to the further prediction that
association-memory (tested with cued recall or associative recog-
nition) should be highly correlated to recognition of the con-
stituent items, where the correlation is computed across i, within
each list.

This may also be part of the reason Hockley and Cristi (Hockley
& Cristi, 1996) found that when participants studied a list in antic-
ipation of associative recognition tests, they retained memory for
the constituent items about as well as when studying for item-
recognition, but not vice versa (see the General Discussion for
more on this).

In sum, the greater the bias, µ, the less accurate both item
recognition and cued recall become. At the same time, the greater
µ, the more item-memory (the vector sum of all studied tar-
get items) can be retrieved by probing with a constant vector
(µI). This item memory ‘‘for free’’ inherits one property from
the original item-memory with bias; namely, the more the bias,
the worse item-recognition becomes. These tradeoffs suggest one
could optimize µ to trade off cued recall accuracy for accuracy of
memory for the accompanying target item.

4. Realistic spiking model

In this final section, we evaluate the effect of a bias in a
spiking-neuron network model. We are particularly interested
in whether incorrect target items are retrieved more than non-
studied items in cued recall, and whether the model can perform
at non-trivial levels at item-recognition when excited with con-
stant input. Although the analytic models, derived above, are
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Fig. 4. Probability distributions of matching strengths for targets and lures, from
the numerical simulation with n = 1000, L = 10, averaged across 1000 simulated
lists. (a) µ = 0.002, d′

= 2.66. (b) µ = 0.01, d′
= 5.59, (c) µ = 0.05, d′

= 1.65.

effective in showing the generality of effects, one would like to
evaluate the magnitudes of those effects when one implements a
more complete and realistic simulation, which requires consider-
ation of the plausibility of model parameters, and in the case of
a spiking network, forces one to use strictly non-negative feature
values encoded in nearly discrete events (action potentials). For
tractability, the analytic models above allowed negative element
values, in the negative tails of Gaussian distributions. In partic-
ular, we sought to test whether the (a) the match to incorrect
targets would be substantially, not just nominally, greater than
for non-studied items, and (b) d′ for item-recognition based upon
cueing with a constant input vector would be substantially, not
just nominally, above chance. Depicted schematically in Fig. 5,
we implemented the matrix model by setting matrix cell val-
ues as synaptic strengths, in an artificial neural network, using
the Izhikevich (2003) model of simple spiking neurons.

4.1. Methods

4.1.1. Single-neuron model
The Izhikevich (2003) model can reproduce many distinct fir-

ing patterns of neurons while maintaining reasonable computing
overhead. All simulated neurons are regular spiking neurons, with
simulation parameters a = 0.02, b = 0.2, c = −65, d = 8,
hand-chosen from parameter space maps in Izhikevich (2003).

4.1.2. Model synapse
Synapses are modeled using the alpha function approach fol-

lowing Dayan and Abbott (2001). Consider two neurons, where

Fig. 5. Schematic illustration of the realistic spiking model. See text for details.
The fi units comprise the input layer and the gi units comprise the output layer.
Synapses are hard-coded to be equal to the cells of the matrix (Association
Model).

one neuron, the input neuron, synapses onto the other neu-
ron, the output neuron. When an input neuron fires, the output
neuron’s membrane potential changes. For synaptic input J , the
change in post-synaptic membrane potential, Ps, as a function of
time since firing, t , is

Ps(t) = J
Pmaxt

τ
e1−t/τ , (32)

where Pmax = 5 µV is the peak post-synaptic potential, τ = 3 ms
is time to reach peak post-synaptic potential.

4.1.3. Item representations and design of the network model
Because we wish to represent item vectors with firing rates,

and firing rates must be positive-valued, there will always nec-
essarily be a bias. Although one could approach the realistic
spiking network in several other ways, the following approach
made the most sense to us. We conceptualized the ‘‘lexicon’’ as
consisting of signed vectors representing items that were, in some
sense, known to the network. Thus, the lexicon includes items
that could be identified as candidate responses, although we do
not model the response process, itself. In the current simulation,
we compute matches of the retrieved firing-rate pattern (vector)
with vector-representations of items in the lexicon and use these
matching strengths to estimate probability of producing a given
item as a response, presumably through redintegration, which
we also do not model explicitly. Thus, the idealized item rep-
resentations include positive and negative values, which allows
for the possibility of negative signs influencing synaptic weights
negatively (not just positively), but whenever items are to be
represented with firing rates (input and output layers), they are
strictly non-negative. To our view, this was the least complicated,
and thus, least objectionable, way to generate representations
with a bias, albeit not the least complicated to describe to the
reader.

To be more specific, we chose to draw firing-rate values at ran-
dom from a Gaussian distribution with fixed standard deviation
and mean approximately equivalent to the bias. We say ‘‘approx-
imately’’ because Gaussian functions are, in principle, infinite in
domain. Because negative firing rates are not possible, we main-
tained the negative values in the ‘‘lexicon’’ (set of items ‘‘known’’
to the model). Similarly, for cued recall, we injected negative
current when the corresponding element of the cue item was
negative. Negative values were also maintained when computed
synaptic weights; thus, synaptic weights could be net-inhibitory
as well as excitatory. This implementation choice means that the
match between the retrieved vector and the vector in the lexicon
can never be perfect, but we judged this to add realism to the
model, and lend additional credibility to its performance level.
Thus, 2L traces were randomly generated, where each trace was
a list of n real numbers. The first L traces were defined as input
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traces (i.e., left-hand items of the associations), fi, i = 1..L,
and the remaining L traces were output traces (i.e., right-hand
items of the associations), gi, i = 1..L. Then, we initialized 2n
Izhikevich neurons, where the first n neurons (n = 1000 in the
simulations) comprised the input layer neurons and the last n
neurons comprised the output layer.

The synaptic weights were computed by summing the outer
products of each output trace and its corresponding input trace.
The matrix was then scaled to have a maximum element value of
1:

M =

∑L
i=1 gif⊺i

max(
∑L

i=1 gif⊺i )
. (33)

In other words, we did not model incremental learning, but
simply assumed that the network has already learned and stored
the summed matrix outer products in its synaptic strengths.

In each simulation, the neurons were initially left at rest
(i.e., no input) for 1 s so they could reach their resting potential
–70 mV.

4.1.4. Cued recall
The input current was computed by multiplying the values of

the cue item by an arbitrary scalar value, 10 mA, that converted
element values into current. This input current was applied as a
square wave to the input-layer neurons for 100 ms. The number
of action potentials fired by each output-layer neuron during
a 100 ms estimation window was recorded. We calculated the
similarity (dot product) of this retrieved firing-rate vector to the
item representations, separately considering the target item, the
other studied target items and one non-target items, a newly,
randomly generated vector.

4.1.5. Recovering item memory with constant input
For this simulation, the input current was a vector for which

all elements had the same, arbitrarily chosen current values,
10 mA, also applied to the input layer neurons for 100 ms. As
before, the number of action potentials fired by each neuron
was recorded, and this firing-rate vector was compared, via dot
product, to the ‘‘target’’ vectors (right-hand items within stud-
ied pairs), newly, randomly generated item vectors, as well as
‘‘probe’’ vectors (left-hand items within studied pairs).

4.2. Results

4.2.1. Cued recall
The spiking-neuron network model was simulated with n =

1000, varying µ/σ over the range 0–1. As illustrated in Fig. 6a,b,
and consistent with the symbolic model, the average match to the
correct target item was greatest, and this was the case across the
entire range of bias values. As the bias rises from zero, the other
studied (but incorrect) target items match less than the correct
target, but more than non-studied items. As bias increases toward
infinity, the three item-types converge, consistent with the intu-
ition that the larger the bias, the more similar all item-vectors
will be.

4.2.2. Recovering item memory with constant input
When excited with constant current, the retrieved firing-rate

pattern on the output layer was compared (via dot product) with
the studied target items, as well as non-studied items (Fig. 6c).
Fig. 6c also shows the matching strengths to ‘‘probe’’ (left-hand)
items within the studied pairs. Due to the non-commutativity
of the outer product, these match no better (nor worse) than
non-studied items. The d′ values are comfortably above chance,
and reach levels in the range 2–3, that are typical of human
recognition-memory performance on typical experimental tasks.

Fig. 6. Simulation of the realistic spiking model. (a) Tested with cued recall,
plotting matching strength (normalized dot product) relative to strength of the
correct target. (b,c) Item memory retrieved from the spiking-neuron Association
Model with constant-current input. Means and standard deviations of strengths
for targets (right-hand items within studied pairs), lures and ‘‘probes’’ (left-hand
items within studied pairs) are depicted in (c). Horizontal axes (µ/σ ) are aligned
for comparison across panels. Note that for the simulation, µ/σ refers to the
theoretical, not actual values observable in firing rates, which are truncated at
zero.

As with the symbolic model, performance reduces to chance (d′
=

0) when there is no bias (µ/σ = 0), but rises rapidly with the
introduction of only a very small bias. When the bias becomes
larger, d′ lessens, due to the increase in similarity between all
pairs of item vectors. Also as with the symbolic model, there is a
clear optimum bias level. Note that the horizontal scales are not
directly comparable; for the network simulation, µ/σ is the theo-
retical value, based on the original item representations, whereas
the functional bias is larger, due to the absence of negative firing
rates.

4.3. Discussion

In sum, the spiking-neuron network simulations confirm that
the phenomena expected based on the symbolic model (both
analytic derivations and numerical simulations) may also occur
within realistic parameter ranges, in models that are more con-
strained by neurophysiology (e.g., discrete action potentials and
an absence of negative firing rates).

5. General discussion

In both the symbolic model and the more realistic, spiking-
neuron network model, the introduction of an element-value
bias in item representations was found to reduce performance
in cued recall, as has been long understood. However, two new
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phenomena were identified. First, cued recall produced interme-
diate matches to items that were studied as potential target items
within the same study set. This may drive so-called within-list
intrusion responses. Second, when probed with a vector con-
taining zero item information (essentially, only the bias value
itself), the retrieved vector was not meaningless (i.e., noise), but
resembled the classic Item Model (Anderson, 1970). Derivations
and simulations both demonstrated that for a range of bias values,
this vector-sum could be used to perform at moderately high
levels in old/new recognition judgments of the studied target
items.

As Anderson (1970) also noted, the greater the bias, the worse
both the Item and Association models perform. One might con-
sider that this could be rectified by correcting for the expected
additive constant (subtracting it) once the model is probed. This
could correct the offset that is common to all retrieved vectors.
However, the bias that is present during encoding introduces
additional variance that cannot, subsequently, be corrected for.

The Association Model is composed of (studied) item vectors.
It is interesting to consider that, when mean-centered, there
is no way to directly retrieve those items; one must cue an
item specifically with its corresponding paired item. This has led
modelers to maintain separate memory variables for item versus
associative information (Anderson, 1970), or use tensor space
differently (Humphreys et al., 1989). Even in composite repre-
sentations, modelers have included separate item and associa-
tion terms (Metcalf Eich, 1982; Murdock, 1982). Simply dropping
mean-centering and including a constant bias adds an affordance.
As we have shown, the Association Model can now be probed
with a constant input vector, containing zero information about
studied items or associations, to retrieve a weighted sum of
studied items. Equivalent to the Item Model, this is sufficient, for
certain parameter values, to support item-recognition judgments.

We wondered why, to our knowledge, the tendency for non-
target studied items to partially activate during cued recall has
not previously been reported. We speculate that modelers may
have seen traces of the ‘‘ghosts’’ of other studied items in their
network activity, but that this seemed tangential, did not un-
dermine their main goals with their models, and drew no fur-
ther investigation. Indeed, examples of this phenomenon may
be present in published modeling work. In addition, if item rep-
resentations are generated at random, or do not have patterns
that are readily recognized by eye, in plots of model activity, the
‘‘spillover’’ activation may not be obvious upon visual inspection.
In cases for which the representations are chosen to be visually
recognizable, the effects we derived may be evident. One example
of this is Barkai, Bergman, Horwitz, and Hasselmo (1994), where
the ‘‘ghosts’’ of non-target studied items can be seen in their
Figures 5 and 7.

To our knowledge, there is not precedent for the spinoff func-
tion, the ability to perform item recognition by activating the
associative network with constant current. Although performance
reached reasonably high levels, even for the spiking-neuron net-
work simulation, this approach to item-recognition has clear limi-
tations. First, the perfectly constant current in our analytic deriva-
tions and network simulations is unrealistic; in reality, some
level of noise would be expected. Current model performance
could be viewed as outlining upper limits of performance, but
not necessarily; in the spiking network model sometimes noise
actually enhances encoding, as in stochastic resonance (Stein,
Gossen, & Jones, 2005). However, added noise would presumably
affect the overall performance of the model, and not result in
qualitatively different dynamics. We expect the character of our
results would be somewhat robust to the addition of noise.

Second, Anderson’s Item Model is simple, yet can support
item-recognition performance to a rather high level. It is also

equivalent to the item-memory term of TODAM (Murdock, 1982),
another model that has succeeded in accounting for a broad range
of empirical memory findings. However, this vector-summation
model has well known limitations. Most importantly, if ⊕ de-
notes concatenation, then if the Item Model stores two items,
m = (a ⊕ b) + (c ⊕ d) (assuming, for the moment, that all
half-length vectors, a, b, c, d are mutually orthogonal and nor-
malized), the match to studied items, m · (a ⊕ b) = m ·

(c ⊕ d) = 1, but the matches to items composed of recom-
bining the parts are exactly the same, m · (a ⊕ d) = m ·

(c ⊕ b) = 1. Having studied (e.g., Mayes, Montaldi, & Migo,
2007) snowman and sandstorm, the model would just as readily
endorse snowstorm and sandman as belonging to the study set.
This is one reason modelers have developed more sophisticated
models of recognition memory, such as MINERVA 2 (Hintzman,
1984) and REM (Shiffrin & Steyvers, 1997). Both these models
are essentially local-trace models that include nonlinearities to
produce greater matching evidence when all features of a sin-
gle trace match than when matching features are distributed
across traces. Alternatively, item memory can be stored asso-
ciatively, in auto-associative terms, as is common in artificial
neural network models, but also in a convolution-based model,
CHARM (Metcalf Eich, 1982). The spinoff recognition-memory
ability demonstrated here would be challenged by intra-item
recombined recognition probes. We are not suggesting a return to
the vector-sum as a model of item-memory. We are only suggest-
ing that this spin-off information could explain (a) the relatively
high prevalence of within-list intrusions in cued recall and (b)
how item memory could be derived from stored associations
without any additional process required to encode items. Thus,
the item-recognition capability of the Association Model without
mean-centering may be useful, and may be a good account of
human memory behavior in certain conditions. When a particular
item-recognition situation demands more fine-grained compar-
isons, it may quickly become insufficient, and additional, separate
encoding terms may be required.

We chose to use the same value of µ during encoding, cued
recall and matching to the lexicon (the process that presumably
drives redintegration). This choice was in part for simplicity, and
in part because we felt it plausible that if item representations
need to include a bias of µ during encoding due to some physio-
logical constraints, the same constraints probably hold always. It
would be interesting to examine what would happen if the bias
could take on different values at different times. However, one
quickly appreciates that a µ′

̸= µ at retrieval may have little
effect. Probing the Association Model with a constant vector, µ′I,
Eq. (18) becomes

mr = M(µ′I) =

L∑
i=1

αi(gi + µI)(fi + µI)⊺µ′I, (34)

but µ′ is clearly just a scalar that will be present in all subse-
quent calculations of matching strengths, thus not affecting the
competitive advantage of studied items over non-studied items.

Next, we consider an issue first raised by Ratcliff, Sheu, and
Gronlund (1992). They criticized the matched-filter model (em-
bedded within TODAM; Murdock, 1982) for predicting that the
variance of strength for targets and for lures to be nearly equal.
This contrasted with empirical measures that estimated
lure:target variance ratios of approximately 0.8, derived from ROC
curves (Ratcliff, McKoon, & Tindall, 1994; Ratcliff et al., 1992), and
corroborated with analyses of response-time distributions (Osth,
Dennis, & Heathcote, 2017; Starns & Ratcliff, 2014).1 A result

1 We thank Adam Osth for noting the connection to this prior work.
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we had not anticipated was that the variance of recognition-
strengths for target items was larger than that for lure items,
particularly as µ increased. This is evident in Fig. 4, but it is
true both of recognition from the Association Model (probed
with constant input) and from the Item Model. First, we note
that the ratio of variances will always be strictly less than 1.
In the Item Model, Eq. (10), σ 2

target differs from σ 2
lure only as Vii

differs from Vij. Eqs. (6) and (8) show that Vii includes Vij plus
additional non-negative terms, ensuring that it will always be
greater. Specifically, for the Item Model with µ included:

σ 2
lure

σ 2
target

=
LVij

(L − 1)Vij + Vii
=

L(1/n + 2µ2)
(L − 1)(1/n + 2µ2) + 2/n + 4µ2

=
L

L + 1
, (35)

which (a) does not depend on the value of µ, (b) depends on L
and (c) agrees with the solution found by Ratcliff et al. (1992).

Second, the same argument holds for the distributions of
target and lure variances of item-recognition strengths retrieved
from the Association Model, when one compares Eqs. (24)–(26)
to Eqs. (27)–(29). Solving for the ratio of variances by substituting
the expressions for variances into Eq. (10):

σ 2
lure

σ 2
target

=

(
L2 + 2L

)
n3µ4

+
(
L n2

+ 2 L n
)

µ2
+ L(

L2 + 4L
)
n3µ4 +

(
(L + 3)n2 + (2L + 2)n

)
µ2 + L + n + 1

.

(36)

For non-zero µ, as n becomes large, the O(n3) terms dominate,
and the ratio of variances approaches (L + 2) /(L + 4), which
again, approaches 1 for large L, but is considerably below 1 for
small L. The ratio of variances, thus, is strictly less than 1, but for
non-zero µ, approaches 1 (equal variance) as the list length, L, in-
creases. While not conclusive, this demonstrates that the criticism
of approximately equal variances for the standard matched-filter
model applies to the mean-centered model, but if one relaxes
mean-centering, the model has the flexibility (via trade-offs of
µ, L and n) to produce a wide range of ratios. This could be
seen as another serendipitous outcome of the lack of mean-
centering. That said, the dependence on list length of the ratio
of variances is not supported empirically (Ratcliff et al., 1994),
so the match of the non-mean-centered match-filter model to
data is not clear-cut, and would require at least some additional
modification.

The idea that item-memory is stored as a side-effect of
association-memory encoding, but not necessarily vice versa, is
reminiscent of Hockley and Cristi (1996). They found that par-
ticipants performed far better on tests of associative recognition
when they were instructed to study associatively, in anticipation
of an association-memory test, than when they were instructed
to study items in isolation, in anticipation of a subsequent item-
memory test. However, item-recognition was just as good when
participants studied in anticipation of an associative recogni-
tion test as when they were expecting an item-memory test.
That said, the connection to Hockley and Cristi’s findings is not
straight-forward. Our derivations showed that the non-mean-
centered model, while it did provide the ability to perform item-
recognition above chance (and quite well, for certain parameter
values), would always underperform the original Item Model.
This raises the possibility that Hockley and Cristi’s findings might
be alternatively viewed as actually reflecting a deficit in item
memory when participants study for associations, that is approx-
imately offset by the spillover item-memory capability due to the

non-zero µ.2 Our reasoning suggests that if the component items
were mix-and-match sets (such as snowstorm, snowman, sand-
storm and sandman), studying for associations would, indeed,
compromise item-recognition — a prediction that could be tested
empirically (for a preliminary suggestion of this result, see Cox &
Criss, 2017).

Although we have considered only a constant-valued vec-
tor (µI), which is equivalent to violating mean-centering, the
‘‘spinoff’’ item-memory effects would presumably also be found
with any shift of origin. One could envision a model in which
each list ‘‘context’’ was implemented by shifting the origin for
the set of items associated on the list.3 An interesting possibility
would be to combine such an extended model, whereby a shift in
origin is used to represent context, with a model like the dynamic
model of Cox and Shiffrin (2017), that probes jointly with item
and context features. In such a model, context, conceived of as a
shift in origin, might essentially pre-activate items studied within
the particular context.

Another common representation in neural network models is
sparse-coding (Tsodyks & Feigel’man, 1988), which can produce
vectors that are mutually orthogonal while not mean-centered.
However, the ‘‘background’’ discharge rate of cortical neurons
introduces an additional mean across the population which, al-
though small, cannot be ignored given that the standard deviation
of element values with sparse-coding is also small. Consequently,
one expects the same phenomena reported here with non-sparse
item representations: an elevated rate of intrusions to incorrect
target items and the ability to activate an item-memory vector
that can support old/new recognition of all studied target items.

Finally, a major competing mathematical framework for
association-memory, also assuming items are represented as vec-
tors, is convolution. Convolution is a mathematical operation,
denoted ∗ that combines two vectors into a new vector, thus
m = f ∗ g. It is the central operation in TODAM (Murdock,
1982) and CHARM (Metcalf Eich, 1982). Although in most ways,
convolution and matrix outer product can account for behavioral
data equivalently (e.g., Murdock, 1985; Pike, 1984; Plate, 1995),
a major difference is that convolution is commutative. That is,
f ∗ g ≡ g ∗ f. Convolution-based models are thus oblivious to
the order of items within the association. Matrix outer product,
in contrast, is non-commutative; specifically, gf⊺ = (fg⊺)⊺. The
non-commutativity of the outer product is what, in the model-
ing work presented here, caused the target items, but not the
probe items, to be activated by cued-recall probes, as well as
the constant-input probe, I. In contrast, a bias introduced into a
convolution-based model might, in fact, retrieve a weighted sum
of all would-be cue and target items. Future work could address
the same model phenomena within convolution models. Whether
within-list intrusions are predominantly target items, or both cue
and target items, could be settled empirically.
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