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Abstract
Anderson (1970) introduced two models that are at the core of artificial
neural network models as well as cognitive mathematical models of memory.
The first, a simple summation of items, represented as vectors, can sup-
port rudimentary item-recognition. The second, a heteroassociative model
consisting of a summation of outer products between paired item vectors,
can support cued recall of associations. Anderson recommended fixing the
element-value mean to zero, for tractability, and with minimal loss of gener-
ality. However, in a neural network model, if element values are represented
by firing rates, this mean-centering is violated, because firing rates cannot
be negative. We show, analytically, that adding a bias to item represen-
tations produces interference from other studied list items. Although this
worsens cued recall, it also tempts the model to make intrusion responses
to other studied items, not unlike human participants. Moreover, an unex-
pected feature appears: when probed with a constant vector, containing no
“information,” the model retrieves a weighted sum of studied items, formally
equivalent to Anderson’s item-memory model. This speaks to Hockley and
Cristi’s (1996) findings that associative study strategies led to high item-
recognition, but not vice versa. We show that such a model can achieve high
levels of performance (d′), when the bias is greater than zero but not too
large relative to the standard deviation of element values. We demonstrate
these effects in a two-layer spiking-neuron network model. Thus, when mod-
ellers have striven for realism and relaxed mean-centering, such models may
not only still function at adequate levels, but acquire a spin-off functionality
that can actually be used, without the need for additional encoding terms
specific to item-memory.

Introduction

Anderson (1970) introduced two models that remain at the core of artificial neural
network models and cognitive mathematical models of memory to the present day (e.g.,
Howard & Kahana, 1999, 2002; Osth & Dennis, 2015; as well as their mathematical cousins,
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convolution-based models, e.g., Eliasmith et al., 2012; Franklin & Mewhort, 2015). These
models start with the— now standard— assumption that items (such as words) can be
represented as vectors, where the elements of the vector are thought of as feature strengths.
First, the so-called “matched filter” model is a simple weighted sum of vectors corresponding
to list items. This model, which we call the Item Model, can simulate rudimentary item-
memory tasks, including item-recognition, which Anderson (1973) developed further. In
episodic item recognition, the participant (or model) is asked to respond “old” to items
that were on the target list (target probes) and “new” to others (lure or foil probes).
The second, so-called “linear associator” model, which we call the Association Model, is
a heteroassociative model comprised of a weighted sum of outer products between paired
item vectors (later generalized to the tensor model by Humphreys, Bain, & Pike, 1989).
This model can support cued recall of associations (having studied the pair AB: given A
as a probe, respond with B) and associative recognition (having studied pairs AB and CD,
respond “intact” to probes AB and CD; respond “rearranged” or “recombined” to probes
AD and CB), earlier known as pair recognition.

Anderson (1970) recommended fixing the mean element value to zero, for analytic
simplicity, and with minimal loss of generality, although he pointed out that the optimal
signal-to-noise ratio in his models was at a slightly positive mean element value. In symbolic
implementations of the matrix model, it is standard practice to follow this advice. Even if
feature values are drawn at random, as is often done, the expectation is zero. In practice,
the mean will fluctuate around zero, but those fluctuations are smaller, on average, as the
dimensionality, n, of the vectors increases, closely approximating mean-centering.

However, in a realistic neural network model, if element values are represented by
firing rates, as is commonly done, mean-centering is violated, because firing rates can-
not be negative. Raising this concern, Anderson (1970) suggested that this violation of
mean-centering could be solved by incorporating a population of inhibitory neurons, or by
implementing a bias, such that exclusively positive element values could be computationally
treated as positive above the threshold, and negative below the threshold (but truncated
at zero).

Here we consider what happens when one deviates from mean-centered representa-
tions. We will show that although a loss of optimality and algebraic simplicity may have
disadvantages, relaxing the mean-centering condition comes with some advantages. More-
over, a non-mean-centered item representation is congruent with non-negative firing rates,
while still, in some sense, remaining more parsimonious than an opponent-code, which would
double the number of neurons required. Finally, other well supported models have been mo-
tivated by other considerations to construct item representations from non-negative feature
values, such as geometric distributions of feature values in REM (Shiffrin & Steyvers, 1997)
and binary vectors (e.g., Cox & Shiffrin, 2017; Tsodyks & Feigel’man, 1988). It may, there-
fore, be important to understand how a memory model performs if one has independent
reasons to favour a non-negative, and thus non-mean-centered, vector representation.

Corresponding Author: Jeremy B. Caplan, jcaplan@ualberta.ca. We thank Ulises Rodríguez Domínguez
for helpful feedback on the maunscript. Funded in part by the Natural Sciences and Engineering
Research Council of Canada. Model code can be obtained from https://osf.io/h8s6p/?view_only=
1a88d5c92a504d8099792c4366cc68e7.
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Figure 1 . Schematic depiction of the effect of features values having a non-zero mean. Two
vectors, depicted in blue and green solid lines, respectively, start out orthogonal relative
the origin (thin axis lines). Thus, the angle between them, θ = 90◦. When a constant value
is added to all cells of the vectors (in this simple example, only two dimensions each), the
geometric interpretation is that the origin is shifted (thick axis lines). The new vectors
(darker, dotted lines) now have a much smaller angle, θ′, between them. Because cued
recall starts with, mathematically, a dot product between the probe item and the memory
matrix, the addition of a bias has the effect of cueing, to some degree (depending on the
magnitude of the bias itself), all other associations.

We were inspired to reconsider the effects of leaving vector representations uncen-
tered, due to an incidental finding in a spiking-neuron network implementation of the matrix
model. We noticed that although our model, when given cued-recall probes, was retrieving
the firing-rate pattern that best resembled the correct target item, the retrieved vector also
moderately resembled target items from other studied pairs. We understood this geometri-
cally, as depicted in Figure 1. In two dimensions, consider two vectors that are orthogonal.
The angle between them, θ = 90◦, makes their dot product zero. Adding a constant value to
all vector dimensions is equivalent to shifting the origin. This causes previously orthogonal
vectors to lengthen, but more importantly, their angle, θ′, becomes smaller than 90◦, and
they are thus no longer orthogonal. Their dot product becomes non-zero, and this “similar-
ity” between vectors has the effect that probes are less selective for the one best-matching
encoded term. In effect, the model with non-zero bias retrieves not only the correct target
item, but a weighted sum of all studied target items. In the limit, infinite bias forces all
vectors to point in the same direction, becoming identical. As the bias increases, therefore,
items become increasingly confusible with one another, suggesting the bias should not be
arbitrarily large.

In what follows, first we analytically derive recognition-memory discriminability (d′)
for the Item Model and show what happens when a bias is added. We then turn to the As-
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sociation Model and show, analytically, that adding a bias to item representations produces
interference from other studied list items and makes the model worse at cued recall. This
also tempts the model to make intrusion responses that are reminiscent of the kinds of errors
that human participants make. Then we propose a simple way in which the Association
Model, with a bias, can be used to perform the item-recognition task, even without items
being explicitly encoded. Specifically: when probed with a constant vector, containing no
“information,” the model retrieves a weighted sum of studied items, formally equivalent to
Anderson’s Item Model. This echoes findings that associative study strategies lead to high
item-recognition, but not vice versa (Hockley & Cristi, 1996). We show that such a model
can achieve high levels of performance (d′), when the bias is greater than zero but not too
large relative to the standard deviation of element values. Finally, although analytic deriva-
tions are informative and speak to the generality of the results, the story can change when
one builds an actual model implementation that can be simulated, and additional practical
considerations need to be addressed. Indeed, this was our initial inspiration. We therefore
present a simulation that demonstrates the presence of this kind of intrinsic item-memory
in a two-layer artificial neural network using realistic spiking neurons.

The Item Model

Let items be represented by column vectors of length n, denoted in boldface, lowercase
letters, such as f . We follow the standard assumption that the cells of each item vector are
composed of independent, identically distributed values; thus, f(k) ∼ N(µ, σ2). Anderson
(1970) used this assumption throughout his derivations, but then showed that little is lost
if one simplifies by assuming that µ = 0; in other words, that vectors are mean-centered.
Interestingly, he showed that the signal-to-noise ratio of the model was optimal at a point
where µ > 0, but still quite close to zero. We will, instead, maintain µ 6= 0 throughout,
and examine the dependence of the results on the value of µ. Anderson (1970) proposed
that memory for a list of items could be stored as the vector sum of the corresponding
item vectors, where the weights, αi, stand in for variable encoding strengths, which we
assume are drawn from a Gaussian distribution with mean µα and variance σ2

α, written
αi ∼ N(µα, σ2

α):

m =
L∑
i=1

αifi, (1)

where i indexes items and L is the list length. Item recognition can be conducted by
computing the dot product (also called the inner product) between a probe item, fx, and
memory,

s = mᵀfx. (2)

We set aside encoding variability to simplify the derivations (i.e., setting αi = 1, ∀i). The
dot product of an item with itself, which Anderson (1970) termed its “Power”,

fᵀi fi =
n∑
k=1

fi(k)2 (3)
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has mean:

Mii = E [fᵀi fi] =
n∑
k=1

(µ+Xk)(µ+Xk) = n
(
µ2 + 2µE [X] + E[X2]

)
= n

(
µ2 + σ2

)
, (4)

where Xk (and likewise, Yk and Zk, used below) denotes a single draw from a mean-centered
distribution ∼ N(0, σ), E[] denotes the expectation and X (and below, Y and Z) denotes a
standard normal (Gaussian-distributed) random variable with a mean of zero and variance
σ2. We have used the fact that the expectation of odd powers of X is zero, due to odd
symmetry (e.g., Anderson, 1970; Weber, 1988), and solutions from Weber (1988) including:
E[X2] = σ2, E[X4] = 3σ4 (also used in later derivations below). Substituting the common
assumption, σ2 = 1/n, which produces vectors that are approximately normalized (unit
length), this simplifies to:

Mii = nµ2 + 1. (5)

Note that if µ = 0, the mean simplifies to 1. Its variance is:

Vii = Var [fi
ᵀfi] = E

[
(fi

ᵀfi)2
]
− E [fi

ᵀfi]2

= E
[(

n∑
k=1

fi(k)2
)(

n∑
l=1

fi(l)2
)]
−M2

ii

= nE
[
(X + µ)4

]
+ (n2 − n)E

[
(X + µ)2 (Y + µ)2

]
−M2

ii

= nE
[
X4 + 6µ2X2 + µ4

]
+ (n2 − n)E

[
X2Y 2 + µ2X2 + µ2Y 2 + µ4

]
−M2

ii

= n
(
3σ4 + 6µ2σ2 + µ4

)
+ (n2 − n)

(
σ4 + 2µ2σ2 + µ4

)
− n2

(
µ4 + 2µ2σ2 + σ4

)
= 2nσ4 + 4nσ2µ2,

where Var [] = E
[
()2]− E [()]2 denotes variance. Substituting σ2 = 1/n, this simplifies to:

Vii = 2/n+ 4µ2, (6)

reducing to 2/n if µ = 0, decreasing with n toward an asymptote of 0. This variance
term also increases with increasing µ, but independent of the effect of n. The dot product
between different items (j 6= i) has mean:

Mij = E [fᵀi fj ] =
n∑
k=1

fi(k)fj(k) =
n∑
k=1

(µ+Xk)(µ+ Yk)

= n
(
µ2 + µE[X] + µE[Y ] + E[X]E[Y ]

)
= nµ2, (7)

Note that for µ = 0, Mij = 0. Its variance is:
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Vij = Var [fᵀi fj ] = E
[
(fᵀi fj)2

]
− E [fᵀi fj ]2

= E
[(

n∑
k=1

fi(k)fj(k)
)(

n∑
l=1

fi(l)fj(l)
)]
−M2

ij

= nE
[
(X + µ)2(Y + µ)2

]
+ (n2 − n)E [(W + µ)(X + µ)(Y + µ)(Z + µ)]−M2

ij

nσ4 + 2nµ2σ2 + nµ4 + (n2 − n)µ4 − n2µ4

= nσ4 + 2nµ2σ2.

Substituting σ2 = 1/n, this simplifies to:

Vij = 1/n+ 2µ2, (8)

reducing to 1/n when µ = 0. For µ > 0, this variance increases as the square of µ, again
independent of n.

Departing from Anderson (1970), who derived the signal-to-noise ratio, we derive
d′ because it is the current standard measure of recognition-memory performance. We
explicitly assume that lure items are generated in the same way as target items, but that
lure items were simply not presented during the study phase. Thus:

d′ = µtarget − µlure
1√
2

√
σ2

target + σ2
lure

. (9)

For a target probe, there will be one term where i = x and L− 1 terms with i 6= x. For a
lure probe, there will be L terms with i 6= j. Because means and variances add:

µtarget = Mii + (L− 1)Mij

µlure = LMij

σ2
target = Vii + (L− 1)Vij

σ2
lure = LVij

∴ d′ = Mii −Mij

(1/
√

2)
√
Vii + (2L− 1)Vij

. (10)

Substituting Equations 5–8,

d′ =
√

2
(2L+ 3)µ2 + (2L+ 1)/n. (11)

Plotted for L = 10, at a few values of n (Figure 2), one can see that if µ = 0, this reduces
to
√

2n
(2L+1) , which increases with increasing n (as

√
n) and decreases with L (i.e., a list-

length effect, approximately 1/
√
L for large L). The effect of µ > 0 is to increase the

denominator independently of n, but proportionally to µ itself, and to the square root of
L. Thus, introducing a bias reduces d′, but in addition, introduces a further cost for large
list lengths.
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Figure 2 . Analytic solution for the Item Memory model: d′ for list length 10, as a function
µ (relative to σ), for three example values of vector dimensionality (n).

The Association Model

During the study phase of an association-memory task, associations between pairs of
items are stored in a memory matrix, M , as a weighted sum of outer products between
pairs of item vectors (Anderson, 1970), where the weights, αi ∼ N(µα, σ2

α), stand in for
variable encoding strengths, similar to the vector model of item recognition:

M =
L∑
i=1

αigifᵀi (12)

where L is the list length (in the Association Model, this is the number of pairs per list), fi
is the left-hand item of pair i, and gi is the corresponding right-hand item, constructed in
exactly the same way as the fi vectors. Probing with a given left-hand item from the list,
fx by multiplying from the right retrieves the vector gr:

gr = M fx =
L∑
i=1

αigi(fᵀi fx) (13)

If all fi and gi are mutually orthogonal, as is approximately the case for large n and small
L (5–20 are typical values of L) and when fi and gi are mean-centered, retrieval is perfect,
because E[fᵀi fx] = 1 if i = x and zero if i 6= x, thus yielding, on average, αigi; in other words,
the correct target item multiplied by a scalar encoding strength. When the orthogonality
assumption is relaxed, as is the case here, when element values are drawn at random, gr
will still tend to include a gx as its dominant term, but this will be contaminated by other
items, αigi, in proportion to (fᵀj fx), the degree of similarity of the probe item to each
corresponding left-hand item.

Now, to incorporate the bias by writing the corresponding vectors with bias included
as f̃i = fi + µI, where I is a vector of length n, containing the value 1 as every element
(following Anderson, 1970), retrieval in the Association Model based on f̃i, Equation 2,
becomes:
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gr =
L∑
i=1

αi(gi + µI)(fi + µI)ᵀ(fx + µI)

=
L∑
i=1

αi
(
gi(fᵀi fx + µ2n) + I

(
µfᵀi fx + µ3n

)
+gi (µfi

ᵀI + µIᵀfx) + µI (µfi
ᵀI + µIᵀfx)

)
, (14)

The right-hand terms, coloured grey, all have E[] = 0 because E[fi · I] = 0. Cued recall
is accurate if the model selects gx as the response and incorrect otherwise. For models
lacking an explicit model of redintegration (“cleaning up” the retrieved vector to identify
an acceptable response item from the lexicon consisting of the set of known items), the
standard assumption is that the relative similarity (dot product) of the retrieved vector to
response candidates determines accuracy. Thus, for the target, on average, and assuming
large n:

E[gᵀ
r(gx + µI)] = αx(1 + µ2n) + αxnµ

2 + Lµαn
2µ4, (15)

where we have used E[fᵀi fx] = 1 if i = x and 0 otherwise. Thus, the match to the correct
target item vector is simply equal to the tested pair’s encoding strength when µ = 0, but
for µ > 0, increases with n and L. Although the additional terms introduced by µ increase
the matching strength to the target item, an additional typical assumption is that recall is
inversely related to the matching strengths to non-targets. Thus, this is offset by increases
in the match to incorrect target items (i.e., the other gy vectors, y 6= x, of which there are
L− 1):

E[gᵀ
r(gy + µI)] = αyµ

2n+ αxnµ
2 + Lµαn

2µ4. (16)

Again, if µ = 0, this reduces to zero. For µ > 0, the match to each of the (L − 1) other
studied targets increases with n and L. Remarkably, the incorrect target item strengths also
increase partly in proportion to the strength of the correct target (middle term, proportional
to αx). Thus, one can clearly see how increasing µ swiftly reduces the discriminability of
the correct target item from other studied target items. To compare, the match to other
probe items (assuming an item cannot be both a left- and a right-hand item) is lower; all
that survives is the term “probed” by the bias itself, µI:

E[gᵀ
r(fy + µI)] = αxnµ

2 + Lµαn
2µ4, (17)

and reduces to zero when µ = 0. As the index y does not enter into the result, this is true
for the match to the probe itself, fx, as well as all items that were not included in the study
list whatsoever.

To estimate the probability of a correct response would require additional assump-
tions, such as whether retrieval is winner-take-all or probabilistic, and what constitutes the
set of candidate response items, which is beyond the scope of the current article. However,
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the analytic solutions reveal some important insights. Comparing Equations 15–17, visual-
ized for L = 10 and n = 1000 in Figure 3b, one can see that on average, gr will match best
to the correct target, less well to target items from other studied pairs, and least to the
probe items and any other non-studied items. This immediately leads to the prediction that
intrusions in cued recall will be predominantly to incorrect target items, and only rarely to
probe items from other studied pairs.

In the limit of large n, the strength to the correct target (Equation 15) and strength
to each of the incorrect studied target items (Equation 16) converge, suggesting that the
model would be correct on no more than 1/L cued recall tests. This could be counteracted,
of course, by a large encoding strength for a particular pair, αx, but this would not help
performance over all pairs. As n becomes even larger, the rightmost term dominates and
all strengths approach equality; thus, for non-zero µ, vector-dimensionality acts against
probability of recall. As µ gets large, again the strength of the target approaches the
strengths of studied incorrect target items. For very large µ, again, the right-most term
dominates, introducing even more of a challenge from non-studied items. As L increases as
well, the three strength equations quickly converge, as long as µ > 0.

Thus, although we will show that a small bias may offer some benefit in the form of
the availability of item-memory as a by-product of encoding of associations, the bias must
not be very high, or else cued-recall performance will suffer quite drastically.

Item recognition by probing the Association Model with a constant vector

The Item Model (vector-sum), itself, can be retrieved by simply probing this model
with a pure bias vector, µI. This would correspond to exciting the input-layer neurons
of a 2-layer artificial neural network by injecting the same amount of current to all input
neurons (note that this will be an upper limit of performance, because a realistic model
would have to assume additional noise on top of the µI vector, which would propagate
through to retrieval):

mr = M(µI) =
L∑
i=1

αi(gi + µI)(fi + µI)ᵀµI (18)

=
L∑
i=1

αi
(
(gi + µI)(µfᵀi I + µ2IᵀI)

)
. (19)

Recognition judgements can be made using this retrieved vector in the same manner as
before, on the basis of the dot product of a probe vector, g̃x, with the memory, mr:

g̃ᵀ
xmr =

L∑
i=1

αi
(
(gx + µI)ᵀ(gi + µI)(µfᵀi I + µ2IᵀI)

)
. (20)

If we maintain the assumption that I is a perfect, noiseless constant vector, then we can
substitute the scalar IᵀI = n. We can then rewrite Equation 20:
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Figure 3 . Analytic solution for the Item Model, Equation 11, with L = 10, n = 1000
(a); cued recall of the Association Model (b), where matching strength (dot product of
retrieved vector, gr, with candidate response item vectors) is plotted relative to strength
of the correct target (Equations 15–17), and item memory retrieved from the Association
Model (Equations 30–31) (c). The horizontal axes (µ/σ) are aligned for comparison across
panels.
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g̃ᵀ
xmr = T1 + T2

where

T1 = nµ2
L∑
i=1

αi(gx + µI)ᵀ(gi + µI)

T2 =
L∑
i=1

αi ((gx + µI)ᵀ(gi + µI)µfᵀi I) . (21)

T1 is the original item-recognition vector model multiplied by a constant factor, nµ2. T2 is
the same model multiplied by the dot product of fi with I, equivalent to the sum over the
elements of fi. New expressions for µ′target and µ′lure are thus straight-forward to calculate,
since E[T2] = 0. Setting all αi = 1 for simplicity:

µ′target = nµ2 + Ln2µ4 (22)
µ′lure = Ln2µ4. (23)

Next, the target-strength variance:

σ′2target = E[T 2
1 + 2T1T2 + T 2

2 ]− µ′2target where x matches one i
Solving these terms :

E[T 2
1 ] =

(
L2 n4

)
µ8 +

(
2Ln3 + n2

(
L2 + 3L

))
µ6 +

(
n2 + (L+ 1) n

)
µ4 (24)

2E[T1T2] = 0 (25)

E[T 2
2 ] =

(
Ln2

)
µ6 + (2n+ 2L+ 2) µ4 +

(
L+ n+ 1

n

)
µ2 (26)

For lures, many terms reduce to zero:

σ′2lure = n2µ4E[T 2
1 + 2T1T2 + T 2

2 ]− µ′2lure where x matches no i or j
Solving these terms :

E[T 2
1 ] =

(
L2 n4

)
µ8 +

(
n2
(
L2 + L

))
µ6 + (Ln) µ4 (27)
2E[T1T2] = 0 (28)

E[T 2
2 ] =

(
Ln2

)
µ6 + (2L) µ4 +

(
L

n

)
µ2. (29)

Finally, solving for d′ (Equation 9, using Equations 22–29), and illustrated in Figure 3c,

d′ = µ
√

2n/C, (30)

where C =
(
L2n3 + 3Ln3

)
µ4 +

(
(L+ 3/2)n2 + (2L+ 1)n

)
µ2 + (L+ n+ 1) /2. (31)
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This can be seen by inspecting distributions of matching strengths for targets and lures,
produced by a numerical simulation used to verify the analytic derivations. Figure 4 shows
that when µ is too small (panel a) or too large (panel c), strength distributions for targets
and lures overlap considerably, resulting in fairly low values of d′. For certain values of µ
(panel b), the distribution can separate far more, resulting in quite high values of d′.

In the limit where µ = 0, the model retrieves nothing. In other words, by probing
with the bias vector, µI, alone, the Association Model retrieves the vector sum of all target
items, weighted by their corresponding pair-encoding strengths.

Note that the same αi multiplies the matching strength for recognition of gi and
retrieval strength for cued-recall of corresponding pair, i. This leads to the further prediction
that association-memory (tested with cued recall or associative recognition) should be highly
correlated to recognition of the constituent items, where the correlation is computed across
i, within each list.

This may also be part of the reason Hockley and Cristi (Hockley & Cristi, 1996)
found that when participants studied a list in anticipation of associative recognition tests,
they retained memory for the constituent items about as well as when studying for item-
recognition, but not vice versa (see the General Discussion for more on this).

In sum, the greater the bias, µ, the less accurate both item recognition and cued
recall become. At the same time, the greater µ, the more item-memory (the vector sum of
all studied target items) can be retrieved by probing with a constant vector (µI). This item
memory “for free” inherits one property from the original item-memory with bias; namely,
the more the bias, the worse item-recognition becomes. These tradeoffs suggest one could
optimize µ to trade off cued recall accuracy for accuracy of memory for the accompanying
target item.

Realistic spiking model

In this final section, we evaluate the effect of a bias in a spiking-neuron network
model. We are particularly interested in whether incorrect target items are retrieved more
than non-studied items in cued recall, and whether the model can perform at non-trivial
levels at item-recognition when excited with constant input. Although the analytic models,
derived above, are effective in showing the generality of effects, one would like to evaluate the
magnitudes of those effects when one implements a more complete and realistic simulation,
which requires consideration of the plausibility of model parameters, and in the case of a
spiking network, forces one to use strictly non-negative feature values encoded in nearly
discrete events (action potentials). For tractability, the analytic models above allowed
negative element values, in the negative tails of Gaussian distributions. In particular, we
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Figure 4 . Probability distributions of matching strengths for targets and lures, from the
numerical simulation with n = 1000, L = 10, averaged across 1000 simulated lists. a)
µ = 0.002, d′ = 2.66. b) µ = 0.01, d′ = 5.59, c) µ = 0.05, d′ = 1.65.



BIAS AND THE MATRIX MODEL 14

f1 f2 … … fn

g1 g2 … … gn

  

Matrix Model of Associative Memory using Spiking Neuron Model

● Introduction
● Associative memory encodes the association between a set of stimuli 

with a set of responses. For example, in cued recall task, a subject is 

let memorize a few pairs of words. The subject is supposed to recall 

“Red” when given the prompt “Bird”.

● In matrix model, each stimulus and response is represented as a n-

dimensional normal vector.

● The association between stimuli, {v1, v2, v3... }, and responses, {u1, u2, 

u3... }, is stored in an n*n matrix

● M = u1v1
T + u2v2

T + u3v3
T + ...

● When a stimulus, vi, is presented, the corresponding response, ui, can 

be retrieved by

● M*vi = u1v1
Tvi + u2v2

Tvi + ... + uivi
Tvi + ... ≈ ui

● Similarity between expected ui, and retrieved Mvi, is measured by the 

cosine value of the angle between them

● cos(θ) = (Mvi*ui)/(|Mvi|*|ui|)

● All vectors contain only positive numbers or 0 since no neuron can fire 

negative times. Vectors are all mean centered before comparing 

similarity.

● Retrieved ui is also compared to other response, and similarity with 

the most similar response is stored as cos(θ_false_max). 

● Quality of retrieval is measured by the difference of cos(θ) and 

cos(θ_false_max). Larger difference means higher quality.

● In this research, to test the physiological plausibility of matrix model, a 

layer of simulated spiking neurons, using Izhikevich model1, is used to 

perform the retrieval, instead of matrix multiplication.
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The  above figures were produced when 10 associations are stored. Retrieval time were set to 50ms. Other 

parameters of simulated neurons are a = 0.02, c = -65, d = 2.

●Retrieval Time
● In this simulation, producing a response from a one layer memory storing 10 associations can cost less than 10ms. 

● More neurons help discriminate incorrect response but can slow down in retrieval time.

The above figures were produced using regular spiking neuron. Similarity for simulated neuron is missing under a certain time threshold since similarity cannot be computed before the 

first neuron fires.

Reference:
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Firing pattern of simulated regular spiking neuron in 
Izhikevich model.

Retrieval quality figure when using simulated regular spiking 

neuron, the most abundant type of neuron found in brain. 
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●Parameter of Neuron
● When a fixed number of associations are stored, more neurons help with discriminating 
incorrect items, and thus higher quality of retrieval.

● In Izhikevich model of neuron, each neuron is defined by 4 parameters, a, b, c, d. 

● In Izhikevich model of neuron, a lower value of b means a higher firing threshold. 

● Simulated neurons could perform better retrieval than symbolic matrix multiplication, with a 

low b value, which means having a high firing threshold, to filter out noise from other 

associations. 

● However, this could also causes decline in similarity between retrieved response with 

intended response, when there are too many neurons, or when the firing threshold is too 

high.

● Regular spiking neuron has low firing threshold 

(3mA), slightly exploiting noise-filtering 

advantage over symbolic computation.

● Firing rate scales linearly with input current.

● Good candidate for associative memory 

network.

●Conclusion
● Interfering response is significantly discriminated from intended response if enough simulated neurons are used. Associative memory 
network built from Izhikevich model of neuron has been plausible thus far. 
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Figure 5 . Schematic illustration of the realistic spiking model. See text for details. The
fi units comprise the input layer and the gi units comprise the output layer. Synapses are
hard-coded to be equal to the cells of the matrix (Association Model).

Methods

Single-neuron model. The Izhikevich (2003) model can reproduce many distinct
firing pattern of neurons while maintaining reasonable computing overhead. All simulated
neurons are regular spiking neurons, with simulation parameters a = 0.02, b = 0.2, c = −65,
d = 8, hand-chosen from parameter space maps in Izhikevich (2003).

Model synapse. Synapses are modelled using the alpha function approach follow-
ing Dayan and Abbott (2001). Consider two neurons, where one neuron, the input neuron,
synapses onto the other neuron, the output neuron. When an input neuron fires, the output
neuron’s membrane potential changes. For synaptic input J , the change in post-synaptic
membrane potential, Ps, as a function of time since firing, t, is

Ps(t) = J
Pmaxt

τ
e1−t/τ , (32)

where Pmax = 5 µV is the peak post-synaptic potential, τ = 3 ms is time to reach peak
post-synaptic potential.
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Item representations and design of the network model. Because we wish to
represent item vectors with firing rates, and firing rates must be positive-valued, there will
always necessarily be a bias. Although one could approach the realistic spiking network in
several other ways, the following approach made the most sense to us. We conceptualized
the “lexicon” as consisting of signed vectors representing items that were, in some sense,
known to the network. Thus, the lexicon includes items that could be identified as candidate
responses, although we do not model the response process, itself. In the current simulation,
we compute matches of the retrieved firing-rate pattern (vector) with vector-representations
of items in the lexicon and use these matching strengths to estimate probability of producing
a given item as a response, presumably through redintegration, which we also do not model
explicitly. Thus, the idealized item representations include positive and negative values,
which allows for the possibility of negative signs influencing synaptic weights negatively
(not just positively), but whenever items are to be represented with firing rates (input and
output layers), they are strictly non-negative. To our view, this was the least complicated,
and thus, least objectionable, way to generate representations with a bias, albeit not the
least complicated to describe to the reader.

To be more specific, we chose to draw firing-rate values at random from a Gaussian
distribution with fixed standard deviation and mean approximately equivalent to the bias.
We say “approximately” because Gaussian functions are, in principle, infinite in domain.
Because negative firing rates are not possible, we maintained the negative values in the
“lexicon” (set of items “known” to the model). Similarly, for cued recall, we injected negative
current when the corresponding element of the cue item was negative. Negative values were
also maintained when computed synaptic weights; thus, synaptic weights could be net-
inhibitory as well as excitatory. This implementation choice means that the match between
the retrieved vector and the vector in the lexicon can never be perfect, but we judged this
to add realism to the model, and lend additional credibility to its performance level. Thus,
2L traces were randomly generated, where each trace was a list of n real numbers. The first
L traces were defined as input traces (i.e., left-hand items of the associations), fi, i = 1..L,
and the remaining L traces were output traces (i.e., right-hand items of the associations),
gi, i = 1..L. Then, we initialized 2n Izhikevich neurons, where the first n neurons (n = 1000
in the simulations) comprised the input layer neurons and the last n neurons comprised the
output layer.

The synaptic weights were computed by summing the outer products of each output
trace and its corresponding input trace. The matrix was then scaled to have a maximum
element value of 1:

M =
∑L
i=1 gifᵀi

max(
∑L
i=1 gifᵀi )

. (33)

In other words, we did not model incremental learning, but simply assumed that the network
has already learned and stored the summed matrix outer products in its synaptic strengths.

In each simulation, the neurons were initially left at rest (i.e., no input) for 1 s so
they could reach their resting potential –70 mV.

Cued Recall. The input current was computed by multiplying the values of the
cue item by an arbitrary scalar value, 10 mA, that converted element values into current.
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This input current was applied as a square wave to the input-layer neurons for 100 ms. The
number of action potentials fired by each output-layer neuron during a 100 ms estimation
window was recorded. We calculated the similarity (dot product) of this retrieved firing-rate
vector to the item representations, separately considering the target item, the other studied
target items and one non-target items, a newly, randomly generated vector.

Recovering item memory with constant input. For this simulation, the input
current was a vector for which all elements had the same, arbitrarily chosen current values,
10 mA, also applied to the input layer neurons for 100 ms. As before, the number of action
potentials fired by each neuron was recorded, and this firing-rate vector was compared,
via dot product, to the “target” vectors (right-hand items within studied pairs), newly,
randomly generated item vectors, as well as “probe” vectors (left-hand items within studied
pairs).

Results

Cued recall. The spiking-neuron network model was simulated with n = 1000,
varying µ/σ over the range 0–1. As illustrated in Figure 6a,b, and consistent with the
symbolic model, the average match to the correct target item was greatest, and this was
the case across the entire range of bias values. As the bias rises from zero, the other studied
(but incorrect) target items match less than the correct target, but more than non-studied
items. As bias increases toward infinity, the three item-types converge, consistent with the
intuition that the larger the bias, the more similar all item-vectors will be.

Recovering item memory with constant input. When excited with constant
current, the retrieved firing-rate pattern on the output layer was compared (via dot product)
with the studied target items, as well as non-studied items (Figure 6c). Figure 6c also shows
the matching strengths to “probe” (left-hand) items within the studied pairs. Due to the
non-commutativity of the outer product, these match no better (nor worse) than non-
studied items. The d′ values are comfortably above chance, and reach levels in the range
2–3, that are typical of human recognition-memory performance on typical experimental
tasks. As with the symbolic model, performance reduces to chance (d′ = 0) when there is
no bias (µ/σ = 0), but rises rapidly with the introduction of only a very small bias. When
the bias becomes larger, d′ lessens, due to the increase in similarity between all pairs of item
vectors. Also as with the symbolic model, there is a clear optimum bias level. Note that
the horizontal scales are not directly comparable; for the network simulation, µ/σ is the
theoretical value, based on the original item representations, whereas the functional bias is
larger, due to the absence of negative firing rates.

Discussion

In sum, the spiking-neuron network simulations confirm that the phenomena ex-
pected based on the symbolic model (both analytic derivations and numerical simulations)
may also occur within realistic parameter ranges, in models that are more constrained by
neurophysiology (e.g., discrete action potentials and an absence of negative firing rates).
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Figure 6 . Simulation of the realistic spiking model. (a) Tested with cued recall, plotting
matching strength (normalized dot product) relative to strength of the correct target. (b,c)
Item memory retrieved from the spiking-neuron Association Model with constant-current
input. Means and standard deviations of strengths for targets (right-hand items within
studied pairs), lures and “probes” (left-hand items within studied pairs) are depicted in
(c). Horizontal axes (µ/σ) are aligned for comparison across panels. Note that for the
simulation, µ/σ refers to the theoretical, not actual values observable in firing rates, which
are truncated at zero.
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General Discussion

In both the symbolic model and the more realistic, spiking-neuron network model,
the introduction of an element-value bias in item representations was found to reduce per-
formance in cued recall, as has been long understood. However, two new phenomena were
identified. First, cued recall produced intermediate matches to items that were studied
as potential target items within the same study set. This may drive so-called within-list
intrusion responses. Second, when probed with a vector containing zero item information
(essentially, only the bias value itself), the retrieved vector was not meaningless (i.e., noise),
but resembled the classic Item Model (Anderson, 1970). Derivations and simulations both
demonstrated that for a range of bias values, this vector-sum could be used to perform at
moderately high levels in old/new recognition judgments of the studied target items.

As Anderson (1970) also noted, the greater the bias, the worse both the Item and
Association models perform. One might consider that this could be rectified by correcting
for the expected additive constant (subtracting it) once the model is probed. This could
correct the offset that is common to all retrieved vectors. However, the bias that is present
during encoding introduces additional variance that cannot, subsequently, be corrected for.

The Association Model is composed of (studied) item vectors. It is interesting to
consider that, when mean-centered, there is no way to directly retrieve those items; one
must cue an item specifically with its corresponding paired item. This has led modellers
to maintain separate memory variables for item versus associative information (Anderson,
1970), or use tensor space differently (Humphreys et al., 1989). Even in composite represen-
tations, modellers have included separate item and association terms (Metcalfe Eich, 1982;
Murdock, 1982). Simply dropping mean-centering and including a constant bias adds an
affordance. As we have shown, the Association Model can now be probed with a constant
input vector, containing zero information about studied items or associations, to retrieve a
weighted sum of studied items. Equivalent to the Item Model, this is sufficient, for certain
parameter values, to support item-recognition judgements.

We wondered why, to our knowledge, the tendency for non-target studied items to
partially activate during cued recall has not previously been reported. We speculate that
modellers may have seen traces of the “ghosts” of other studied items in their network
activity, but that this seemed tangential, did not undermine their main goals with their
models, and drew no further investigation. Indeed, examples of this phenomenon may be
present in published modelling work. In addition, if item representations are generated
at random, or do not have patterns that are readily recognized by eye, in plots of model
activity, the “spillover” activation may not be obvious upon visual inspection. In cases for
which the representations are chosen to be visually recognizable, the effects we derived may
be evident. One example of this is Barkai, Bergman, Horwitz, and Hasselmo (1994), where
the “ghosts” of non-target studied items can be seen in their Figures 5 and 7.

To our knowledge, there is not precedent for the spinoff function, the ability to perform
item recognition by activating the associative network with constant current. Although
performance reached reasonably high levels, even for the spiking-neuron network simulation,
this approach to item-recognition has clear limitations. First, the perfectly constant current
in our analytic derivations and network simulations is unrealistic; in reality, some level of
noise would be expected. Current model performance could be viewed as outlining upper
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limits of performance, but not necessarily; in the spiking network model sometimes noise
actually enhances encoding, as in stochastic resonance (Stein, Gossen, & Jones, 2005).
However, added noise would presumably affect the overall performance of the model, and
not result in qualitatively different dynamics. We expect the character of our results would
be somewhat robust to the addition of noise.

Second, Anderson’s Item Model is simple, yet can support item-recognition perfor-
mance to a rather high level. It is also equivalent to the item-memory term of TODAM
(Murdock, 1982), another model that has succeeded in accounting for a broad range of
empirical memory findings. However, this vector-summation model has well known lim-
itations. Most importantly, if ⊕ denotes concatenation, then if the Item Model stores
two items, m = (a ⊕ b) + (c ⊕ d) (assuming, for the moment, that all half-length vec-
tors, a, b, c,d are mutually orthogonal and normalized), the match to studied items,
m · (a ⊕ b) = m · (c ⊕ d) = 1, but the matches to items composed by recombining the
parts are exactly the same, m · (a ⊕ d) = m · (c ⊕ b) = 1. Having studied (e.g., Mayes,
Montaldi, & Migo, 2007) snowman and sandstorm, the model would just as readily en-
dorse snowstorm and sandman as belonging to the study set. This is one reason modellers
have developed more sophisticated models of recognition memory, such as MINERVA 2
Hintzman (1984) and REM (Shiffrin & Steyvers, 1997). Both these models are essentially
local-trace models that include nonlinearities to produce greater matching evidence when
all features of a single trace match than when matching features are distributed across
traces. Alternatively, item memory can be stored associatively, in auto-associative terms,
as is common in artificial neural network models, but also in a convolution-based model,
CHARM (Metcalfe Eich, 1982). The spinoff recognition-memory ability demonstrated here
would be challenged by intra-item recombined recognition probes. We are not suggesting
a return to the vector-sum as a model of item-memory. We are only suggesting that this
spin-off information could explain a) the relatively high prevalence of within-list intrusions
in cued recall and b) how item memory could be derived from stored associations without
any additional process required to encode items. Thus, the item-recognition capability of
the Association Model without mean-centering may be useful, and may be a good account
of human memory behaviour in certain conditions. When a particular item-recognition
situation demands more fine-grained comparisons, it may quickly become insufficient, and
additional, separate encoding terms may be required.

We chose to use the same value of µ during encoding, cued recall and matching to
the lexicon (the process that presumably drives redintegration). This choice was in part
for simplicity, and in part because we felt it plausible that if item representations need
to include a bias of µ during encoding due to some physiological constraints, the same
constraints probably hold always. It would be interesting to examine what would happen if
the bias could take on different values at different times. However, one quickly appreciates
that a µ′ 6= µ at retrieval may have little effect. Probing the Association Model with a
constant vector, µ′I, Equation 18 becomes

mr = M(µ′I) =
L∑
i=1

αi(gi + µI)(fi + µI)ᵀµ′I, (34)

but µ′ is clearly just a scalar that will be present in all subsequent calculations of matching
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strengths, thus not affecting the competitive advantage of studied items over non-studied
items.

Next, we consider an issue first raised by Ratcliff, Sheu, and Gronlund (1992). They
criticized the matched-filter model (embedded within TODAM; Murdock, 1982) for pre-
dicting that the variance of strength for targets and for lures to be nearly equal. This con-
trasted with empirical measures that estimated lure:target variance ratios of approximately
0.8, derived from ROC curves (Ratcliff et al., 1992; Ratcliff, McKoon, & Tindall, 1994),
and corroborated with analyses of response-time distributions (Osth, Dennis, & Heathcote,
2017; Starns & Ratcliff, 2014).1 A result we had not anticipated was that the variance of
recognition-strengths for target items was larger than that for lure items, particularly as µ
increased. This is evident in Figure 4, but it is true both of recognition from the Association
Model (probed with constant input) and from the Item Model. First, we note that the ratio
of variances will always be strictly less than 1. In the Item Model, Equation 10, σ2

target
differs from σ2

lure only as Vii differs from Vij . Equations 6 and 8 show that Vii includes Vij
plus additional non-negative terms, ensuring that it will always be greater. Specifically, for
the Item Model with µ included:

σ2
lure

σ2
target

= LVij
(L− 1)Vij + Vii

= L(1/n+ 2µ2)
(L− 1)(1/n+ 2µ2) + 2/n+ 4µ2 = L

L+ 1 , (35)

which a) does not depend on the value of µ, b) depends on L and c) agrees with the solution
found by Ratcliff et al. (1992).

Second, the same argument holds for the distributions of target and lure variances
of item-recognition strengths retrieved from the Association Model, when one compares
Equations 24–26 to Equations 27–29. Solving for the ratio of variances by substituting the
expressions for variances into Equation 10:

σ2
lure

σ2
target

=
(
L2 + 2L

)
n3µ4 +

(
Ln2 + 2Ln

)
µ2 + L

(L2 + 4L)n3µ4 + ((L+ 3)n2 + (2L+ 2)n)µ2 + L+ n+ 1 . (36)

For non-zero µ, as n becomes large, the O(n3) terms dominate, and the ratio of variances
approaches (L+ 2) / (L+ 4), which again, approaches 1 for large L, but is considerably
below 1 for small L. The ratio of variances, thus, is strictly less than 1, but for non-zero
µ, approaches 1 (equal variance) as the list length, L, increases. While not conclusive, this
demonstrates that the criticism of approximately equal variances for the standard matched-
filter model applies to the mean-centered model, but if one relaxes mean-centering, the
model has the flexibility (via trade-offs of µ, L and n) to produce a wide range of ratios.
This could be seen as another serendipitous outcome of the lack of mean-centering. That
said, the dependence on list length of the ratio of variances is not supported empirically
(Ratcliff et al., 1994), so the match of the non-mean-centered match-filter model to data is
not clear-cut, and would require at least some additional modification.

The idea that item-memory is stored as a side-effect of association-memory encoding,
but not necessarily vice versa, is reminiscent of Hockley and Cristi (1996). They found

1We thank Adam Osth for noting the connection to this prior work.
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that participants performed far better on tests of associative recognition when they were
instructed to study associatively, in anticipation of an association-memory test, than when
they were instructed to study items in isolation, in anticipation of a subsequent item-
memory test. However, item-recognition was just as good when participants studied in
anticipation of an associative recognition test as when they were expecting an item-memory
test. That said, the connection to Hockley and Cristi’s findings is not straight-forward. Our
derivations showed that the non-mean-centered model, while it did provide the ability to
perform item-recognition above chance (and quite well, for certain parameter values), would
always underperform the original Item Model. This raises the possibility that Hockley and
Cristi’s findings might be alternatively viewed as actually reflecting a deficit in item memory
when participants study for associations, that is approximately offset by the spillover item-
memory capability due to the non-zero µ.2 Our reasoning suggests that if the component
items were mix-and-match sets (such as snowstorm, snowman, sandstorm and sandman),
studying for associations would, indeed, compromise item-recognition— a prediction that
could be tested empirically (for a preliminary suggestion of this result, see Cox & Criss,
2017).

Although we have considered only a constant-valued vector (µI), which is equivalent
to violating mean-centering, the “spinoff” item-memory effects would presumably also be
found with any shift of origin. One could envision a model in which each list “context” were
implemented by shifting the origin for the set of items associated on the list.3 An interesting
possibility would be to combine such an extended model, whereby a shift in origin is used
to represent context, with a model like the dynamic model of Cox and Shiffrin (2017), that
probes jointly with item and context features. In such a model, context, conceived of as a
shift in origin, might essentially pre-activate items studied within the particular context.

Another common representation in neural network models is sparse-coding (Tsodyks
& Feigel’man, 1988), which can produce vectors that are mutually orthogonal while not
mean-centered. However, the “background” discharge rate of cortical neurons introduces
an additional mean across the population which, although small, cannot be ignored given
that the standard deviation of element values with sparse-coding is also small. Consequently,
one expects the same phenomena reported here with non-sparse item representations: an
elevated rate of intrusions to incorrect target items and the ability to activate an item-
memory vector that can support old/new recognition of all studied target items.

Finally, a major competing mathematical framework for association-memory, also
assuming items are represented as vectors, is convolution. Convolution is a mathematical
operation, denoted ∗ that combines two vectors into a new vector, thus m = f ∗ g. It is
the central operation in TODAM (Murdock, 1982) and CHARM (Metcalfe Eich, 1982).
Although in most ways, convolution and matrix outer product can account for behavioural
data equivalently (e.g., Murdock, 1985; Pike, 1984; Plate, 1995), a major difference is that
convolution is commutative. That is, f ∗ g ≡ g ∗ f . Convolution-based models are thus
oblivious to the order of items within the association. Matrix outer product, in contrast, is
non-commutative; specifically, gfᵀ = (fgᵀ)ᵀ. The non-commutativity of the outer product
is what, in the modelling work presented here, caused the target items, but not the probe
items, to be activated by cued-recall probes, as well as the constant-input probe, I. In

2We thank Greg Cox for the more subtle dimensions of this logic.
3We thank Michael J. Kahana for this suggestion.
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contrast, a bias introduced into a convolution-based model might, in fact, retrieve a weighted
sum of all would-be cue and target items. Future work could address the same model
phenomena within convolution models. Whether within-list intrusions are predominantly
target items, or both cue and target items, could be settled empirically.
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