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Convolution is a mathematical operation used in vector-models of memory that have been successful in
explaining a broad range of behaviour, including memory for associations between pairs of items, an
important primitive of memory upon which a broad range of everyday memory behaviour depends.
However, convolution models have trouble with naturalistic item representations, which are highly
auto-correlated (as one finds, e.g., with photographs), and this has cast doubt on their neural plausibility.
Consequently, modellers working with convolution have used item representations composed of ran-
domly drawn values, but introducing so-called noise-like representation raises the question how those
random-like values might relate to actual item properties. We propose that a compromise solution to this
problem may already exist. It has also long been known that the brain tends to reduce auto-correlations
in its inputs. For example, centre-surround cells in the retina approximate a Difference-of-Gaussians
(DoG) transform. This enhances edges, but also turns natural images into images that are closer to being
statistically like white noise. We show the DoG-transformed images, although not optimal compared to
noise-like representations, survive the convolution model better than naturalistic images. This is a
proof-of-principle that the pervasive tendency of the brain to reduce auto-correlations may result in
representations of information that are already adequately compatible with convolution, supporting the
neural plausibility of convolution-based association-memory.
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A major goal in memory research, spanning psychology, neu-
roscience and artificial intelligence, has been to model memory for
associations (e.g., CAT–DOG, BRIDGE–LAMPPOST). Distrib-
uted memory models that have been tested on human memory
behaviour typically assume that items are represented as vectors,
where each dimension of the vector stands for the value of a
feature of the item, although those features are usually not speci-
fied, but conceptualised as abstract. Indeed, modellers have typi-
cally made no attempt to derive item representations from real-
world features, and may even have implicitly assumed that none
exists.

Such models have used two major mathematical vector operations
(or their close relatives): matrix outer-product (e.g., Anderson, 1970;
Humphreys, Bain, & Pike, 1989; Pike, 1984; Rumelhart, Hinton, &
Williams, 1986) and convolution (e.g., Longuet-Higgins, 1968;
Metcalfe Eich, 1982; Murdock, 1982; Plate, 1995, 2003). In the
simplest matrix model, an association of two item-vectors is en-
coded as the outer product of the two vectors, and stored by
summing those outer products into a memory matrix. Alterna-

tively, in a convolution-based model, an association of two item
vectors is encoded by applying the convolution operation to the
two vectors representing a pair of items, which, itself, results in a
vector. In the case of circular convolution (defined below, in
Equation 6), the association even has the same dimensionality as
the item vectors (Plate, 1995). Those convolutions are then
summed into a cumulative memory vector.

Each model mechanism has both strengths and weaknesses (for
discussions, see, e.g., Pike, 1984; Plate, 1995). Although we will
not definitively decide between these model mechanisms here, we
present one line of reasoning that suggests convolution may be
neurally plausible. This addresses one particular characteristic of
convolution models that has been flagged as a potential weakness.
That is, convolution (unlike matrix outer-product) will only work
if item representations are “noise-like.” This term means that
element values are not statistically related to one another; in
technical terms, the auto-correlation of values across vector indices
must be nearly zero (except for a single value of 1 at lag � 0; this
is known as a Kronecker � vector). Vectors with patterns of values
that have this property approximate what is called “white noise.”
Noise-like representations are typically generated in models by
randomly assigning each element of the vector a value drawn from
a normal distribution (Plate, 1995), the key point being that each
vector element is drawn completely independently from all other
element values.

However, if information people remember derives from the
natural world, there is no a priori reason to assume that represen-
tations of that information will be anything close to noise-like.
Consider that naturalistic stimuli (like photographs of the real
world) are not noise-like, but in fact, highly auto-correlated. Spe-
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cifically, naturalistic signals tend to have power spectra of the
form, P�f� � f��, also known as “coloured noise” where P and f
refer to power (amplitude squared) and frequency, respectively,
and 0 � � � 2 (Field, 1987). White noise would have � � 0; in
contrast, naturalistic stimuli tend to have lower-frequency compo-
nents that are much larger (overrepresented) than higher frequen-
cies. Thus, one could criticise convolution as implausible and
impractical because it is unsuited to the statistical properties of
real-world information. Alternatively, one could ask how the brain
generates noise-like representations from information (e.g., stim-
uli) that contain auto-correlations.

Plate (1995, 2003) suggested a way around this limitation,
which Kelly (2010) successfully demonstrated (see also, Kelly,
Blostein, & Mewhort, 2013). They started with naturalistic (auto-
correlated) stimuli, and then applied a randomly selected permu-
tation to the order of vector dimensions before encoding. This
ensured that the vectors would usually be noise-like. If one then
applies the inverse permutation after retrieval, this can recover the
original (naturalistic) stimulus with very little distortion.

As we show in a later section, perfectly white vectors (where the
auto-correlation is fixed to be precisely an identity vector under the
convolution operation) are optimally compatible with convolution;
indeed, unlike noise-like vectors, a single pair of white-spectrum
item vectors is stored and retrieved with zero information-loss.
However, it is unlikely that the nervous system uses precisely
white representations, and it is unclear to us how information could
be preserved within such representations.

Drawing inspiration from neuroscience, we propose that the
brain’s representations of information may already be a kind of
compromise between optimality with respect to convolution and
preserving the most important features of stimuli. Noise-like rep-
resentations are often referred to as “decorrelated” representations,
because one would otherwise expect representations to inherit the
auto-correlated property from real-world signals. They are preva-
lent throughout the brain. This is most obvious in the early visual
processing pathway; retinal ganglion cells have “centre-surround”
properties (Srinivasan, Laughlin, & Dubs, 1982). These properties
are thought to be because of lateral inhibition (with a broader
spread than the more local excitatory connectivity), and has been
successfully modelled by the Difference-of-Gaussians function
(DoG; Marr & Hildreth, 1980). A DoG is, quite literally, calcu-
lated by subtracting a wider Gaussian function (representing the
longer-range inhibition) from a narrower Gaussian function (rep-
resenting the short-range excitation). If a DoG-transform is applied
to a visual stimulus, the effect is to enhance edges and reduce
intensity levels between edges, producing a kind of outline or
cartoon-like visual impression (Figure 9a and 9b). The power
spectrum of a DoG function has small power values at low fre-
quencies; thus, acting like a filter, when applied to auto-correlated
naturalistic stimuli, a DoG transform also has the effect of some-
what flattening the power spectrum. This counteracts the large
power values that are characteristic of naturalistic, auto-correlated
stimuli, so the resulting representations are decorrelated (Balboa &
Grzywacz, 2000; Field, 1987), and should be closer to optimal for
convolution-based memory models. Therefore, we speculated that
DoG-transformed natural images might be relatively compatible
with convolution, and thus, suffer less distortion than auto-
correlated naturalistic images when stored and retrieved in such a
model, which may suggest that convolution-based memory is

suitable for the kind of representations of information the brain
appears to provide.

Decorrelation seems to be a general computational principle in
the brain. For example, the lateral geniculate nucleus of the thal-
amus decorrelates visual information in the temporal domain
(Dong & Atick, 1995). This enhances sensitivity to transients,
removing the remaining (relatively unchanging) redundant time-
course information, but formally, this is quite close to producing
noise-like temporal representations of time-varying visual stimuli.
Other in vivo recordings in neocortex have found that spike trains
exhibit near-zero correlations (Renart et al., 2010), suggesting that
decorrelation of representations of information might be quite
common throughout the brain. Therefore, the noise-like condition
may in fact be satisfied in many pathways in the brain, perhaps via
a similar computational mechanism (lateral inhibition), at many
different levels of representation. Note that convolution models are
typically applied to memory tasks that involve “items” at a high
level of abstraction, far from retinal representations. However,
retinal-like representations are straightforward to visualize. For
this reason, we test the compatibility of convolution-based mem-
ory models with neurally realistic, decorrelated representations,
using DoG-transformed photographs as a test case, to enable us to
evaluate the results not only objectively, but also subjectively.
However, because lateral inhibition appears in numerous regions
of the brain, we are suggesting that the same principle may apply
to the higher cognitive representations that might be present, for
example, in medial temporal lobe.

We first explain the problem that auto-correlated naturalistic
stimuli pose for convolution models. Then, we show the strengths
and weaknesses of noise-like representations, which are commonly
used in convolution modelling work, and white representations,
which are mathematically optimal for convolution. Finally, we
demonstrate how DoG-transformed photographs may represent a
middle-ground kind of representation of stimuli wherein important
features (edges) can be stored and retrieved with only a small
amount of distortion.

The Basic Operation of a Convolution-Based
Association-Memory Model

In a convolution-based memory model, an item representation is
denoted as an n-dimensional vector:

x � (x0, x1, · · · , xn�1), (1)

where a vector is written as a letter or letters with boldface and xj

denotes the value of the j-th element of the vector. The vector can
be transformed into the frequency domain by DFT (Discrete Fou-
rier Transform), denoted by FT() and computed as follows:

X � FT(x) � (s0e
i�0, s1e

i�1, · · · , sn�1e
i�n�1), (2)

where sj is the amplitude of the j-th element of the vector in the
frequency domain and �j is the phase of the j-th element. We
follow the convention of using an uppercase letter to denote a
vector in the frequency domain corresponding to the (lowercase-
letter) vector in the original domain; in our examples, the original
domain is spatial. Each element in the frequency domain will be
calculated as follows:
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Xj � �
k�0

n�1

xke
�2�ijk ⁄ n, (3)

where i � ��1 and Xj is the j-th element of the vector X. then,

sj � �Xj� and �j � arg�Xj�, (4)

where |x| denotes the absolute value of x � �real�x�2�imag�x�2, and
arg denotes the angle of x � tan�1�imag�x� ⁄ real�x�� . Memory for an
association is produced by the convolution of two item vectors and stored
as a new vector with the same dimensionality as the item vectors. In the
spatial domain, this is written:

z � x ⊛ y, (5)

where x and y are item vectors, z is the association, and ⊛ denotes
(circular) convolution. Circular convolution is calculated as fol-
lows (Plate, 1995):

zj � �
k�0

n�1

xky(j�k)mod n, (6)

where mod denotes modulo. A schematic depiction of the circular
convolution calculation through a Latin square is shown in Figure
1a and 1b, as introduced by Kelly (2010) and Kelly et al. (2013).

In the frequency domain, convolution is represented as follows:

Z � FT(z) � FT(x ⊛ y) � FT(x) � FT(y) � X � Y

� (s0t0e
i(�0�	0), s1t1e

i(�1�	1), · · · , sn�1tn�1e
i(�n�1�	n�1)), (7)

where J denotes element-wise multiplication, and

Y � (t0e
i	0, t1e

i	1, · · · , tn�1e
i	n�1). (8)

Correlation, the approximate inverse of convolution, is used to
model retrieval of associations via cued-recall, where one item of
a pair is given as a memory cue and the model (or participant) has
to retrieve its associate. In the spatial domain, correlation, denoted
by the operator , is defined as:

z � x y � inv(x) ⊛ y, (9)

where inv() denotes involution, which reflects the vector elements
around the middle-element (Plate, 1995):

inv(x)j � x�j mod n. (10)

The Fourier transform of the involution of a vector is the complex
conjugate1 (denoted with superscript �) of the Fourier-transformed
original vector:

FT�inv(x)� � X* � (s0e
�i�0, s1e

�i�1, · · · , sn�1e
�i�n�1). (11)

In the frequency domain, correlation is straightforward:

Z � X* � Y. (12)

Finally, the frequency-domain vector can be converted back to the
spatial domain by inverse Fourier transform, denoted FT	1:

x � FT�1(X). (13)

As in the case of the (discrete) Fourier transform, each element in

the spatial domain will be calculated back from the vector in the
frequency domain in the inverse Fourier transform as follows:

xj �
1

n �
k�0

n�1

Xke
2�ijk ⁄ n. (14)

Naturalistic Stimuli as Item Representations in a
Convolution Model

The first thought one might have is to simply use the convolu-
tion model to store and retrieve real, natural stimuli (Kelly,
Blostein, & Mewhort, 2013). Here, stimulus values are used di-
rectly as item representations (e.g., real sounds or images). We
tested our simple convolution model with a set of 16 photographs
taken by the first author, KK, within the city of Edmonton. The
resolution was 768 
 768 pixels, originally with 256 gray levels

1 To avoid possible confusion, note that modellers frequently use � also
to denote the convolution operation. Because we use ⊛ to denote (circular)
convolution, we reserve the uncircled � to denote complex conjugate.
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Figure 1. A schematic depiction of the convolution and correlation
calculations in the case of two item vectors, a and b, with four elements
each. First, (a) the outer product between the two vectors is computed.
Next, (b) for convolution, cells of the outer-product matrix are summed
(right) in a pattern that can be visualized as a Latin square (b; middle). (c)
Circular correlation can be written by substituting a Latin square that sums
over the main diagonals (also wrapping around the matrix). Circular
convolution and correlation can be more compactly expressed in the
frequency domain (see main text). See the online article for the color
version of this figure.
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(M � 127, SD � 55). The stimulus set is available to be shared if
requested.

The ubiquitous auto-correlated characteristic of natural stimuli
causes problems, as follows. Figure 2 displays two photographs:
LAMPPOST (that we denote by the vector, lamppost), and
BRIDGE (bridge). To allow us to visualize the results, all item
representations are represented as two-dimensional arrays and the
convolution and the correlation are calculated by means of a
two-dimensional Fourier transform function. In Fourier analysis, a
2D Fourier transform (and its inverse) can be computed in Carte-
sian coordinates for x and y independently. The math is a trivial
extension from 1D to 2D:

Xjk � �
l�0

n�1

�
m�0

n�1

xlme�2�i(jl�km) ⁄ n, (15)

xjk �
1

n2 �
l�0

n�1

�
m�0

n�1

Xlme2�i(jl�km) ⁄ n. (16)

For the case of a square matrix, we used Matlab’s fft2.m
function to implement it. We chose to keep everything in 2D rather
than unwrap into 1D, then rewrap into 2D (as Kelly has done),
because we felt this way, the statistical properties of the photo-
graphs would be preserved. The unwrapping might introduce ar-
tificial “edges”—sharp transitions at the boundaries of the rows of
the image and make things needlessly complicated. Because the
mathematics of 2D Fourier transform is so close to the mathemat-
ics of 1D Fourier transform, we remained in 2D for the demon-
strations. The association (convolution) of the two images is dis-
played in the top-right, and the retrieved LAMPPOST image

(lamppostr) from the association, by applying bridge as a cue, is
in the bottom-right. The retrieved image looks very blurry, which
is precisely because of the auto-correlation: Auto-correlation indi-
cates more power at lower frequencies. These low frequencies
thus, dominate the convolution and correlation operations and have
an effect like smoothing the image. Typically, convolution models
are assessed by computing the similarity (normalized dot product)
between the retrieved vector and possible response vectors; the
higher the dot product, the more likely an item is to be produced
as a response. Thus, to quantitatively assess the performance of the
model with these kinds of stimuli, we calculate the normalized dot
product between the retrieved image and the correct (target) and
incorrect (other candidate) images. The similarity (normalized dot
product, equivalent to the cosine of the angle between a pair of
vectors) between the original and retrieved LAMPPOST images,
0.459, is larger than the value between the original BRIDGE and
the retrieved LAMPPOST images, 0.236. Thus, quantitatively, the
retrieved LAMPPOST image can be effectively distinguished as
lamppost from bridge, but information in the middle- to high-
frequency ranges, that may be just as diagnostic of stimuli, is
degraded.

Item Representations With Randomly Assigned Values

To avoid the smearing effect because of naturalistic stimuli,
most modellers working with convolution use item vectors con-
sisting of values drawn at random. Drawing values at random
ensures that in general, there will be very little auto-correlation in
item representations. Typically (Murdock, 1982; Plate, 1995), val-

Figure 2. An example of encoding one association of two items with naturalistic stimuli (128 
 128 pixels)
and retrieval of the target vector (lamppost) from the association. The retrieved image (lamppostr) looks quite
blurred. The similarity (cosine) between the two is 0.459, which is still distinguishable from the similarity
between the cue (bridge) and the retrieved vectors, 0.236. To increase visibility, all images presented here are
normalized to the length one and contrast-enhanced by applying a sigmoid function to pixel-values,
x: 1
 �1 � exp�100x�.
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ues are independent, identically distributed (i.i.d.), meaning they
are drawn from Gaussian distribution with � � 0 and � � 1 ⁄�n
(where n is the number of the elements of the vector), and each
value is drawn at random, without any systematic relationship to
other values. The mean and variance ensure that vectors are
approximately normalized (the expectation of the dot product of
the vector with itself is equal to 1; E[x·x] � 1).

Figure 3 shows an example of storing one association, mouse
⊛cat. When cued with mouse, the model retrieves a vector which
we denote catr. It is hard to see, visually, the similarity of the
retrieved pattern, catr, to the original target pattern, cat, because
the values are arbitrary. However, when measured quantitatively,
with the normalized dot product, the similarities between the
original and retrieved vectors are sufficiently distinguishable. In
this case, with 8 
 8 pixel “vectors” (see Figure 3), the similarity
between the original and retrieved item (cat and catr) is 0.649.
This is considerably larger than, for example, the value between
the original MOUSE, mouse, and the retrieved CAT, catr, 	0.034
(mouse and cat were composed of random values chosen com-
pletely independently of one another, so this will tend to be true for
other items in the “lexicon” as well). For larger dimensionality, in
the case of 768 
 768 pixel items (see Table 1), the values are
0.707 ( 1 ⁄�2) and close to zero, respectively.

This shows why item-vectors drawn from random values can
function effectively in a convolution model. However, one still has
to explain how such representations might have been derived from
the original stimulus properties. As Figure 3 shows, even though
the similarity between the retrieved cat, catr, and the original cat

has sufficiently high value, 0.649, it is very difficult to subjectively
see these two images are similar. To appreciate this, we plot the
vector-element values of the original vector against those for the
retrieved vector. In Figure 4a, plotting cat against catr, one can see
the relationship between the two sets of vector-element values,
whereas in Figure 4b, plotting mouse against catr, there is no such
relationship.

Representations “Protected” by Random Permutations

Kelly et al.’s (2013) approach was to apply a random permuta-
tion to the vector dimensions of items before encoding them. The
random permutation effectively protects a naturalistic stimulus
from smearing because of its own auto-correlation because a
random shuffle of stimulus values is very likely to approximate a
white (uncorrelated) vector. In their method, two permuted item
representations are convolved, and then the retrieved vector is
permuted back by applying the inverse permutation. Figure 5 and
Table 1 show an example of the random-permutation method. In
the simulation, each item was assigned a different permutation
table. The random-permutation approach thus, addresses the prob-
lem of auto-correlated stimulus dimensions by ensuring that the
convolution and correlation operations act on vectors that have
minimal auto-correlation. Thus, a convolution acting on vectors
that are protected by random permutations can perform as effec-
tively as convolution with noise-like representations, but while
preserving all information present in the original stimuli. This
approach may have important applied uses. However, the limita-

Figure 3. An example of encoding one association of two items with randomly assigned values (8 
 8 pixels)
and retrieval of the target vector (cat) from the association. The original target (cat) image looks different from
the retrieved target (catr). However, the similarity (cosine) between the two is 0.649, which is sufficiently
distinguishable from the similarity between the cue (mouse) and the retrieved vectors, 	0.034. In the case of
768 
 768 pixel images, the similarity (cosine) between the target vector and the retrieved vector is 0.707, which
is very close to theoretical value for Gaussian random values ( 1 ⁄�2 � 0.707) and easily distinguishable from
the similarity between the cue vector and the retrieved vector, 0.002.
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tion of this approach for developing a realistic model of human
memory, as acknowledged by Kelly et al. (2013), is that one needs
to explain how the random permutation is produced, and has to
preserve the precise permutation selected to decode the item after
the correlation step.

Whitened Naturalistic Stimuli Would Be Optimal

There is, in fact, a known, optimal type of vector representation.
Based on the convolution and correlation operations, retrieval of
the target vector from one association vector is represented as
follows. In the spatial domain, retrieval from a memory trace,
correlating with the cue-item vector, is

xr � y (x ⊛ y) � (y y) ⊛ x, (17)

where xr denotes the retrieved vector. In the frequency domain, the
retrieval of the target vector Xr is defined:

Xr � Y* � X � Y

�(s0 t0
2 ei�0, s1 t1

2 ei�1, · · · , sn�1 tn�1
2 ei�n�1).

(18)

The amplitude, t2j, of the j-th element of the retrieved vector
originates from the cue vector and this produces a distortion in the
retrieved vector. Figure 6 illustrates the distortion in the frequency
domain. Figure 6a shows the power spectrum of a vector con-

Table 1
Average Similarities Between Retrieved and the Candidate Vectors Over Five Representation Types

N Item type Mean/Max Natural DoG Permute Random White

1 target mean 0.55 0.47 0.71 0.71 1.0
other candidates mean 0.013 	0.00041 0.00014 0.00011 	0.00021

max 0.43 0.0026 0.0046 0.055 0.0028
2 target mean 0.42 0.40 0.58 0.58 0.71

other candidates mean 0.0092 	0.0010 0.00015 0.00011 	0.00020
max 0.42 0.0026 0.0040 0.051 0.0028

4 target mean 0.30 0.32 0.45 0.45 0.50
other candidates mean 0.0061 	0.0013 0.00014 0.000074 	0.00018

max 0.42 0.0026 0.0035 0.051 0.0027
8 target mean 0.21 0.25 0.33 0.33 0.35

other candidates mean 0.0076 	0.0013 0.00014 0.00011 	0.00015
max 0.43 0.0026 0.0031 0.048 0.0027

Note. Target items were excluded from candidates. The parameters for DoG-transform were �1 � 1, �2 � 4. Natural � naturalistic images (the original
photographs); DoG � natural images after a Differences-of-Gaussian transform; permute � natural images “protected” by permutation; random �
“noise-like” images produced by randomly selecting numbers from i.i.d., distributions; white � natural images after precise whitening. The candidate-mean
is the mean of the similarities between retrieved vector and all candidates except the targets over all possible combinations in 16 items whereas the
candidate-max is the mean of the maximum similarities between retrieved vector and 15 candidates (except the target) for each association. Even though
the mean similarities between the target and the retrieved images in natural images are greater than those in DoG-transformed images in the case of one
and two associations, the maximum similarities for other candidates in natural images are very large so the probability of correct choice will be greater In
DoG-transformed representation than in natural images.
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Figure 4. Because noise-like vectors are hard to evaluate visually (Figure
3, we plot the vector element values for one item against another (each dot
in the scatter plot), for (a) original cat vector compared with the retrieved
vector; (b) original mouse vector compared with the retrieved vector.

Figure 5. Examples of naturalistic stimuli (BRIDGE and LAMPPOST
images, 128 
 128 pixels) after being randomly permuted, stored, and then
retrieved with cued recall and had the permutation corrected. Because the
permutation is selected at random, the retrieved images appear as though
they had noise added to them. However, they are still quite recognizable.
The similarity (cosine) between the target vector (lamppost) and the
retrieved vector is 0.708, which is very close to theoretical value for
Gaussian random values ( 1 ⁄�2 � 0.707) and easily distinguishable from
the similarity between the cue vector (bridge) and the retrieved vector,
0.002. Visibility was enhanced as in Figure 2.
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structed from random (i.i.d.) values, and Figure 6b shows the
power spectrum after being stored and then retrieved from a
convolution model. In the random-value representation, the power
spectrum is approximately flat across frequencies, as expected.
Even though the amplitudes of cue vectors increase the deviation
in the retrieved vector, the nature of the flat distribution is not
affected by the unwanted term, t2j. Figure 6c and 6d show the same
for one naturalistic stimulus (LAMPPOST). In the naturalistic
image, the power spectrum starts out sloped, and this slope be-
comes even larger after encoding (via convolution) and retrieval
(correlation); 1/f� in original becomes roughly 1/f3� in the re-
trieved vector because the amplitude of the retrieved vector is
Sr.j � Sjt

2
j in the frequency domain.

To achieve optimal retrieval, all the amplitude values of the cue
vector must be set to 1, which is equivalent to “whitening” the
vector (all frequencies have the same amplitude):

t0 � t1 � · · · � tn�1 � 1. (19)

The whitened item vector in the frequency domain can be written:

white(Y) � (ei	0, ei	1, · · · , ei	n�1). (20)

The same logic can be applied to retrieval of the other vector, Y,
so the amplitude values of white(X) must be 1 as well (Caplan,
2011):

white(X) � (ei�0, ei�1, · · · , ei�n�1). (21)

In the case of whitened vectors, an association can be written in the
frequency domain as:

white(Z) � white(X) � white(Y)

� (ei(�0�	0), ei(�1�	1), · · · , ei(�n�1�	n�1)). (22)

Then correlation produces perfect retrieval, in the case of one
stored association:

white(X)r � white(Y)* � white(Z)

� white(Y)* � white(X) � white(Y) � white(X) (23)

Figure 7 shows an example where the naturalistic stimuli are whitened
before encoding an association, and before using an item as a retrieval
cue. The retrieved image from an association of two whitened natu-
ralistic stimuli is exactly equal to the target (LAMPPOST) image (see
Table 1). For the case of a single association, whitened representations
lead to perfect retrieval in cued recall. However, the flat distribution
in the power spectrum makes the image appear noisy because of the
relatively greater presence of high-frequency components, which has
the subjective appearance of noise.

Difference of Gaussians

The DoG filter was initially introduced as a model of lateral
inhibition in the early visual system (centre-surround cells in the
retinal ganglion), and thought to play an important role in edge
detection (Marr & Hildreth, 1980). A DoG is simply the difference
of two Gaussian functions with different variances (see Figure 8).
Convolving a DoG function with a natural image enhances the
medium frequency range and emphasizes edges.

With a convolution model, although a flat power spectrum is
optimal, even when imperfect, it is also the case that the flatter the

Figure 6. Examples of power spectra of a randomly assigned vector and naturalistic stimuli (both 768 
 768
pixels). The average of the power of the randomly assigned vector is about 1, whereas the power spectrum of
the naturalistic stimuli (lamppost) is inversely proportional to the squared frequency. The power spectra of
retrieved items have larger � for both representation.
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power spectrum of item vector is, the less distortion in the re-
trieved vector from the association will be. The power spectrum of
a DoG-filter shows how DoG-transform works with naturalistic
stimuli with 1/f distribution (Figure 9e). Because convolution is
element-wise multiplication in the frequency domain, the increas-
ing amplitude with frequency counteracts the high power values at
low frequencies, partly flattening the 1/f form of the spectrum.
Figure 9 and Table 1 show examples of the DoG filter applied to
naturalistic stimuli. The DoG-transformed (�1 � 0.3, �2 � 1.0, for
128 
 128 images) images have emphasised edges. The retrieved
images are noisy, but are improved compared with naturalistic
images retrieved from a convolution model (see Figure 2), because
the power spectrum is now almost flat in the lower frequency
range. The similarity between the original target LAMPPOST and

retrieved LAMPPOST images, 0.463, is much larger than that of
the cue (bridge), 	0.027, which suggests the target would be
sufficiently distinguishable from other candidate items. When
the DoG-filtered images are compared with the original natu-
ralistic images, one can see that, rather than DoG-transform
improving the similarity between a target and the retrieved
item, it reduces the similarity between the retrieved target and
the other (unrelated) item vectors, including the cue itself (see
entries for N � 1 in Table 1).

Memory for Multiple Associations

Thus far, we have examined cases involving memory of only a
single association. Naturally, to be useful, a memory system must

Figure 7. Examples of whitened naturalistic stimuli (BRIDGE and LAMPPOST images, 128 
 128 pixels).
The retrieved LAMPPOST image is exactly equal to the target LAMPPOST image. Perfect retrieval is achieved
by the flat and no deviation in the power spectrum. We present the images downsampled to 128 
 128 pixels
because the original, higher-resolution (768 
 768 pixels) images were harder to evaluate because of distortion
when embedded within the document. The similarity (cosine) between the target vector (lamppost) and the
retrieved vector is 1.000, which corresponds that the retrieved vector is identical to the target vector and easily
distinguishable from the similarity between the cue vector (bridge) and the retrieved vector, 0.000301. Visibility
was enhanced as in Figure 2.

Figure 8. Difference-of-Gaussians functions (DoG). (a) A 1D DoG function (�1 � 1, �2 � 2), (b) a 2D DoG
function (�1 � 6, �2 � 10). DoG: DoG is computed from two Gaussian functions with M � 0. (c) A power
spectrum of DoG filter (�1 � 1, �2 � 4), equivalent to (�1 � 0.3, �2 � 1.0) with the 128 
 128 demonstration
images. See the online article for the color version of this figure.
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be able to store and retrieve more than a single association. In
convolution models, multiple associations are usually stored in a
single memory trace by superposition— element-wise addition. As
in the case of single association, a target vector is retrieved by
correlating the corresponding cue vector to the summed memory
vector. For example, for a model with two associations stored,

ar � b (a ⊛ b � c ⊛ d) � (b b) ⊛ a � b c ⊛ d,
(24)

where ar denotes the retrieved vector. Note that in a full-fledged
model such as TODAM (Murdock, 1982), each association term
would be multiplied by a scalar representing an encoding strength,

Figure 9. Applying Difference-of-Gaussians (DoG) to naturalistic images as item representations. (a, b)
DoG-transformed BRIDGE and LAMPPOST images (128 
 128 pixels, �1 � 0.3, �2 � 1.0), (c, d) The
retrieved images from the association of the two DoG-transformed images. The similarity (cosine) between the
target vector (lamppost) and the retrieved vector is 0.463, which moderately distinguishable from the similarity
between the cue vector (bridge) and the retrieved vector, 	0.027. Visibility was enhanced as in Figure 2. (e)
The power spectrum of DoG-transformed BRIDGE image (768 
 768 pixels).
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which could be free to vary across associations; for simplicity, we
assume all pairs are stored with equal strength. Because multiple
associations are stored additively, the similarity (normalized dot
product, or cosine between ar and a) must decrease with number of
stored associations (Figure 10 and Table 1). The retrieved images
are increasingly degraded as the number of associations, N, in-
creases, and the similarity values, correspondingly, decrease with
increasing N. Nevertheless, the retrieved image is still recogniz-
able and the similarity values are larger than those of other can-
didates, which is what ultimately determines memory success for
these models.

Figure 11 shows how superposition degrades the retrieved vec-
tor when the number of associations, N increases in the case of
DoG-transformed representations. The greater the N, the more
degraded the retrieved image is. For the purpose of comparison,
the same set of images with permuted and whitened item repre-
sentations are shown in Figures 12 and 13, respectively. The
retrieved images over all associations in both permuted and whit-
ened representations are less degraded than those of DoG-
transformed representations.

The relation between the number of associations, N, and the
probability that the target image is correctly selected, is shown in
Figure 14. The probability of correct choice was calculated with a
choice rule suggested by Luce (1959):

P(i) �
S(i)�

�
j

S(j)�
, (25)

where P(i) is the probability the i-th candidate is selected, S(i) is a
strength calculated with similarity between the retrieved and the
candidate vectors, the denominator is the sum of the strengths of
all possible candidates, and  is a constant. S(i) values were
truncated at zero, so items with negative strength had zero prob-
ability of being sampled.

In the simulation, 16 images (original photographs taken by the
first author) were used as the item vectors, except for the case of
random representations, which were produced with randomly as-
signed values drawn from a Gaussian distribution with � � 0 and
var � 1/n where n is the number of elements in a vector. All item
vectors were normalised to length 1 and mean-centered to 0. Each
value of probability correct was the mean of all associations of 16
items, which included all possible combinations of items, exclud-
ing the auto-association (association of the item with itself). Su-
perposition was simulated only for specific combinations. For
example, if a ⊛ b � c ⊛ d was calculated, a ⊛ b � e ⊛ f was not
calculated to test the association a and b items but all associations,
a ⊛ b, a ⊛ c, a ⊛ d and so on were calculated and averaged over
all combinations. Figure 14a plots probability correct using  � 1.
As expected, the whitened representations showed the best perfor-
mance and the naturalistic representations were worst. DoG-
transformed representations performed moderately well: clearly
not optimal, but substantially better than naturalistic representa-
tions. Figure 14b plots the results with  � 2, to see what happens
if accuracy increases, and shows the same basic pattern as with
 � 1.

The Luce Choice rule is not the only way to model the final
decision process. Therefore, we also plot the maximum similarities
for competitor items in Figure 15. As expected, the whitened

Figure 10. Superposition of two associations of Difference-of-Gaussians
(DoG) transformed naturalistic stimuli (128 
 128 pixels). (a) Original
images, (b) DoG-transformed images (�1 � 0.3, �2 � 1), (c) The retrieved
images from the superposition of the two associations. Visibility was
enhanced as in Figure 2.

Figure 11. The image of LAMPPOST (128 
 128 pixels) after being
retrieved from memories containing several (1– 4) associations of
Difference-of-Gaussians (DoG) transformed naturalistic stimuli. We pres-
ent the images downsampled to 128 
 128 pixels because higher-
resolution (768 
 768) images were harder to evaluate because of distor-
tion when embedded within the document. The �1 and �2 in the DoG
function were modified to 0.3 and 1, respectively, to optimise the recog-
nisability in the retrieved images. Visibility was enhanced as in Figure 2.

308 KATO AND CAPLAN



representations showed the highest similarities over all number of
associations, and the permuted and the randomly assigned repre-
sentations showed the second performance. All three representa-
tion types showed almost zero similarities between the retrieved
vectors and the competitors even in the maxima. In contrast, the
DoG-transformed representation did not show better performance
than the original naturalistic stimuli in the similarities between the
retrieved and the target vectors. However, the maximum similar-
ities of the competitors were very high and comparable with the
targets in the original naturalistic stimuli whereas those for the
DoG-transformed representations stayed low. Therefore, the DoG-
transformed representations can be expected to perform better than
the original naturalistic stimuli in the clean-up process.

A few final points should be noted. (a) The similarities of the
competitors stayed the same with increasing the number of asso-
ciations. (b) The advantage of the whitened representations over
the permuted and the random representations decreased with the
number of associations and disappeared with the eight associa-
tions. Therefore, there might be no specific reason to support the
whitened representation when the number of associations to be
stored is large enough.

Discussion

Convolution-based memory models have successfully explained
a very broad range of human-memory empirical phenomena (e.g.,

Kahana, 2012; Murdock, 1982; Plate, 1995). One of the weak-
nesses of convolution-based models has been the constraint that
item representations had to be noise-like, whereas naturalistic
stimuli have long been known to contain large auto-correlations,
because of their coloured-noise power spectra. Matrix models, an
alternative approach to association-memory, do not share this
limitation. Although we cannot resolve the debate about which
class of model is more neurally plausible (see, e.g., Murdock,
1985; Pike, 1984; Plate, 1995), we contend that the demonstrations
we present here suggest that far from being a limitation, the
requirement of decorrelated item representations is (approxi-
mately) satisfied by the kinds of representations that are apparently
already present in the brain, even as early as the retinal ganglion.
The performance of DoG-transformed naturalistic images was,
unsurprisingly, not optimal, and in particular, a high-frequency
distortion is plainly visible in the images retrieved from the model
(Figures 9, 10, and 11). However, the DoG-transformed stimuli
were recognizable after having been encoded and retrieved in a
convolution model, even with multiple associations stored. Quan-
titatively, the DoG-transformed stimuli always outperformed the
untransformed, naturalistic stimuli. Although we argue that DoG-
transformed stimuli are moderately compatible with convolution, it
is possible that association-memory in real brains is not precisely
convolution, but some modified variant of convolution that could
conceivably be better matched to the DoG-transform specifically.

Of the three nonnaturalistic representations we considered, whit-
ened representations are quite obviously (mathematically) optimal.
The comparison, in the retrieved images from memories with
multiple associations, between DoG-transformed (see Figure 11)

Figure 12. The image of LAMPPOST (128 
 128 pixels) after being
retrieved from memories containing several (1–4) associations of permuted
naturalistic stimuli. The images are scrambled back after the retrieval. The
size of the images were reduced from 768 
 768 pixels to 128 
 128
pixels for the purpose of subjective recognisability. Visibility was en-
hanced as in Figure 2.

Figure 13. The image of LAMPPOST (128 
 128 pixels) after being
retrieved from memories containing several (1–4) associations of whitened
naturalistic stimuli. Visibility was enhanced as in Figure 2.
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and whitened naturalistic stimuli (see Figure 13) also shows the
advantage for whitened representations visually. However, precise
whitening strikes us as too precise to expect of real neuronal
networks. Noise-like representations are popular among convolu-
tion modellers, but they raise the further question of how one maps
stimulus- or item-information onto a set of noise-like vectors.
Vectors scrambled by random permutations (Kelly, 2010; Kelly et
al., 2013) preserve the original naturalistic features quite well and
performed as well as randomly assigned item representations (Fig-
ures 14 and 15), but they raise further questions: how is the
“random” permutation selected, is it plausible that the random
permutation is stored and available when the unscrambling is
required? And, as with exact-whitening, we do not know of any
evidence that the random-permutation mechanism takes place in
the brain.

Rather, we view approximate decorrelation as carried out via
lateral inhibition as a general computational feature of the brain,
quite likely for other reasons such as energy-efficient coding
(Balboa & Grzywacz, 2000; Dong & Atick, 1995; Field, 1987;
Renart et al., 2010; Tanaka, 2003), which then happens to be
compatible with convolution. Our simulations show that the devi-
ation of DoG-transformed stimuli from noise-like is nonetheless
sufficient to produce good performance in a convolution model.

One intriguing possibility is that the entorhinal cortex may be
set up to compute convolution (or some close approximation to
convolution). As explained earlier, convolution, in the frequency
domain, is simple element-wise multiplication. The so-called “grid
cells” in medial entorhinal cortex (Fyhn, Molden, Witter, Moser,
& Moser, 2004; Hafting, Fyhn, Molden, Moser, & Moser, 2005)
have 2-dimensional, periodic place fields that vary across a large

range of spatial frequencies. Numerous researchers, starting with
Solstad, Moser, and Einevoll (2006), have noted that this resem-
bles a Fourier basis set. What follows from this is that the activity
of a medial entorhinal cell could be viewed as a Fourier coefficient
(for a given frequency and phase). Then, an association between
two such “item” vectors in the frequency domain, could be learned
in a convolution-like manner via direct multiplication (Caplan,
2011).

Our use of images was to enable us to visualize the performance
of the model and the degradation of the stimuli. However, we are
not proposing that human brains store and retrieve DoG-
transformed versions of retinal images. Presumably, brain regions,
such as hippocampus, entorhinal cortex and other medial-
temporal-lobe regions store and retrieve associations in episodic
memory. However, it is still unknown what the exact form of the
representations of this higher-order information is. What we pro-
pose is that, at every stage in the brain, the inputs to a region
contain auto-correlations, with approximately coloured-noise
form, and that via lateral inhibition, each region removes much of
this auto-correlation at that particular level of representation. Thus,
if not literally, we propose that conceptually, our results here
demonstrate that the medial temporal lobe could, relatively safely,
apply convolution to store associations, followed by correlation to
retrieve them (or some operations approximating convolution and
correlation).

There are, in fact, models of semantic memory, which may be
pertinent here. We examined the degree of auto-correlation of item
representations across three major semantic representation models,
Latent Semantic Analysis (LSA; Landauer & Dumais, 1997),
Hyperspace Analogue to Language (HAL; Lund & Burgess, 1996;

Figure 14. Probability correct as a function of number of stored associations, for each type of representation:
natural (raw image), Difference-of-Gaussians (DoG; those natural stimuli after being DoG-transformed),
permuted (stored after applying a random permutation and with the inverse permutation applied after retrieval),
random (i.i.d. values, the “noise-like” representations typically used in convolution-model research), and white
(the naturalistic images after precise whitening), using 16 items and a probabilistic choice rule, with  � 1 (a)
and  � 2 (b); see text. The error bars are the SEM, but are small, and in some cases, smaller than the data-point
markers. The random-representations curve was slightly shifted upward to avoid it and the permuted represen-
tations curve from occluded one another, because these two representation types have almost exactly the same
values. See the online article for the color version of this figure.
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Burgess, 1998), and Bound Encoding of the AGgregate Language
Environment (BEAGLE; Jones & Mewhort, 2007), with sample data
sets. The TASA, EN_100k, and blogs_beagle data sets were used for
LSA, HAL, and BEAGLE models, respectively. The TASA dataset
consists of 92,393 English words with 300 elements each, EN_100k
dataset 100,000 English words with 300 elements each, blogs_beagle
dataset 103,599 German words with 1,024 elements each, respec-
tively, as computed and posted by Günther (2015). Figure 16 plots
the power spectra of item representations of the three models,
comparing to that for 32 128 
 128 natural images (photos), 16 of
which we used in the other demonstrations in the manuscript.
Fitting a linear regression to the spectra in log/log coordinates, the
mean � values (SD) were 0.0042 (0.12), 	0.0508 (0.19),
and 	0.0053 (0.06) for LSA, HAL, and BEAGLE, respectively.
Thus, all the � values of the semantic models are close to zero,
which corresponds to no auto-correlation (approximately white
representations), in contrast to � � 3.1 (0.44) in the natural
images, reflecting coloured-noise as expected.

However, the ordering of the dimensions in all three methods
was never an explicit part of the algorithm, but rather, ranked
based on considerations such as proportion of covariance ex-
plained. One would still need to look for evidence about how
semantic dimensions are laid out topographically in the brain. At
least as far as inferotemporal cortex, which appears to respond to
(or perhaps even represent) complex visual objects at a relatively
high level (invariant to translation, rotation, luminance, etc.), neu-

rons seem to be organized in columns, whereby nearby neurons
tend to respond to similar objects (Tanaka, 1993, 2003; Wang,
Tanaka, & Tanifuji, 1996). This suggests that the problem of
auto-correlated representations exists even at high levels of repre-
sentation. Tanaka (2003) even suggested the columnar organisa-
tion could indicate the presence of local excitation and lateral
inhibition. This might support decorrelation similar to what we
demonstrated, but at a higher level of representation.

Although it is possible that decorrelated representations are used
by the brain to satisfy the statistical properties necessary to use
convolution, it also could be the reverse: that information is
already decorrelated in the brain for other “reasons,” and under
those conditions, convolution becomes an effective way to store
and retrieve associations.

Finally, this work builds on the work of (Kelly, 2010; Kelly et
al., 2013) in the following ways. First, we demonstrated that Kelly
et al.’s permutation representation succeeds in additional condi-
tions: heteroassociations, and multiple associations stored, extend-
ing Kelly and colleagues’ demonstrations involving a single auto-
association. Second, we address the question of neural plausibility
of various representation types. Third, we introduced the idea of
DoG-transformed natural images as an alternative potential solu-
tion to the same problem as Kelly and colleagues were concerned
with.

In summary, our demonstrations show that the way in which the
brain suppresses auto-correlations, normally a nuisance for convolu-
tion, produces conditions that are compatible with convolution-based
association-memory.

Résumé

La convolution est une opération mathématique utilisée dans les
modèles-vecteurs de la mémoire s’étant avérés fructueux pour

Figure 15. Mean similarities (cosine values) between retrieved and can-
didate vectors as a function of number of stored associations, for each type
of representation: natural (raw image), Difference-of-Gaussians (DoG,
those natural stimuli after being DoG-transformed), permuted (stored after
applying a random permutation and with the inverse permutation applied
after retrieval), random (i.i.d. values, the “noise-like” representations typ-
ically used in convolution-model research), and white (the naturalistic
images after precise whitening), using 16 items; see text. The error bars are
the SEM, but are small, and in some cases, smaller than the data-point
markers. The solid lines correspond to the similarities between the re-
trieved and the target vectors whereas the dashed lines correspond to the
maximum similarities between the retrieved and the other candidate vec-
tors. For the visibility, the points of the permuted and the randomly
assigned representations were artificially shifted upward slightly. See the
online article for the color version of this figure.

Figure 16. Power spectra of item representations for three semantic-
memory models, LSA (b), HAL (c), and BEAGLE (d), compared with
natural images (a). See main text for details. Natural images have the usual
coloured-noise spectrum reflecting auto-correlation in across vector dimen-
sions, whereas vectors in the three semantic models are uncorrelated,
approximating white noise.
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expliquer une vaste gamme de comportements, dont la mémoire
par associations entre paires d’items, une prémisse importante de
la mémoire à partir de laquelle une grande variété de comporte-
ments de mémoire de tous les jours dépendent. Or, les modèles de
convolution ont de la difficulté avec la représentation d’items
naturalistes, lesquels sont hautement auto-corrélés (tel qu’on peut
voir par ex. sur des photographies), et cela remettrait en cause leur
plausibilité neurale. Par conséquent, les modeleurs travaillant avec
la convolution ont utilisé les représentations d’items composées de
valeurs aléatoires, mais l’introduction de représentations
s’apparentant au bruit soulève la question à savoir comment ces
valeurs d’apparence aléatoire pourraient être reliées aux réelles
propriétés d’item. Nous proposons qu’il existe probablement déjà
une solution de compromis à ce problème. Il est aussi connu depuis
longtemps que le cerveau tend à réduire les auto-corrélations au
niveau de ses entrées. Par exemple, les cellules du centre-
périphérie de la rétine se rapprochent d’une différence de gaussi-
ennes. Cela avantage la périphérie mais transforme aussi les im-
ages naturelles en images ressemblant à ce qu’on qualifie
statistiquement de bruit de fond. Nous montrons comment les
images transformées par différences de gaussiennes, même si non
optimales en comparaison aux représentations s’apparentant au
bruit, survivent davantage au modèle de convolution que les im-
ages naturalistes. Ceci est démonstration du principe que la ten-
dance généralisée du cerveau à réduire les auto-corrélations pour-
rait résulter de représentations de l’information étant déjà
adéquatement compatibles avec la convolution, venant appuyer la
plausibilité neurale de la mémoire associative basée sur la convo-
lution.

Mots-clés : convolution, mémoire associative, rappel indicé,
représentations, modèles mathématiques.
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