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Abstract

The judgement of relative order (JOR) procedure is used to investigate serial-order memory.

Measuring response times, the wording of the instruction (whether the earlier or the later item is

designated as the target) reversed the direction of search in sub-span lists (Chan et al., 2009). If a

similar congruity e�ect applied to above-span lists, and furthermore, with error rate as the measure,

this could suggest how to model order-memory across scales. Participants performed JORs on lists

of nouns (Experiment 1: list lengths = 4, 6, 8, 10) or consonants (Experiment 2: list lengths = 4,

8). In addition to the usual distance, primacy and recency e�ects, instruction interacted with serial

position of the later probe in both experiments, not only in response time, but also in error rate,

suggesting that availability, not just accessibility, is a�ected by instruction. The congruity e�ect

challenges current memory models. We fitted Hacker’s (1980) self-terminating search model and

found a switch in search direction could explain the congruity e�ect for short lists but not longer

lists. This suggests that JORs may need to be understood via direct-access models, adapted to

produce a congruity e�ect, or a mix of mechanisms.
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Introduction

In remembering everyday information, such as a telephone number, a route or a sequence

of events, order is central (Lashley, 1951). A relatively simple test of memory for order is the

judgement of relative order (JOR) procedure (Butters, Kaszniak, Glisky, Eslinger, & Schacter,

1994; Chan et al., 2009; Fozard, 1970; Hacker, 1980; Hockley, 1984; Hurst & Volpe, 1982; Klein,

Shi�rin, & Criss, 2007; McElree & Dosher, 1993; Milner, 1971; Muter, 1979; Naveh-Benjamin, 1990;

Wol�, 1966; Yntema & Trask, 1963). Illustrated in Figure 1, the JOR procedure tests memory for

relative order without requiring participants to produce the items from memory. The wording of a

JOR question typically takes a form like, “Which of two people left the party more recently?” A

logically equivalent form of this question could be: “Which of two people left the party earlier?”

Because formally, all that has changed is that the target became the non-target and vice-versa, one

might presume that these “earlier” and “later” instructions test the same information in memory.

Perhaps this is why few studies have compared these instructions. The vast majority have used a

“recency” instruction, hence the term, “judgement of relative recency” (the origin of the acronym,

JOR). However, instructions do influence JOR performance on both supra- and sub-span lists:

Flexser and Bower (1974) found that their “distant” instruction had worse overall accuracy than

their “recency” instruction. More specifically, Chan et al. (2009) found that participants’ behaviour

on sub-span lists resembled backward, self-terminating search for a “later” instruction, consistent

with previous findings (Hacker, 1980; Muter, 1979), but forward, self-terminating search for an

“earlier” instruction. Here we ask whether this congruity e�ect is confined to sub-span lists, or

generalizes to longer, supra-span lists.

Figure 2c illustrates how hypothetical response-time data would look for a forward, self-

terminating search strategy. The vertical axis plots the behavioural measure; for illustration pur-

poses we label it “error rate” or “response time,” because speed–accuracy tradeo�s notwithstanding

(and we found none in our data), one would expect response time and error rates to vary in the

same direction as one another. The left horizontal axis plots the serial position of the earlier probe

item, and the right horizontal axis plots the serial position of the later probe item. Note that

the later-item serial position is plotted in descending order to minimize the bars occluding one

another. In forward, self-terminating search, response time/error rate increases as a function of the
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earlier probe serial position, whereas the later probe serial position has no influence on response

time/error rate. The opposite pattern is expected for backward self-terminating search, where re-

sponse time/error rate increases when the later probe serial position decreases (Figure 2d). The

e�ect of instruction can be most clearly visualized if we plot the di�erence between the “earlier”

and “later” instruction data (Figure 2e).

We already know that JORs for supra-span lists are qualitatively quite di�erent, and two

important findings may suggest we would not find a congruity e�ect at longer list lengths: (a)

a distance e�ect (Figure 2a), whereby judgements are better (faster and more accurate) as the

di�erence in serial positions (distance) of the two probe-items increases (e.g., Bower, 1971; Yntema

& Trask, 1963), similar to the symbolic distance e�ect (e.g., Banks, 1977; Holyoak, 1977; Moyer &

Landauer, 1967); and (b) an inverted U-shaped serial position e�ect, comprised of a primacy and

recency e�ect (Figure 2b) (e.g., Hacker, 1980; Jou, 2003; Muter, 1979; Yntema & Trask, 1963).

Chan et al.’s congruity e�ect was found for response times, suggesting that instruction influenced

access-speed as a function of serial position. For supra-span JORs, error rate is also a useful

dependent measure. As list length increases above span, error rate increases; in an extreme case,

with a list length of 90 words, accuracy approached chance-levels, rising to 60% accuracy only

for very large lags (distance of 36 words; Klein et al., 2007). Primacy and recency e�ects may

seem at odds with self-terminating search models that are reasonable accounts of sub-span data

(Chan et al., 2009). However, Hacker (1980) suggested that, in the case of imperfect item-memory,

U-shaped serial position e�ects due to item-memory might distort self-terminating search patterns

in JORs, an idea he incorporated into his self-terminating search model. The distance e�ect is

Figure 1 . Time course of one example experimental trial in Experiment 1 (list length=4 nouns)
with both instructions. At test, two nouns from the list are presented in random order, and the
participant is asked to respond to the probe stimulus that occurred earlier (“earlier” instruction)
or later (“later” instruction) in the just-presented list. The correct response item is depicted on
a dark background in this figure only, not in the experiment itself. The keyboard key that the
participant would press to select each probe item is depicted underneath the probe items.
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a Distance b Primacy + Recency

c Forward Self-terminating d Backward Self-terminating e Earlier – Later

f E�ects Combined (Earlier) g E�ects Combined (Later)

Figure 2 . Schematic depictions of hypothesized serial position e�ects. The dependent measure
(error rate or response time) is plotted as a function of both the earlier probe-item’s serial position
(“Earlier Item”) and later probe-item’s serial position (“Later Item”). a, Serial position e�ects
expected due to the distance e�ect. b, Serial position e�ects expected due to the primacy and
recency e�ect. c, Serial position e�ects for forward, self-terminating search, as was found in sub-
span lists using the “earlier” instruction (Chan et al., 2009). d, Serial position e�ects for backward,
self-terminating search, as was found in sub-span lists using the “later” instruction (Chan et al.,
2009). e, The di�erence between (a) and (b), which we use to isolate the congruity e�ect. f, Our
hypothesized serial position e�ects for the “earlier” instruction for supra-span lists: an average of
recency, distance and instruction-based bias across the list. g, Our hypothesized serial position
e�ects for the “later” instruction, as an average of recency, distance and instruction-based bias
across the list. Note that the hypothesis for the di�erence between instructions for supra-span lists
remains as in (e), except that edge e�ects are expected to produce bow-shaped, rather than linear
congruity e�ects.
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also incompatible with self-terminating search, because the position of the unreached probe item

should not a�ect the outcome of the JOR decision. These arguments might lead one to expect no

congruity e�ect in long lists.

On the other hand, there are reasons to expect there should be a congruity e�ect at long

list lengths. Evidence suggests there is no clear distinction between short- and long-term order-

memory (McElree, 2006). Moreover, Muter (1979) found a backward self-terminating search pattern

extending to lists of ten items (supra-span). Hacker’s (1980) data did not show obvious break

points of his “availability” parameter (representing item-memory) that could have distinguished a

working memory from a long-term memory. This is consistent with extensive evidence suggesting

that memory is scale-invariant (Brown, Neath, & Chater, 2007; Crowder, 1982; Howard & Kahana,

1999; Nairne, 2002). We suggest it is possible both long and short list lengths are governed by the

same memory mechanisms, and the congruity e�ect will generalize from short to longer list lengths.

In addition, the self-terminating search model has been fitted to long-list JOR data with

success (Hacker, 1980; McElree & Dosher, 1993). It is possible that a self-terminating search model

operating in the forward, rather than the backward, direction could explain the “earlier” instruction

data and thus account for the congruity e�ect. Thus, the “earlier” instruction might induce a

dominant primacy e�ect even for longer lists. In serial-recall procedures, forward recall shows a

dominant primacy e�ect, whereas backward recall shows a dominant recency e�ect (Beaman, 2002;

Hulme et al., 1997; Li & Lewandowsky, 1993, 1995; Li et al., 2010; Madigan, 1971; Richardson,

2007; Rosen & Engle, 1997; Thomas, Milner, & Haberlandt, 2003), suggesting that if forward-search

is based on serial recall, this kind of mechanism might be applicable even for longer lists. At present,

published studies of supra-span JORs have mainly used a “recency” instruction to look at serial

position e�ects, similar to our “later” instruction (Butters et al., 1994; Chan et al., 2009; Fozard,

1970; Hacker, 1980; Hockley, 1984; Hurst & Volpe, 1982; Klein et al., 2007; McElree & Dosher, 1993;

Milner, 1971; Muter, 1979; Naveh-Benjamin, 1990; Wol�, 1966; Yntema & Trask, 1963). Wyer,

Shoben, Fuhrman, and Bodenhausen (1985) used both “sooner” and “later” instructions with probes

derived from a social-action script (e.g., going to a restaurant), and found a response time congruity

e�ect, but not for events that were specific to the example story. A similar response time congruity

e�ect was found for personal life events in a subset of experimental conditions (Fuhrman & Wyer,

1988). These congruity e�ects for action scripts and personal life events may reflect supra-span
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phenomena, but both types of material are arguably tapping into semantic, not episodic, temporal

order. We wondered if the JOR-congruity e�ect would generalize above span, with response time as

the measure. Since we expected error rate to be an informative dependent measure for these lists,

we wondered whether instruction would a�ect the quality of information in memory (availability),

measured by error rate, or just accessibility, measured by response time. An error rate congruity

e�ect has been found in autobiographical order tasks with yes/no judgements (Skowronski, Walker,

& Betz, 2003; Skowronski et al., 2007); however, participants’ confirmation bias (toward selecting

“yes” rather than “no”) might underlie that result. We found no clear published error rate congruity

e�ect for temporal-order memory, although error-rate congruity e�ects have occasionally been found

for perceptual comparative judgements (Petrusic, 1992). We therefore hypothesized that a similar

congruity e�ect would be observed in supra-span JOR data, but with the addition of recency,

primacy and distance e�ects, with both response time and error rate as measures. If we assume

that the primacy, recency and distance e�ects are approximately constant between instructions,

we can isolate the congruity e�ect by analyzing the di�erence between instructions (Figure 2e),

which would then look similar to that observed in sub-span response time data (Chan et al., 2009).

We test these hypotheses in two experiments, always manipulating instruction between subjects.

Experiment 1 used lists of nouns, and manipulated list length (4, 6, 8 and 10) within subjects.

Experiment 2 used consonant lists, and manipulated list length (4 and 8) between subjects. The

experiments produced similar results, suggesting broad boundary conditions for the congruity e�ect.

Experiment 2 used the same materials and presentation rate as Chan et al.’s (2009) experiment.

To broaden the theoretical implications of our results, we evaluated our findings with respect

to Hacker’s (1980) self-terminating search model. Hacker developed this model specifically to ex-

plain JORs, but it has not been tested on the congruity e�ect. We hypothesize the congruity e�ect

can be explained by a di�erence in the direction of search associated with each instruction. Partic-

ipants may perform forward, self-terminating search with the “earlier” instruction, and backward,

self-terminating search with the “later” instruction, and we test this with fits of models based on

Hacker’s model after presenting the results of both experiments. We also discuss whether other

existing memory models for JOR paradigm could account for the congruity e�ect in their current

form, or could be easily adapted to do so.
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Experiment 1

Methods

Participants. Fourteen participants were recruited from the University of Alberta com-

munity. Participants gave informed consent and were paid at a rate of $12 for each of five 1-h

sessions, conducted on five consecutive days. All had normal or corrected-to-normal vision and had

learned English before the age of 6. Participants were randomly assigned to the “earlier” or “later”

group in alternating testing order. One participant in the “later” instruction did not attend the

last session, so for that participant, only the first four sessions were included in the analyses.

Materials. Stimuli were 1316 nouns generated from the MRC Psycholinguistic Database

(Wilson, 1988) with word length restricted to three to eight letters, two syllables and Kucera-Francis

written frequency above 6 per million, displayed in all capital letters. Nouns that we subjectively

determined might be confused with verbs were manually removed from the list. Each trial was

randomly drawn from list length 4, 6, 8, and 10, counterbalanced within-session. There was no

within-session repetition of words, but words were re-used across sessions. All participants were

tested using an A1207 iMac computer with an Apple Macintosh A1048 Pro keyboard.

Procedure. The experiment was implemented with the Python Experiment-Programming

Library (PyEPL; Geller, Schleifer, Sederberg, Jacobs, & Kahana, 2007) and modified from Chan et

al.’s (2009) experiment (Figure 1). Probes were pairs of items drawn from the just-presented list,

and all possible combinations were equally probable and counterbalanced within subject and within

list length. Participants in the two groups received slightly di�erent instructions: (a) Excerpt from

the “earlier” instruction: “. . . judge which of the two nouns came earlier on the list you just studied.

Press the ‘/’ key if the earlier item is presented on the right side of the screen and the ‘.’ key if

the earlier item is on the left side of the screen. . . . ” (b) Excerpt from the “later” instruction:

“. . . judge which of the two nouns came later on the list you just studied. Press the ‘/’ key if the

later item is presented on the right side of the screen and the ‘.’ key if the later item is on the left

side of the screen. . . ”. Participants were instructed to respond as quickly as they could without

compromising accuracy. A session consisted of 9 blocks with 20 trials in each block. The first block

of each session was a practice block, excluded from analyses, composed of 8 trials, to familiarize

(or re-familiarize) participants with the task. The computer provided immediate accuracy feedback
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after each trial in practice block (“correct” or “incorrect”), and average response time (ms) and

accuracy (%correct) at the end of each experimental block. Each trial began with a fixation asterisk,

‘*’, in the center of the screen, followed by a word list presented sequentially in the center of the

screen. Items were presented for 1500 ms each with an inter-stimulus interval (ISI) of 175 ms. This

is slower than the rate Chan et al. (2009) used (575 ms presentation time and 175-ms ISI), due to

the greater stimulus complexity of nouns compared to consonants (e.g., Sternberg, 1975). After a

2500-ms delay, participants were presented with a single probe consisting of two words from the

just-presented list and were asked which item was presented earlier or later, depending on group,

by pressing ‘.’ key (for the left-hand probe item) or the ‘/’ key (for the right-hand probe item).

After a 500-ms delay, participants could press a key to start the next trial.

Data analysis. Trials with response time less than 200 ms and above three standard de-

viations from a participant’s mean response time were removed from the data (1.3% of responses).

Linear mixed e�ects (LME) model (Baayen, Davidson, & Bates, 2008; Bates, 2005) was used to

analysis our data. We adopted LME analysis because compared to ANOVA, LME handles unbal-

anced designs, can fit individual responses without the need for averaging of the data, and protects

against type II error due to increased power (Baayen et al., 2008; Baayen & Milin, 2010). LME

analyses were conducted in R (Bates, 2005), using the LME4 (Bates & Sarkar, 2007), LanguageR

(Baayen, 2007) and LMERConvenienceFunctions (Tremblay, 2013) libraries. The “lmer” function

was used to fit the LME model. The “pamer.fnc” function was used to calculate the p values of

model parameters. Eight fixed factors were used as predictors, including Instruction (“earlier”,

“later’), linear and quadratic component of Later Probe Serial Position (serial position of the probe

item that appeared later from the presented list), Distance (absolute value of the di�erence between

two probe’s serial positions), Intact/Reverse (whether probe order was consistent or inconsistent,

with presentation order, respectively), Trial Number, Session Number, and List Length. The linear

and quadratic component of the Later Probe Serial Position are orthogonal to each other, gen-

erated with the “poly” function in R. We included the quadratic term to account for expected

primacy and recency e�ect. Subject was included as a random e�ect on intercept. Instruction

and Intact/Reverse were treated as categorical factors. All other factors were scaled and centered

before being entered in the model. Response time was analyzed for correct trials only, and was

log-transformed to reduce skewness. The error rate data were fitted with logistic regression as it
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is a binary variable (“correct” vs. “incorrect”). LME estimates random e�ects first, followed by

fixed e�ects. In the results tables, the “Estimate” column reports the corresponding regression

coe�cients, along with their standard errors. For the purposes of reporting the LME results, the

Intact condition and the “earlier” instruction were set as the reference levels for the Intact/Reverse

and Instruction factors, respectively. The best fits of LME models were obtained by conducting a

series of iterative tests comparing progressively simpler models with more complex models using

the Bayesian Information Criterion (BIC). We used BIC because it penalizes free parameters more

than the Akaike Information Criterion (AIC), making it conservative and resistant to over-fitting

(Motulsky & Christopoulos, 2004; Zuur, Leno, Walker, Saveliev, & Smith, 2009). This approach

is adopted to remove interactions and variables that do not explain significant amount of variance

(Baayen et al., 2008). We used LMERConvenienceFunctions (Tremblay, 2013) library to conduct

fitting of fixed e�ects systematically. In this approach, for each condition we started with a model

that included all factor combinations and interactions with two exceptions: a) The quadratic com-

ponent of Later Probe Serial Position was not allowed to interact with the linear component of

Later Probe Serial Position because both were derived from the Later Probe Serial Position. b)

Any interaction term for which one or more levels had no data. Starting with the complete model,

the highest-order terms are considered first, progressing to the lowest-order terms. At each stage,

considering a given order of interaction, the term with the lowest p value is identified and a model

without this term is compared with the original model using BIC. The term is kept if it improves

BIC based on a threshold of 2 or if the term is also contained within a higher-order interaction.

When all terms are tested for the highest-order interaction, the comparison process continues to

the term with lowest p value in the next highest-order interaction, and so on. The process iterates

until all interaction terms have been tested, ending with main e�ects (Tremblay, 2013).

Results and Discussion

Error rate and response time, averaged across participants, are plotted as functions of serial

position of the earlier and later probe items in Figures 3 and 4. We isolated the congruity e�ect

by plotting the di�erence between the “earlier” and “later” instructions after first removing the

overall mean for each participant (right-hand columns). The best-fitting LME model is reported

in Table 1 and 2. To better visualize the pattern of serial-position e�ects, the overall mean was
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Estimate (SE)
Main e�ects

Intercept -2.989 (0.287)ú

Intact/Reverse 0.5316 (0.090)ú

Later Probe Serial Position (Quadratic) -51.39 (5.701)ú

Instruction 0.609 (0.393)
Distance -0.612 (0.061)ú

Trial -0.082 (0.032)ú

List Length 1.225 (0.055)ú

Session 0.086 (0.032)ú

Later Probe Serial Position (Linear) -79.77 (8.020)ú

Interactions

Intact/Reverse ◊ Instruction -1.321 (0.132)ú

Trial ◊ Session 0.122 (0.032)ú

Instruction ◊ Later Probe Serial Position (Linear) -35.44 (6.873)ú

Distance ◊ Later Probe Serial Position (Linear) 26.47 (5.303)ú

LL ◊ Later Probe Serial Position (Linear) 42.37 (5.999)ú

Table 1
The best-fitting LME model for experiment 1 error rate results. The congruity e�ect is in bold. The
“Estimate” column reports the corresponding regression coe�cient, along with its SE (standard
error). Significant e�ects are denoted * - p < 0.05.

removed to correct for the mean di�erence between the “earlier” and “later” instruction.

Error rates. First, we replicated the known e�ects of bow-shaped serial position e�ects

and distance e�ects. At all list lengths and for both instructions, the error rate data (Figure

3) showed a distance e�ect (Figure 2a), supported by a significant main e�ect of Distance, and

bow-shaped serial position e�ect involving both primacy and recency (Figure 2b), supported by

significant quadratic component of the Later Probe Serial Position in the best-fitting LME model

(Table 1). The “later” instruction (Figure 3, middle column) broadly resembled the “earlier”

instruction (Figure 3, left-hand column) except that the recency e�ect was more pronounced for

the “later” instruction.

We next asked whether, despite the presence of distance and serial-position e�ects, there

might also be a congruity e�ect. The di�erence bar graph (Figure 3, right-hand column) shows

that instruction indeed interacted with Probe serial positions, supported in the LME analysis by

interactions between Instruction and linear component of Later Probe serial position (Table 1).

This interaction was due to the “earlier” instruction producing better performance at earlier serial

positions, and the “later” instruction producing better performance at later serial positions, in line
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Figure 3 . Error rate (Experiment 1) as a function of both probe items’ serial position (earlier item
and later item, respectively) broken down by list length in rows, and instruction (“earlier”, “later”
and the di�erence, “earlier”≠“later”, corrected for mean error rate) in columns.
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with our predicted congruity e�ect (Figure 2e).

Additional findings of interest that emerged from the best-fitting LME model were main

e�ects of List Length, Intact/Reverse, Trial and Session. More error was associated with greater

list length, reverse probe presentation order, lower trial number and lower session number.

Importantly, list length did not interact with the congruity e�ect, suggesting the congruity

e�ect on error rate is replicated at all list lengths and does not change substantially across our

four list lengths. We found a significant Trial ◊ Session interaction. The interaction is consistent

with learning-to-learn e�ects; larger trial numbers have less errors, and this e�ect reduces in later

sessions. Importantly, Trial and Session both did not interact with the congruity e�ect, showing

that the congruity e�ect generalizes across these factors.

Finally, a significant interaction was found for Instruction ◊ Intact/Reverse. This is a second

kind of congruity e�ect between instruction and reading order: Intact probes were judged better

for the “earlier” instruction and worse for the “later” instruction. Reverse probes had the oppo-

site relationship to instruction. If participants read from left to right, this would indicate better

performance when the target was read first.

Response times. First, as with error rate, for all list lengths and both instructions, the

response time data (Figure 4) had significant distance and bow-shaped serial position e�ects (Figure

2a), supported by a significant main e�ect of Distance and quadratic component of Later Probe

Serial Position, respectively, in the best-fitting LME model (Table 2).

Turning to the congruity e�ect, as with error rate, the di�erence bar graph (Figure 4, right-

hand columns) shows the predicted congruity e�ect, supported in the LME analysis by significant

interactions between Instruction and linear component of Later Probe serial position (Table 2).

Again, in line with our predicted congruity e�ect (Figure 2e), the “earlier” instruction produced

better performance at earlier serial positions, and vice versa for the “later” instruction.

We further checked whether the congruity e�ect was qualified by significant three-way inter-

actions in the best-fitting LME model. The three-way interaction of Instruction ◊ linear component

of Later Probe Serial Position ◊ Distance showed increasing Distance was associated with a de-

crease in the slope of the linear component of Later Probe Serial Position for both instructions

(see Figure S1 in supplementary materials). However, the rate of the linear component of Later

Probe Serial Position function’s slope decrease was steeper for the “earlier” instruction than for the
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Figure 4 . Response time (Experiment 1) as a function of both probe items’ serial position (earlier
item and later item, respectively) broken down by list length in rows, and instruction (“earlier”,
“later” and the di�erence, “earlier”–“later”, corrected for mean response time) in columns.
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Estimate (SE)
Main e�ects

Intercept 7.20 (0.07)ú

LL 0.28 (0.01)ú

Instruction 0.075 (0.10)
Intact/Reverse 0.038 (0.01)
Trial -0.015 (0.01)ú

Distance -0.125 (0.01)ú

Session -0.141 (0.01)ú

Later Probe Serial Position (Linear) -17.5 (1.5)
Later Probe Serial Position (Quadratic) -18.1 (1.3)ú

Interactions

LL ◊ Instruction 0.056 (0.01)ú

LL ◊ Distance -0.015 (0.01)
LL ◊ Session 0.030 (0.00)ú

LL ◊ Later Probe Serial Position (Linear) 10.7 (1.2)ú

Instruction ◊ Intact/Reverse -0.081(0.02)ú

Instruction ◊ Trial –0.032 (0.00)ú

Instruction ◊ Distance 0.089 (0.02)ú

Instruction ◊ Session -0.030 (0.01)ú

Instruction ◊ Later Probe Serial Position (Linear) -13.7 (1.7)ú

Trial ◊ Session 0.019 (0.00)ú

Distance ◊ Later Probe Serial Position (Linear) 7.67 (1.2)
Session ◊ Later Probe Serial Position (Linear) -2.65 (0.62)ú

LL ◊ Later Probe Serial Position (Quadratic) 3.25 (0.76)ú

Instruction ◊ Later Probe Serial Position (Quadratic) 10.9 (1.25)ú

Instruction ◊ Distance ◊ Later Probe Serial Position (Linear) -6.13 (1.2)ú

LL ◊ Instruction ◊ Later Probe Serial Position (Quadratic) -6.29 (1.0)ú

Table 2
The best-fitting LME model for experiment 1 response time. The congruity e�ect is in bold. The
“Estimate” column reports the corresponding regression coe�cient, along with its SE (standard
error). Significant e�ects are denoted * - p < 0.05.
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“later” instruction. The di�erential rate of slope decrease, thus, does not contradict the congruity

e�ect. The interaction of Instruction ◊ quadratic component of Later Probe Serial Position ◊ List

Length showed a pattern of decreasing quadratic component of Later Probe Serial Position slope for

the “later” Instructions and increasing quadratic component of Later Probe Serial Position slope

for the “earlier” Instruction, as List Length increases (see Figure S2 in supplementary materials).

This interaction suggests the di�erence in the primacy and recency e�ects between instructions

decreases as list length increases.

Similar to the error rate results, we found Trial ◊ Session and Instruction ◊ Intact/Reverse

interactions. Instruction also interacted with Trial, Session, and Distance. Response time in the

“later” instruction improved more with practice than the in “earlier” instruction. The “later”

instruction also had a smaller distance e�ect than the “earlier” instruction. List Length interacted

with Instruction, Session and Later Probe Serial Position. To summarize this e�ect, increasing list

length was associated with slower response times for the “later” instruction, higher session number

and larger Later Probe Serial Position.

In sum, experiment 1 replicated the typical primacy, recency and distance e�ects (Hacker,

1980; Jou, 2003; Muter, 1979; Yntema & Trask, 1963), and extended Chan et al.’s (2009) congruity

e�ect finding from sub-span (e.g., list length 4) to supra-span data (up to list length 10). The

congruity e�ect appeared in both error rate and response time measures.

Experiment 2

One potential confound in experiment 1 is that participants were given four list lengths,

intermixed. It is possible that that the congruity e�ect is in fact a sub-span— not supra-span—

phenomenon, but that the inclusion of some sub-span lists (list length 4) influenced participants

to apply a sub-span strategy to supra-span lists. Thus, perhaps our congruity e�ect in supra-span

lists is a special case. To address this, list length was a between-subjects factor in experiment 2.

In addition, to test for boundary conditions of the congruity e�ect, we switched from nouns to

consonants and to a faster presentation rate (similar to the one used by Chan et al., 2009). If the

congruity e�ect were found regardless of practice e�ects, stimulus type and presentation rate, the

generality of congruity e�ect would be further supported.
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Methods

Participants. A total of 385 undergraduate students from introductory psychology courses

at the University of Alberta participated in exchange for partial course credit. Participants gave

informed consent, had normal or corrected-to-normal vision and learned English before age 6.

We included two between-subjects factors: list length (4, 8) ◊ Instruction (“earlier”, “later”).

Participants were run in groups of about 10–15 with all participants within a testing group being

assigned to a single experimental group; experimental group cycled across testing groups. Forty-

four participants were excluded because their error rate was close to chance (Ø 40%). The number

of excluded versus included participants in each condition is summarized in Table 5.

Materials. Materials were the same as those used by Chan et al. (2009). Stimuli were

16 consonants (excluding S, W, X, and Z) from the English alphabet displayed in capital letters.

Each list comprised 4 or 8 (depending on group) consonants drawn at random without replacement

from the stimulus pool, with the restriction that they did not appear in the two preceding lists.

Probability was equal for each consonant/serial-position combination. All participants were tested

using a group of 15 computers (custom-built PCs) with identical hardware, identical Samsung

SyncMaster B2440 monitors and Logitech K200 keyboards. Therefore both instruction groups

were exposed to the same hardware precision variabilities (Plant & Turner, 2009), thus we do not

expect any bias in our between-subjects design.

Procedure. The experiment was again created and run using the Python Experiment-

Programming Library (Geller et al., 2007). A single session lasted approximately one hour. The

session started with a practice block of 8 trials, followed by 9 blocks of 20 trials each for list length

4, and 6 blocks of 20 trials each for list length 8. The di�erent number of blocks ensured that

all participants could finish within one hour. The computer provided online correctness feedback

after each trial in practice block (“correct” or “incorrect”), and average response time (ms) and

accuracy (%correct) at the end of each block. The instructions were the same as experiment 1

except the word “nouns” was replaced with “consonants.” For each trial participants were first

presented with a fixation asterisk, ‘*’, in the center of the screen, then followed by a consonant list

that was presented sequentially on the center of the screen with list items presented for 575 ms

each with an ISI of 175 ms. After a 2500-ms delay, participants were presented with a two-item
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Figure 5 . Error rate (Experiment 2) as a function of both probe items’ serial position (earlier item
and later item, respectively) broken down by list length in rows, and instruction (“earlier”, “later”
and the di�erence, “earlier”–“later”, corrected for mean error rate) in columns.

probe that consisted of two consonants from the just-presented list and were asked which item

was presented earlier/later in the list by pressing the ‘.’ (for the left-hand item) or ‘/’ key (for the

right-hand item). Each response was followed by a 500-ms delay before participants could press

any key to start the next trial.

Data Analysis. Trials with response time less than 200 ms and above three standard

deviations from a participant’s mean response time were removed from the data (1.35% of all

trials). We adopt the same data representation as in experiment 1. Error rate and response time

(correct trials) data were analyzed at each list length separately.

Results and Discussion

Error rates. First, because performance was near ceiling, we could not analyze error rates

at list length 4 (Figure 5, top row) in any meaningful way. Out of 171 participants for both list

length 4 “earlier” and “later” instruction, 89 participants had overall accuracy greater than 95%

and only 18 participants scored below 90%. We restrict our error-rate analyses to list length 8 only.

The list-length-8 data (Figure 5, bottom row) showed a congruity e�ect consistent with the
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BIC AIC Log-likelihood Degrees of freedom
Best BIC model + Congruity e�ect 10119 19048 -9515.0 9

Best BIC model 10120 19057 -9520.6 8
Model di�erence (‰2 = 11, p < 0.05) -1 -9 5.6 1

Table 3
Model comparison of best BIC model to best BIC model plus Instruction ◊ linear component of
Later Probe Serial Position. Note that for BIC and AIC, lower numbers indicate better fit but
for log-likelihood, higher numbers indicate better fit. The log-likelihood ratio test using ‰2 test was
significant.

Estimate (SE)
Main e�ects

Intercept -1.507 (0.06)ú

Intact/Reverse 0.405 (0.05)ú

Later Probe Serial Position (Linear) -40.92 (6.18)ú

Instruction 0.735 (0.09)ú

Distance -0.266 (0.02) ú

Trial -0.134 (0.03)ú

Interactions

Intact/Reverse ◊ Instruction -1.047 (0.07)ú

Instruction ◊ Later Probe Serial Position (Linear) -27.33 (8.20)ú

Table 4
The best-fitting LME model for experiment 2 list length 8 error rates. The congruity e�ect is in
bold. The “Estimate” column reports the corresponding regression coe�cient, along with its SE
(standard error). Significant e�ects are denoted * - p < 0.05.

pattern observed in experiment 1 (Figure 2e), with the “earlier” instruction resulting in more errors

than the “later” instruction as Later Probe Serial Position increased, supported by a significant

Instruction ◊ Later Probe Serial Position (linear component) interaction in the best-fitting LME

model (Table 4). For this LME model-selection, based on the BIC values, we cannot di�erentiate

the lowest BIC model that included Instruction ◊ Later Probe Serial Position (the congruity e�ect),

and the same model without the congruity e�ect term, because �BIC < 2. However, because the

model that included the congruity e�ect was nominally better by the BIC, we further compared the

two models using other fitness criteria. The model that included the congruity e�ect was reliably

selected based on both AIC and log-likelihood (Table 3). For this reason, we report the model

including the congruity e�ect. Importantly, the congruity e�ect did not interact significantly with

Trial, Distance or Intact/Reverse, suggesting that it generalizes across these factors.
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Earlier list length 4 Earlier list length 8 Later list length 4 Later list length 8
Error rate Ø 40% 2 12 11 19

Total 92 99 92 102

Table 5
The number of participants rejected for analysis (error rate Ø 40%) versus total number of subjects
in each condition. A chi-square test found di�erences between number of included subjects for list
length 4 and list length 8 were both significant (‰2=41.2, df=1, p < 0.001 and ‰2=4.05, df=1,
p < 0.05 respectively).

One can observe an overall recency e�ect at both list lengths (Figure 5), supported by signif-

icant Later Probe Serial Position main e�ect in the LME model, showing that error rate decreased

as Later Probe Serial Position increased. The distance e�ect (Figure 2a) was also found, supported

by a significant main e�ect of Distance in the best-fitting LME model. There was also a significant

main e�ect of Intact/Reverse and of Instruction; intact probes were better judged than the reverse

probes, again suggesting a reading-order e�ect. Probes in the “earlier” instruction were better

judged than in the “later” instruction. This is despite more poor performers having been excluded

for the “later” instruction (Table 5); thus, this indicates an overall advantage of the “earlier” in-

struction over the “later” instruction. Replicating experiment 1, the Intact/Reverse ◊ Instruction

congruity e�ect was also significant; intact probes were judged better for the “earlier” instruction

and worse for the “later” instruction. Reverse probes had the opposite relationship to instruction.

Response Time. First, as with experiment 1 error rates and response time results, vi-

sual inspection of list length 4 “earlier” instruction found a pattern consistent with forward self-

terminating search (Figure 2c), and list length 4 “later” instruction found pattern consistent with

backward self-terminating search, in line with Chan et al.’s (2009) results. For list length 8, the

“earlier” instruction pattern resembled a distance e�ect with an overall primacy and recency e�ect

(Figure 2f). The “later” instruction resembled a backward self-terminating pattern combined with

distance, primacy and recency e�ects (Figure 2g). The distance e�ect, primacy and recency e�ects

for both list lengths are supported by a significant main e�ect of Distance and quadratic component

of Later Probe Serial Position, respectively, in the best-fitting LME models.

Again, replicating the experiment 1 results, the response time data for both list length 4 and

list length 8 (Figure 6) showed a congruity e�ect (Figure 2e). The congruity e�ect is supported in

the best-fitting model by a significant interaction of Instruction ◊ Later Probe Serial Position (linear
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Figure 6 . Response time (Experiment 2) as a function of both probe items’ serial position (earlier
item and later item, respectively) broken down by list length in rows, and instruction (“earlier”,
“later” and the di�erence, “earlier”–“later”, corrected for mean response time) in columns.

Estimate (SE)
Main e�ects

Intercept 6.756 (0.053)ú

List Length 0.439 (0.046)ú

Instruction 0.564 (0.036)ú

Intact/Reverse 0.138 (0.031)ú

Trial -0.032 (0.009)ú

Distance -0.232 (0.014)ú

Later Probe Serial Position (Linear) -29.38 (16.88)ú

Later Probe Serial Position (Quadratic) -85.48 (7.816)ú

Interactions

Instruction ◊ Later Probe Serial Position (Linear) -53.72 (4.38)ú

Trial ◊ Later Probe Serial Position (Linear) ◊ Instruction -6.025 (1.45)ú

Intact/Reverse ◊ Later Probe Serial Position (Linear) ◊ Instruction -109.5 (7.17)
Distance ◊ Later Probe Serial Position (Linear) ◊ Instruction -8.512 (2.085)ú

List Length ◊ Intact/Reverse ◊ Instruction ◊
Later Probe Serial Position (Linear) 95.67 (5.52)ú

Table 6
The best-fitting LME model for experiment 2 response time. The congruity e�ect is in bold. The
“Estimate” column reports the corresponding regression coe�cient, along with its SE (standard
error). Significant e�ects are denoted * - p < 0.05. Due to space constraints, this table reports
interactions relevant to the Instruction ◊ Later Probe Serial Position (Linear) only; see supple-
mentary materials Table S1 for the full model.
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component) (Table 6). The two-way interaction is qualified by a significant four-way interaction of

List Length ◊ Instruction ◊ Later Probe Serial Position ◊ Intact/Reverse. We conducted additional

analyses on 4 subgroups of the data: list length 4 Intact, list length 4 Reverse, list length 8 Intact,

and list length 8 Reverse (see Tables S2, S2, S3, S4 and S5 in supplementary materials). The two-

way interactions of Instruction ◊ Later Probe Serial Position (linear component) were significant for

all four groups, and the e�ects were consistent in direction. In addition to the four-way interaction,

the congruity e�ect also interacted with Distance and Trials. The three-way interactions can be

understood as increasing Trial number, Distance all selectively facilitating the “later” instruction

response times at Later Probe Serial Positions, and having the opposite e�ect on the “earlier”

instruction response time at Later Probe Serial Positions. In other words, the linear Later Probe

Serial Position curve associated with the “earlier” instruction is less a�ected by reverse presentation

order, practice e�ect, and increasing Distance.

Replicating the experiment 1 response time results, the best-fitting LME model also revealed

other factors not observable on the data plots, including main e�ects of List Length, Instruction,

Trial and Intact/Reverse. Longer list length, “later” instruction, Reverse presentation order and

larger Trial number corresponded with slower response time. The two-way interaction of Instruction

◊ Intact/Reverse was also significant, suggesting a reading-order e�ect.

In sum, we found a congruity e�ect on error rate in list length 8, and a response time

congruity e�ect at both list lengths. This challenges the argument that the findings in experiment

1 were a consequence of mixing sub-span lists in with supra-span lists within subjects. Thus, the

congruity e�ect in JORs persists in supra-span lists, despite di�erences between experiments 1 and

2, including presentation rate, stimulus materials, and varied versus fixed list lengths.

Hacker’s backward self-terminating search model

The congruity e�ect may present a new challenge to mathematical models of serial-order

memory. Only a few models have been fit to JOR data (e.g., Brown, Hulme, & Preece, 2000;

Hacker, 1980; Lockhart, 1969; McElree & Dosher, 1993). Hacker’s (1980) model was designed to

explain JOR data with a recency instruction, and makes predictions about both response time and

error rate. We ask whether Hacker’s (1980) model can already explain the congruity e�ect in its

currently published form. If not, we ask whether the model can be modestly modified to explain
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the congruity e�ect.

Hacker (1980) proposed that JOR performance is driven by loss of some items from memory,

and backward, self-terminating search of the remaining, available items. The serial-comparison

process was assumed to start at the end of the list, progressing toward the beginning (hence,

backward), ending when a match to a probe items was found (hence, self-terminating). If an item

were “unavailable” due to item loss, the item would not be encountered during search. Probability

of a correct JOR (1–Error rate), Pij , can be computed:

Pij = –i + 1
2(1 ≠ –i)(1 ≠ –j), (1)

where i and j are the study–test lags of the more recent and less recent probe items, re-

spectively. –i is the probability that item i is available in memory, and Hacker treated –i as free

parameters. The first term reflects the case in which the later item is available (a correct response)

and the second term represents the case in which both probe items are unavailable, and the re-

sponse is made by guessing (probability correct=0.5). Hacker went on to model response times on

correct trials as follows, assuming that if an item is unavailable, it does not add to the response

time1.

response timeij = b +
I

–i

CA
i≠1ÿ

k=1
–k + 1

B

s

D

+ 1
2(1 ≠ –i)(1 ≠ –j) ◊

CA
nÿ

k=1
–k ≠ –i ≠ –j

B

s

DJ

/Pij ,

(2)

where b is a base-level response time for “overhead” processes unrelated to memory and s

is the rate to search and compare each available item. The term in the leftmost square bracket

represents the expected response time when search ends in a correct match, equal to the summed

availability of items less than i that must be compared at rate s ms/item. The sum is incremented

by 1 because i must be available to make a correct response (if not a guess). The other term is

for the condition when both probes are unavailable, in which case search is exhaustive, summing

the availability of all serial positions, excluding the probe serial positions i and j (because they are

1Hacker only applied his model to JORs of the last 7 list items. He needed an additional parameter, g, to account
for additional searching time towards the beginning of the list after the 7th-back item was reached. Because we
applied the model to search through the whole list, we no longer need the “shortcut” parameter g, so we set g = 0 to
obtain Equation 2.
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unavailable), at a rate of s ms/item. The matches and guesses are normalized by the Pij for that

comparison.

Note that the same –i values are used to calculate error rate and response time. For the

parameter search, we wanted to avoid finding a model that fit the “earlier” and “later” instructions

individually while failing to capture the di�erence due to instruction. We therefore opted for

a fitness measure that weighted the “earlier” data, the “later”’ data and the di�erence pattern

equally. Thus, we fitted Hacker’s model by minimizing the summed BIC of the “earlier” instruction,

“later” instruction and the di�erence between “earlier” and “later” instruction2 (both error rate and

response time). To compare models from di�erent parameter searches, we recalculated BIC without

the redundant “earlier”–“later” terms. We follow the rule of thumb that a change in BIC (�BIC)

of less than 2 is considered a non-significant di�erence between models. For error rate, we used the

variant of BIC that applies to the special case of least-squares estimation with normally distributed

errors on mean performance (Anderson & Burnham, 2004; Burnham & Anderson, 2002).

Fitting was done in MATLAB (The Mathworks, Inc. Natick, MA) with the simplex algorithm

(Nelder & Mead, 1965). With all model fits presented here, the initial parameters were randomly

chosen from a range of 0 to 1 for – and 0 to 2000 for b and s and the best-fitting model was the

best of 500 executions of the Simplex with di�erent random starting values.

Both list lengths were fit separately. Visual inspection of the simulated data produced by

the best-fitting models (Figure 7; cf. Figures 5 and 6) suggests that although the model can repro-

duce some important features of the data, it does not capture list length 4 error rate pattern well,

producing a ceiling error rate for the “later” instruction. The model also cannot account for the

“earlier” instruction response time pattern at both list lengths; in particular, it had trouble pro-

ducing the primacy-dominant pattern in the response time measure. However, the model produced

di�erences between instructions that resemble the empirical congruity e�ect qualitatively, and with

approximately the same magnitude (cf. Figures 3 and 5).

In summary, Hacker’s backward self-terminating search model ran into problems fitting serial-

position e�ects that have been suggested to reflect forward search, particularly for the list length

4, “earlier” data. Therefore, we next considered whether a forward self-terminating search model
2Note that BIC is a penalized log-likelihood criterion, expressed as ≠2(log≠likelihood) + k ú log(n), where k

represents the number of parameters and n represents the number of observations. Because k and n are constant in
our parameter search, the parameter search results should be equivalent to log-likelihood optimization.
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Figure 7 . Hacker’s model error rate (top half) and response time (bottom half), fit to experiment
2, as a function of both probe items’ serial position (earlier item and later item, respectively)
broken down by list length in rows, and instruction (“earlier”, “later” and the di�erence, “earlier”–
“later”, corrected for mean response time) in columns. *Note: The list length 4 error rate “later”
instruction is plotted on a di�erent scale than the earlier instruction because this model produced
very high values; it could not simultaneously account for both instruction’s empirical pattern and
their di�erence pattern.
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Forward Backward
list length b s b s �BIC

list length 4 748.45 316.60 1241.83 0 -8.35
list length 8 1882.04 114.96 2069.74 41.01 3.04

Table 7
Parameter summary of the Hacker forward versus backward self-terminating search model fitted for
the “earlier” instruction. Parameters b and s are presented for each model (Forward/Backward)
separately (units of ms). Hacker’s forward directional search BIC– backward directional search
BIC is presented at the last column. Although the best-fitting models were identified using a BIC
measure that weighted the “earlier,” “later” and “earlier”–“later” instructions equally, �BIC in this
table is computed with the “earlier” instruction data only. A negative �BIC indicates the forward
instruction fit better.

would address this limitation.

A forward-directed variant of Hacker’s self-terminating search model

To implement forward, self-terminating search, for error rate (Equation 1) we changed the

first –i to –j :

Pij = –j + 1
2(1 ≠ –i)(1 ≠ –j) (3)

Similarly, for response time (Equation 2), we changed the first –i term to –j and changed the

limits of summation over k. We first asked whether this forward search model would account better

for the “earlier” instruction data than the backward search model. The best-fitting model param-

eters from the best-fitting models are summarized in Table 7, along with �BIC values comparing

the forward model and backward models.

The forward model fit the “earlier” data better than the backward model for list length 4, but

for list length 8, the backward model fit better (lower �BIC), and did so by capturing the early-

serial-position advantage that presented a problem for the backward model (Figures 8). Fitting the

“earlier” data with the forward model and the “later” data with the backward model also improved

fit of the congruity e�ect qualitatively (cf. Figures 5 and 6).

For more insight, note that for the forward model, the “earlier” instruction fit by decreasing

–i over serial position (Figure 9a), whereas the “later” instruction fit by increasing –i over serial

position (Figure 9b). When both “earlier” and “later” instruction fit by the backward model,
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Figure 8 . The best-fitting hacker’s model generated plot using forward direction search for “earlier”
instruction (a,d) and backward direction search for “earlier” instruction (b,e). The right-hand col-
umn (c,f) represent the hacker’s model generated “earlier” – “later” di�erence pattern when fitting
the “earlier” instruction with forward directed search and “later” instruction with the backward
directional search.

the –i values were less steeply sloped for the “earlier” than the “later” instruction. It may seem

surprising that certain values of –i were near-zero. We understand this as follows. In the “earlier”

instruction, the last item of the list can never be a target. Since participants have very good

memory of this last item (McElree, 2006), they may easily rule it out as the target and respond

correctly. Because Hacker’s model selects the item it terminates on as its target, if the –ListLength

item were “available,” then paradoxically, the response would be incorrect. Thus, it appears that in

fitting the model, –ListLength took on a near-zero level as a means of producing very high accuracy

for this kind of probe (and likewise for the backward model).

In summary, Hacker’s model can fit shorter lists using forward self-terminating search for the

“earlier” instruction and backward search for the “later” instruction. This reversal of search direc-

tion does not appear to extend to longer list lengths. For the longer list lengths, direction of search

had to be backward for both instructions, but the degrees of freedom contained within the back-

ward, self-terminating search model were su�cient to produce a qualitatively and quantitatively
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Figure 9 . Availability (–i) parameter values plotted as functions of serial position.

reasonable congruity e�ect. We discuss alternative model accounts in the General Discussion.

General discussion

In experiment 1, we found that the congruity e�ect in the JOR task generalizes to supra-

span noun lists, along with the usual distance, primacy and recency e�ects and an intact/reverse

congruity e�ect. The presence of a congruity e�ect in error rate suggests that instruction not

only a�ects order memory retrieval speed, but also the quality of order information that can be

retrieved from memory. Experiment 2 replicated the experiment 1 findings, but with consonants

and a between-subjects manipulation of list length, suggesting presentation of varied list lengths

within subjects does not explain the congruity e�ect. The fits of Hacker’s model and the forward-

directed variant suggested that the congruity e�ect may arise for di�erent reasons at di�erent list

lengths; at short list lengths, the “earlier” instruction might in fact reverse the direction of self-

terminating search, but at longer list lengths, if search is in any sense directional, our model-fits

suggest that search is backward for both instructions.

Congruity e�ect across list length

Our results di�er from the list length 4 data reported by Chan et al. (2009) in several ways.

Chan et al. (2009) did not find distance e�ect nor an Intact/Reverse e�ect, all of which we found in

experiment 2, presumably due to higher power and the LME analyses. The finding of long-list-like
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features like a distance e�ect may not be surprising, as McElree and Dosher (1993) also found signs

of distance e�ect in relative short lists using a similar JOR response-signal speed-accuracy tradeo�

(SAT) procedure. Thus, our findings replicate and extend the congruity e�ect in sub-span lists

reported by Chan et al. (2009).

Extrapolating, one might expect a congruity e�ect will always be present, even for extremely

long list lengths. Alternatively, the congruity e�ect might become vanishingly small as list length

increases. Visual inspection of the data suggests the overall di�erence in response time remained

relatively constant across list lengths. Confirming the visual inspection, LME analysis found the

congruity e�ect did not interact with List Length in both the response-time and error rate data in

experiment 1. This suggests that the congruity e�ect is a general phenomenon that may apply to

arbitrarily long lists.

JORs as comparative judgements

Congruity e�ects similar to ours have been found in closely related paradigms, known as com-

parative judgements (see Birnbaum & Jou, 1990; Petrusic, 1992; Petrusic, Shaki, & Leth-Steensen,

2008, for reviews), in which a pairwise comparison is made on any of a broad range of stimulus

dimensions, including perceptual judgements (e.g., brightness, loudness) and symbolic judgements

(e.g., comparing animal size based on animal name). Distance e�ects, bowed serial position e�ects

and congruity e�ects were found in our temporal-order judgement data, and have been commonly

found in comparative judgement studies (Banks, 1977). This suggests that JORs may be viewed

as a specific instance of comparative judgements, supporting Brown et al.’s (2007) suggestion that

temporal order information is processed like magnitude-order information in humans. Thus, con-

gruity e�ects in JORs may occur for the same reason as they do in other comparative tasks.

Despite the similarities, evidence suggests episodic (temporal order) and semantic judgements

of order are not identical. In one study (Jou, 2003), the first nine letters of the English alphabet

were the list, and participants were asked to choose either the letter that appears “earlier” or “later”

in the alphabet. The 9-item alphabet condition is very similar to our list length 8 JOR task in

experiment 2, both with short lists of letters and with the “earlier” versus “later” instruction. Jou

(2003) found a main e�ect of instruction, with “earlier” response times faster than “later” response

times, but no congruity e�ect. These results, inconsistent with our findings, could be attributed to
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the over-learning of the alphabet, or that the forward recall direction is hard to overcome due to

the alphabet being highly practised in that direction.

One further reason for caution in relating the memory JOR congruity e�ect to congruity

e�ects in comparative judgements in that our sub-span results are consistent with sequential, self-

terminating search, but to our knowledge, sequential self-terminating search accounts have not been

considered for comparative judgments.

Comparison with forward and backward serial recall

The most common procedure used to investigate memory for order is serial recall, where

both item and order memory are tested (Kahana, 2012; Murdock, 1974). Could serial recall be

the basis of the self-terminating search strategy thought to support JORs? In forward serial recall,

participants recall from the beginning toward the end of a list, whereas backward recall starts

from the end of the list. At first blush, backward serial recall seems approximately like a mirror-

image of forward serial recall, with forward serial recall being dominated by a primacy e�ect and

backward serial recall being dominated by a recency e�ect (Madigan, 1971; Manning & Pacifici,

1983). Our JOR congruity e�ect suggests a similar mirroring of serial-position e�ects as forward

versus backward serial recall: the “earlier” instruction produced better judgements at earlier serial

positions (primacy e�ect), whereas the “later” instruction produced better judgements at later

serial positions (recency e�ect). However, there are several empirical dissociations that suggest

forward and backward serial recall may rely on di�erent cognitive mechanisms (see Richardson,

2007, for a review). Backward serial recall may rely on more visuospatial processing than forward

serial recall (Li & Lewandowsky, 1993, 1995; Reynolds, 1997). Thomas et al. (2003) found a

response time pattern that suggested simple sequential search of the items in forward recall but for

backward recall, a U-shaped response time curve suggested participants may have used multiple

forward recalls when recalling backward.

Another interesting set of findings that may inform our results comes from a comparison of

free recall with forward serial recall (Ward, Tan, & Grenfell-Essam, 2010). Because free recall does

not dictate order of report, participants are free to initiate recall at any serial position. Ward et al.

(2010) found that for shorter list lengths, the free-recall order resembled their forward serial-recall

results; thus, participants prefer to recall short lists in the forward direction. In contrast, at long
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list lengths, participants chose to initiate recall with one of the last four items, which, although

not identical, is more like backward than forward serial recall. This may indicate that a forward

search strategy is available and convenient for JORs, but more so for short than long lists, which

is consistent with our model fits. Thus, JORs might be carried out using a covert serial-recall-like

strategy, especially at shorter list lengths. This hypothesis leads to interesting, testable predictions.

If JORs rely on serial recall, then the manipulations that previously dissociated forward from

backward serial recall (Beaman, 2002; Reynolds, 1997; Li & Lewandowsky, 1993, 1995; Madigan,

1971; Manning & Pacifici, 1983; Thomas et al., 2003) should produce analogous dissociative e�ects

on JOR behaviour comparing the “earlier” versus “later” instructions.

Models of order-memory and the congruity e�ect

Although a full consideration of the implications of our findings for models of order-memory

is beyond the scope of this paper, there are some points we can make clearly that speak to the

inadequacies of current models and possible future directions for model development in light of our

findings.

We first consider Hacker’s (1980) model, an implementation of sequential, self-terminating

search. We considered this model in depth because it has been successfully applied, several times, to

JOR data. We asked if this pre-existing model could already produce a congruity e�ect. Although

it could not, an adaption of Hacker’s model could capture the congruity e�ect in sub-span lists—

namely, assuming forward directional search for the “earlier” instruction and backward directional

search for the “later” instruction. For short lists, then, there may be no e�ect of instruction on the

underlying processes generating the behaviour, apart from a reversal of search-direction. However,

the forward directional search model was not compatible with “earlier” instruction data of the

supra-span lists, even despite this model’s large number of degrees of freedom, which becomes

larger as list length increases. This may indicate that a single explanation of the congruity e�ect

is not possible for both short and long lists. Rather, it may be that the mechanism shifts at some

critical list length— but if so, it remains to be determined what principle governs that switch

in search direction. Finally, it is important to note that, because we only fit a single model to

our data, that does not mean that the model is confirmed. It is quite plausible that a di�erent

model (possibly variants of the models we review in this section) would produce a better fit, both



CONGRUITY EFFECT IN RELATIVE-ORDER JUDGEMENTS 32

quantitatively and qualitatively. The level of success of this model, therefore, should not be taken

as support for this particular model over other models.

At first glance, a self-terminating search mechanism presented in Hacker’s (1980) model

could be compatible with other models of order memory applied to serial recall. For example, an

associative chaining model, where each item is associated with the previous item in the list to form

a chain (e.g. Kleinfeld, 1986; Lewandowsky & Murdock, 1989; Riedel, Kühn, & van Hemmen,

1988; Sompolinsky & Kanter, 1986; Wicklgren, 1966), and positional coding models, where item

position is used to probe each item (e.g., Burgess & Hitch, 1999; Henson, 1998). Both chaining

and positional coding mechanism could be used to model self-terminating search. However, a key

assumption of Hacker’s model di�ers from chaining and positional coding models: that an item can

be skipped without any impact on response time, which is how Hacker’s model produces a distance

e�ect. To our knowledge, both chaining and positional coding models have not been implemented

in such a way that they save processing time for a missed item. Chaining models may handle

a missed item by probing with the previously retrieved vector even if the correct response could

not be made (e.g., Lewandowsky & Murdock, 1989). Positional coding models continue to probe

with the subsequent position, regardless of accuracy of the previous recall (e.g., Burgess & Hitch,

1999; Henson, 1998). Thus, current models of serial-order memory would need to be modified to

incorporate Hacker’s mechanism.

Even if an account based on Hacker’s model is correct, this model was only developed to

explain the JOR task; in its current formulation, it does not do other order-memory tasks, like

serial recall. Rather than start with a model of JORs and figure out how to develop it into a

full-fledged memory model, one could consider models that were designed to explain serial-recall

data, and ask how such models might handle the JOR task. OSCillator-based Associative Recall

(OSCAR; Brown, Preece, & Hulme, 2000) is a model of serial recall that has actually been fit to

JOR data with some success. In this model, items are assumed to be associated with the state

of an internal context signal (activation values of a bank of sine-wave oscillators), and retrieval

of items requires re-instatement of the context. The authors applied OSCAR to the JOR task

(Hacker’s 1980 data) by probing with the end-of-list context vector. More recent items tend to

be more similar to the end-of-list context. The strongest activated list item was compared to the

probe items; if a match was found, the search terminated; if no match was found, the next-highest
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activated item was considered next, and so on. It is not obvious to us how the congruity e�ect

could be explained with this approach. At the very least, to explain the sub-span “earlier” data,

the model might need to be able to substitute the start-of-list context, and the congruity e�ect in

supra-span lists, dominated by an overall recency e�ect, would still remain to be explained.

TODAM is another model that has been fit to JOR data (Murdock, Smith, & Bai, 2001). In

this version of the model (TODAM2), recency was judged based on strength of the item-memory

terms (not the association terms that are used in serial-recall), and more recent items had greater

strength. This could explain serial-position e�ects that are dominated by recency, such as we found

in supra-span lists, but it is not obvious how this mechanism could be adapted to produce the

primacy-dominant pattern found for list length 4. Furthermore, the congruity e�ect in supra-span

lists would still need to be explained. Finally, TODAM was only implemented for error rates and

not response times, so additional modifications would be necessary to explain the response-time

data.

SIMPLE, a scale-invariant model that assumes that memory is driven by discriminability

of presentation times of items (Brown et al., 2007), produces bow-shaped serial-position e�ects

and a distance e�ect, but it remains unclear how the model might account for the congruity

e�ect. One might assume di�erent instructions can systematically distort the representation of time

either directly, or influencing judgements on a separate, serial-position dimension. An interesting

possibility is that the congruity e�ect might be produced by participants encoding list position

di�erently, depending on instruction (Neath & Crowder, 1996); for example, with the first item

first for the “earlier” instruction, and the last item first for the “later” instruction. Although

promising, the current version of SIMPLE does not model response time data, which means more

work is required to adapt SIMPLE to explain the full pattern of JOR data reported here.

In short, to our knowledge, no model of serial recall in its current form is su�cient to explain

the JOR congruity e�ect across list lengths.

Conclusion

In sum, the pattern of both speed and errors depends on how the order-judgement question

is asked. If the target is the earlier item, judgements are better at earlier serial positions, whereas if

the target is the later item, judgements are better at later serial positions, reminiscent of congruity
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e�ects found in comparative judgements. A self-terminating search model could account for sub-

span data by a reversal of search direction between instructions, but longer-list data demanded a

di�erent account (both backward-search). Direct-access accounts hold promise, but it is unclear

how they could capture the full pattern of serial position e�ects in both error rate and response

time measures, across list lengths. Thus, although instruction has a similar e�ect across list length,

either the underlying mechanisms driving the congruity e�ect change with list length, or a unified

account may need to combine elements of both types of model.
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Supplementary Materials

Following the convention of the lmer function output format, we report the best-fitting LME

summary tables for experiment 2 response time in Table S1, and separate fits for each list length and

Intact/Reverse combinations for experiment 2 response time (Table S2, S3, S4, S5). Due to table

width constraint, we use abbreviations in this section: Intact/Reverse (IR), List length (LL), and

Later Probe Serial Position (LPSP). Note that the “earlier” and “later” instruction were presented

separately in summary tables if the factor interacting with Instruction has no main e�ect.

The Instruction ◊ quadratic component of Later Probe Serial Position ◊ List Length three-

way interaction from the best fitting LME model of experiment 2 response time is presented in

Figure S1. The Instruction ◊ linear component of Later Probe Serial Position ◊ Distance three-

way interaction from the best fitting LME model of experiment 2 response time is presented in

Figure S2.
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Estimate (SE)
Main e�ects

Intercept 6.756 (0.053)ú

ListLength 0.439 (0.046)ú

Trial -0.032 (0.009)ú

IR 0.138 (0.031)ú

Distance -0.232 (0.015)ú

LPSP(Linear) -29.38 (16.88)ú

Instruction 0.564 (0.036)ú

LPSP(Quadratic) 85.48 (78.16)ú

Interactions

LL ◊ IR -0.024 (0.026)
LL ◊ Distance 0.022 (0.008)ú

Trial ◊ IR -0.026 (0.006)
Trial ◊ Distance -0.04 (0.004)
LL ◊ LPSP(Linear) 59.92 (13.73)
IR ◊ Distance 0.036(0.008)
LL ◊ Instruction -0.059(0.038)
Trial ◊ LPSP(Linear) 1.961(1.011)
LL ◊ LPSP(Quadratic) 39.97(6.263)ú

IR ◊ LPSP(Linear) -0.512(11.11)
Trial ◊ Instruction -0.091(0.013)ú

Distance ◊ LPSP(Linear) 58.22(3.866)ú

Trial ◊ LPSP(Quadratic) -1.755(0.653)ú

IR ◊ Instruction -0.566(0.020)ú

IR ◊ LPSP(Quadratic) 13.30(4.987)
Distance ◊ LPSP(Quadratic) -0.349(0.936)
Distance ◊ Instruction 0.208(0.008)
LPSP(Linear) ◊ Instruction -53.72(4.383)ú

Instruction ◊ LPSP(Quadratic) 44.14(2.922)ú

LL ◊ IR ◊ LPSP(Linear) -8.331(9.025)
LL ◊ Distance ◊ LPSP(Linear) -33.53(3.090)ú

LL ◊ IR ◊ Instruction 0.297(0.019)ú

LL ◊ IR ◊ LPSP(Quadratic) 0.064(4.011 )
LL ◊ Distance ◊ Instruction -0.080(0.010)ú

Trial ◊ IR ◊ Instruction 0.040(0.008)ú

IR ◊ Distance ◊ LPSP(Linear) -4.664(1.224) ú

Trial ◊ Distance ◊ Instruction 0.000(0.006)
Trial ◊ LPSP(Linear) ◊ Instruction -6.025(1.447)ú

IR ◊ LPSP(Linear) ◊ Instruction -109.5(7.169)ú

Trial ◊ Instruction ◊ LPSP(Quadratic) 4.668(0.941)ú

Distance ◊ LPSP(Linear) ◊ Instruction -8.512(2.085)ú

IR ◊ Instruction ◊ LPSP(Quadratic) -63.36(3.404)ú

LL ◊ IR ◊ LPSP(Linear) ◊ Instruction 95.67(5.525)ú

LL ◊ IR ◊ Instruction ◊ LPSP(Quadratic) 30.66(2.431)ú

Table S1
The best-fitting LME model for experiment 2 response time. The congruity e�ect is in bold. The
“Estimate” column reports the corresponding regression coe�cient, along with its SE (standard
error). Significant e�ects are denoted * - p < 0.05.
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Estimate (SE)
Main e�ects

Intercept 7.437(0.037)ú

Trial -0.0581(0.009)ú

Instruction 0.233(0.052)ú

LPSP(Linear) 20.99(2.097)ú

LPSP(Quadratic) -15.13(1.583)ú

Interactions

Trial ◊ Instruction(Later) -0.060(0.013)ú

Instruction(Earlier) ◊ Distance -0.142(0.012)ú

Instruction(Later) ◊ Distance -0.088(0.012)ú

LPSP ◊ Distance 8.322(1.647)ú

Instruction ◊ LPSP(Linear) -31.82(2.772)ú

Table S2
The best-fitting LME model for experiment 2 list length 8 response time with intact presentation
order. The congruity e�ect is in bold. The “Estimate” column reports the corresponding regression
coe�cient, along with its SE (standard error). Significant e�ects are denoted * - p < 0.05.

Estimate (SE)
Main e�ects

Intercept 7.538(0.036)ú

Trial -0.085(0.007)ú

Instruction 0.076(0.051)
Interactions

Instruction(Earlier) ◊ Distance -0.080(0.006)ú

Instruction(Later) ◊ Distance -0.028(0.006)ú

Instruction(Earlier) ◊ LPSP(Linear) 13.22(2.129)ú

Instruction(Later) ◊ LPSP(Linear) -21.38(2.147)ú

Instruction(Earlier) ◊ LPSP(Quadratic) -5.589(1.649)ú

Instruction(Later) ◊ LPSP(Quadratic) -17.47(1.649)ú

Table S3
The best-fitting LME model for experiment 2 list length 8 response time with reverse presentation
order. The congruity e�ect is in bold. The “Estimate” column reports the corresponding regression
coe�cient, along with its SE (standard error). Significant e�ects are denoted * - p < 0.05.
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Estimate (SE)
Main e�ects

Intercept 6.429(0.049))ú

Trial -0.044(0.007)ú

Distance -0.177(0.016)ú

LPSP(Linear) -102.9(13.18)ú

Instruction 0.025(0.048)
LPSP(Quadratic) -133.0(6.713)ú

Interactions

Trial ◊ LPSP(Linear) 6.141(2.212)
Trial ◊ Instruction -0.094(0.010)ú

Distance ◊ LPSP(Linear) 115.7(8.609)ú

Distance ◊ Instruction 0.244(0.021)ú

LPSP(Linear) ◊ Instruction -183.0(8.594)ú

Trial ◊ LPSP(Linear) ◊ Instruction -20.81(3.254)ú

Distance ◊ LPSP(Linear) ◊ Instruction -54.14(10.59)ú

Table S4
The best-fitting LME model for experiment 2 list length 4 response time with intact presentation
order. The congruity e�ect is in bold. The “Estimate” column reports the corresponding regression
coe�cient, along with its SE (standard error). Significant e�ects are denoted * - p < 0.05.

Estimate (SE)
Main e�ects

Intercept 6.922(0.032)ú

Trial -0.072(0.007)ú

Distance -0.188(0.014)ú

Instruction -1.170(0.066)
Interactions

Trial ◊ Distance -0.043(0.009)
Trial ◊ LPSP(Linear) 12.56(2.648)ú

Trial ◊ Instruction -0.047(0.011)
Distance ◊ LPSP(Linear) 54.87(7.021)ú

Distance ◊ Instruction 0.241(0.015)ú

Instruction(Later) ◊ LPSP(Linear) -480.2(17.91)ú

Instruction(Earlier) ◊ LPSP(Quadratic) -55.92(2.630)ú

Instruction ◊ LPSP(Quadratic) -217.4(8.727)ú

Trial ◊ Distance ◊ Instruction 0.062(0.013)
Trial ◊ Instruction ◊ LPSP(Linear) -27.39(3.805)ú

Table S5
The best-fitting LME model for experiment 2 list length 4 response time with reverse presentation
order. The congruity e�ect is in bold. The “Estimate” column reports the corresponding regression
coe�cient, along with its SE (standard error). Significant e�ects are denoted * - p < 0.05.
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Figure S1 . Best fitting LME plot of Instruction ◊ quadratic component of Later Probe Serial
Position ◊ List Length interaction. Instruction ◊ quadratic component of Later Probe Serial
Position is plotted at all levels of List Length.
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Figure S2 . Best fitting LME plot of the interaction of Instruction ◊ linear component of Later
Probe Serial Position ◊ Distance. Instruction ◊ linear component of Later Probe Serial Position
is plotted at all levels of Distance.


