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In the presence of interference, recall of pairs can critically depend on the diagnostic power of memory
of the order of items within the pair. Models of pair memory make different assumptions about
whether and how such order information is stored, from convolution-based models, which assume
no explicit storage of order, to matrix models and several models that assume a pair is learned by
concatenating the representations of the constituent items, which lead to perfect within-pair order
memory (given retrieval of the pair). Here we investigate memory for associations and within-pair
order by examining the relationship between forward and backward probes of pairs subject to
order-dependent associative interference in a double-function list paradigm. Associative interference
disrupted the high correlation between forward and backward recall accuracy that is typically observed
in standard paired-associate learning, challenging matrix and concatenation-based models. However,
participants could overcome some interference due to within-pair order ambiguity, challenging direc-
tionally ambiguous convolution-based models. Unexpectedly, the test–retest correlation was reduced
for pairs under the influence of interference compared to control pairs. This finding is incompatible
with all existing implementations of the model classes we consider. Any model must include an
assumption that order encoding (but not retrieval) is unreliable, and the form of this additional mech-
anism may depend intimately on how a given model is designed. In sum, our findings suggest that
within-pair order memory is neither poor nor perfect, pointing to a fallible mechanism for within-
pair order learning in verbal association-memory tasks.

Keywords: Paired-associate learning; Serial-order memory; Associative symmetry; Double-function
lists; Interference; Positional coding.

There are numerous models of memory for pairs
designed to explain memory performance on
cued recall tests. That is, having studied a pair of
items, A–B, the participant can be asked to

recall B given A as the probe (forward probe;
A–?) or to recall A given B as the probe (backward
probe; ?–B). Because a pair comprises only two
items, the order of the constituent items within
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the pair (A before B versus B before A) is superflu-
ous to performance in standard cued recall of pairs.
Nonetheless, models of the cued recall task make
various different assumptions about whether and
how within-pair order information is learned.
We first consider these representational assump-
tions and how they stand up to existing empirical
findings and then test them further against novel
empirical data from an associative interference
(double-function list) paradigm.

1. Convolution-based models: no within-pair order
learning. Models that use the convolution
operation to store pairwise associations (e.g.,
Borsellino & Poggio, 1971; Gabor, 1968;
Longuet-Higgins, 1968; Metcalfe Eich, 1982;
Murdock, 1982) cannot reproduce presentation
order due to the mathematical properties of
convolution and correlation (the operation
used at retrieval). If Items A and B are rep-
resented by a and b, respectively, where bold-
face lower-case letters denote column vectors,
the association is learned as w 5 a * b, where
* denotes the convolution operation. For
example, circular convolution (Plate, 1995)
produces the vector

wj =
∑n−1

k=0

akbj−k

Subscripts are modulo-n. Retrieval is carried
out with the correlation operation, denoted
by # either in the forward direction (a # b): or
in the backward direction b # w. Because convo-
lution is commutative (a * b 5 b * a), the
forward (A " B) and backward (A " B)
associations are identical in this formalism, and
within-pair positions are not obtainable at test.

2. Matrix/tensor and concatenation-based models:
perfect within-pair order learning. In a
number of cases, modellers have assumed that
to learn a pair, one concatenates the item rep-
resentations of the pair of items (Gillund &
Shiffrin, 1984; Hintzman, 1984, 1986;
Mensink & Raaijmakers, 1988, 1989; Rizzuto
& Kahana, 2000, 2001). Thus, the associ-
ation is learned as a ⊕ b, where ⊕ denotes
the column-wise concatenation operation.

Learning the pair is akin to learning a single
item that is twice as long as the constituent
items. The assumption has been that the
items are concatenated according to presen-
tation order, an assumption that is challenged
by our data. In this class of model, within-
pair positions are perfectly retrievable, assum-
ing the association is retrieved. The same type
of reasoning applies to matrix models
(Anderson, 1970) and tensor models
(Humphreys, Bain, & Pike, 1989). These
models use the outer product, M ¼ abT—
outer product is the matrix, M, defined by all
pairwise products of features values of the two
vectors: the (i,j) the element of M, Mij ¼
aibj—to store associations, where T denotes
the transpose operation. To retrieve, one can
multiply from the right with a probe-item
vector. For a single-pair example, M ¼ abT,
if we probe with the same b vector that was
initially learned by multiplying the memory
matrix from the right, Mb ¼ a, this simulates
cued recall in the backward direction. Note
that Ma ¼ 0 if a and b are dissimilar (orthog-
onal). Likewise, one can multiply from the left
with the transpose: aTM ¼ b while bTM ¼ 0;
thus multiplying from the left can simulate
forward cued recall. What this means is that,
in a manner analogous to concatenation
models, order is hardcoded into the association
(and thus recoverable at test), in this case by the
left- and right-handed items being encoded
into different vector spaces. Because concate-
nation and matrix/tensor models treat
within-pair order in a way that is formally
similar, from here on we discuss all these
models as a single class of model.

3. Positional-coding models: moderate level of
within-pair order because order memory is
assumed to be the basis of association
memory. Positional-coding models were
initially proposed to explain memory for serial
lists. Whereas associative chaining models
(Ebbinghaus, 1885/1913; Lewandowsky &
Murdock, 1989) assume that a serial list is
learned by “chaining” together nearest neigh-
bour pairs of items (thus, an association-basis
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for serial-order memory), positional-coding
models assume that memory for a serial list is
constructed by learning to associate each list
item with a positional or ordinal or ordered-
contextual code. Recently, it was proposed
that positional-coding models could be used
to learn lists of pairs by assigning constituent
items to very close position codes (Caplan,
2005; Caplan, Glaholt, & McIntosh, 2006;
Howard, Jing, Rao, Provyn, & Datey, 2009).
Because this class of model is newer to associ-
ation memory, a schematic representation of
how a simple version of these models functions
is provided in Figure 1. In this view, memory
for pairs is derived from memory for order; a
list of pairs is a special case of serial-list
memory in which items are grouped into
pairs along the position code, with constituent
items of a pair being assigned very similar pos-
ition codes (sW ≪ sB in Figure 1a; where sW is
the positional separation of items within pairs,
and sB is the positional separation of items
between pairs). Positional-coding models
assume some learning of within-pair order
but could separately modulate association
memory versus within-pair order memory.

It is possible to test participants for within-pair
order in a paired-associate task using associative
recognition. In associative recognition, partici-
pants are asked to judge whether a pair of items
given as a probe was presented during study. In a
typical associative recognition experiment, pairs
are presented, which we denote as A1B1 + A2B2

+ A3B3. . . . At test, “intact” pairs such as A1B1

are considered “old”, and the chief “new” lure
pairs are recombined from a left-handed item
from one presented pair paired with a right-
handed item from a different presented pair—for
example, A1B2. This is considered a test of associ-
ation memory because in order to rule out the
recombined pairs, the participant must remember
not only which items were presented, but which
items were paired with one another. Like cued
recall, the most common form of associative recog-
nition does not test for within-pair order. We
found only two published studies that report

accuracy data for associative recognition compar-
ing intact with reversed (B1A1) pairs (Green &
Tussing, 2001; Kounios et al., 2003). To rule out
reversed probes, the participant must be able to
retrieve within-pair order information. Both
studies reported accuracy that was neither at
ceiling nor at floor. The finding that participants
have a moderate ability to reject reversed probes
contradicts the prediction of current convolution
models that accuracy should be at chance on this
task. The implications for the remaining model
classes are not clear, however, because the exper-
iments that included reversed probes did not also
include recombined probe pairs. The predictions
of matrix, concatenation, and positional-coding
models all regard the accuracy of memory for
within-pair order relative to memory for associ-
ations (specifically, memory for order given that
the association is retrieved), so these findings
have limited diagnostic value. Mandler,
Rabinowitz, and Simon (1981) found that when
given the opportunity to free-recall a list of pairs,
participants mainly recalled paired items together,
and when they did so, order was always intact.
This is consistent with near-perfect storage of
within-pair order information, although it is poss-
ible that the recall procedure led to participants
conservatively screening their retrievals and choos-
ing not to free-recall pairs for which they did not
have confident order information.

Also speaking to how within-pair order is
learned is the question of whether associations
are directional—namely, whether a single associ-
ation links items A and B or two directional
associations link the items, one enabling the par-
ticipant to use A as a probe for B (forward associ-
ation) and the other enabling the participant to use
B as a probe for A (backward association). Two
chief measures have been used to test for direction-
ality effects in cued recall of pairs. The first is sym-
metry versus asymmetry in mean accuracy. Asch
and Ebenholtz (1962) held that Gestalt theories
of pair memory predicted symmetric mean per-
formance in forward and backward directions.
While the relevance to Gestalt learning has been
challenged (Kahana, 2002), this robust finding
has been replicated in many studies (see Kahana,
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Figure 1. Schematic representation of a simple strength-based positional-coding model based on the model that was applied to explain
dissociations between memory for pairs and triples (Caplan, 2005; Caplan et al., 2006). Depicted are (a) a study trial, (b) a test trial,
and (c) an illustration of output encoding during test. Items from double-function pairs are set in boldface font. It is a strength model,
which learns by assigning a reliable, scalar positional code and noisy strength to each list item. In order to handle double-function pairs,
in which constituent items are presented twice within the study phase, the prior model (Caplan et al., 2006) had to be modified to allow
a single item to be assigned more than one positional code; we assume that the strengths of an item’s association to each position are
statistically mutually independent (i.e., encoding strengths drawn separately from a Gaussian distribution). To facilitate cued recall,
paired items are assigned very similar positional codes whereas items from different pairs are assigned more distinct positional codes. This
relative positional spacing is controlled by a single free parameter in the model previously described as the degree of isolation of studied
pairs, I ¼ 1 – sW/sB, where sW is the positional separation of items within pairs, and sB is the positional separation of items between
pairs. Thus, the unitization effect (approximate associative symmetry) is not absolute, nor a property of the basic storage operation (as is
true for convolution models), but emerges as a graded property from the relatively closer spacing of items within than between paired
items. At test, the model probes with an item, retrieves the probe’s positional codes, updates the positional codes by shifting them in the
desired direction (forward or backward), and probes with this new position (weighted by encoding strengths) to retrieve candidate items
for output. Probing with a position retrieves not only the item with the closest positional code, but also items that had been stored at
nearby positions according to a positional similarity function, an exponential function parameterized by a positional decay constant,˙t.
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2002, for a review). Jones and Pashler (2007)
extended this finding to direct prediction and ret-
rodiction ofMarkov-chain probabilistic sequences,
suggesting that temporal symmetry (equality of
forward- and backward-directed retrieval) may be
quite general. The second measure of within-pair
directionality effects was the correlation between
forward and backward performance of a single
pair over successive testing (i.e., testing each pair
twice, in the same or different probe directions).
Kahana introduced this measure as a more direct
test of Gestalt-like pair memory. The predicted
high correlation has been observed in verbal
paired-associate learning by Caplan et al. (2006),
Madan, Glaholt, and Caplan (2010), and
Rizzuto and Kahana (2000), and in object-location
pairs by Sommer, Rose, and Büchel (2007). Note
that rather than conceptualizing A–B as a
Gestalt, an alternative view would be to assume a
single, bidirectional association or two separate
but highly correlated associations. In any case,
to produce a high correlation between forward
(A–?) and backward (?–B) probes, forward
probes must test the same underlying variability
in encoding as backward probes. Mathematically
the two measures—asymmetry in mean perform-
ance, and forward–backward correlation—are dis-
tinct measures. To understand why, consider
hypothetical Participant 1 who was presented
with the pair RATION–COUSIN. During test,
Participant 1 responded correctly on the forward
probe (RATION–?) but incorrectly on the back-
ward probe (?–COUSIN); on another pair,
REVOLT–VIRTUE, Participant 1 responded
incorrectly on the forward probe (REVOLT–?)
but correctly on the backward probe
(?–VIRTUE). For Participant 1, mean accuracy
in both directions is the same (50%); however,
the correlation between forward and backward

cued recall is not high and positive (it is in fact
negative; success in one direction is predictive of
failure in the opposite direction). In contrast,
Participant 2 receiving the same study and cued
recall test responded correctly on both the
forward and backward probes of RATION–
COUSIN and incorrectly on both the forward
and backward probes of REVOLT–VIRTUE;
Participant 2 would also achieve 50% mean accu-
racy, but, in contrast to Participant 1, with a
high positive correlation between forward and
backward probes. Furthermore, the mean-accuracy
and correlation measures are separably modifiable
by experimental manipulations when measured
empirically in human data (Madan et al., 2010).
For these reasons, we consider the forward–back-
ward probe correlation in addition to mean per-
formance measures in this paper. The present
work starts with constrained versions of the three
aforementioned classes of association-memory
models that are required to fit the two empirical
properties of cued recall behaviour: symmetry in
mean cued recall accuracy and a high forward–
backward correlation in successive tests.

1. Convolution-based models need no modification
to account for these two properties of cued
recall behaviour since the convolution oper-
ation already embodies bidirectionality, or
“associative symmetry” (Asch & Ebenholtz,
1962)—namely, no distinction between
forward and backward associations.

2. Matrix and concatenation-based models must
treat the left-handed (“A”) items the same as
the right-handed (“B”) items to achieve
symmetry in mean cued-recall accuracy. This
means assuming that encoding levels are
equal on average, which would produce
symmetry in the mean accuracy measure. It

(Figure 1, continued) The similarity function reflects uncertainty in position information similar to what others have found (e.g., Estes error
gradients, Lee & Estes, 1977). Critically, we do not do anything differently for double-function than for single-function pairs, except insofar
as items from double-function pairs are assigned two positional codes during study. Consequently, any dissociations between memory for
single- and double-function pairs must follow from the structure of the study set rather than from differential study or test processes.
Output encoding, which occurs whenever the model makes a response, functions identically to study, except that the pairs stored are based
on the model’s recall (which could be erroneous). Note that although this illustration is given for a positional-coding model, the same kind
of mechanism could straightforwardly be applied with similar outcome to the other model classes.
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also means yoking average encoding-variability
(and retrieval-variability, if present) levels
between the first and last halves of the concate-
nated vector representation of the association.
A high correlation between forward and
backward recall directions may already be a
property of some concatenation models such
as MINERVA 2 (Hintzman, 1984, 1986)
and models based on Search of Associative
Memory (Gillund & Shiffrin, 1984; Mensink
& Raaijmakers, 1988, 1989), whereas concate-
nation models based on the matrix model
require a nearly symmetric encoding weight
matrix (Rizzuto & Kahana, 2000, 2001).

3. Positional-coding models do not necessarily
produce a high forward–backward correlation.
Because each item is assumed to be stored inde-
pendently (i.e., with independently drawn
encoding strengths), forward and backward
cued recall would be completely uncorrelated
unless additional assumptions are added such
that forward and backward probes are suscep-
tible to the same levels of variability in
encoding (for example, by requiring that each
item-to-position strength be identical to its
corresponding position-to-item strength), and
within-pair positional separation (sW in
Figure 1a) is far smaller than between-pair pos-
itional separation (sB in Figure 1a), termed the
“isolation principle” (Caplan, 2005). Note that
in simulations, the value of isolation, defined as
1 – sW/sB, has not needed to take on an
extreme value, which might have made this
assumption less plausible. For instance, a ratio
of .88 was sufficient to fit the high forward–
backward correlation measured in empirical
data (Caplan et al., 2006).

Kahana (2002) demonstrated that increasing the
number of competing associations could reduce
cued recall accuracy and implied that this effect on
mean performance might not disrupt the high cor-
relation between forward and backward probes.
However, as we show shortly, the prediction for
the correlation measure is model-dependent.

Here we investigate the double-function list
paradigm (Primoff, 1938) because in this

paradigm, order is not explicitly demanded, but
within-pair order memory is necessary to overcome
associative interference. In this paradigm, we
manipulate the number of episodic associations
learned in the same study set. Some studied pairs
have no other episodic associations—these are
termed “single-function” pairs, denoted A–B,
C–D, E–F, G–H. Other pairs each have one
competing episodic association that involves each
of the constituent items from the same study
set—these are termed “double-function” pairs,
denoted I–J, J–K, K–L, L–I. Because single-
function pairs are typically symmetric in the
mean-accuracy measure, and associative interfer-
ence in this design is balanced, all models that
incorporate symmetric association strengths
should predict symmetric mean accuracy for
double-function pairs. Prior double-function
studies have also reported an overall reduced accu-
racy for double-function compared to single-func-
tion pairs (Howard et al., 2009; Primoff, 1938;
Slamecka, 1976; Young, 1961), a property that is
consistent with convolution-based models due to
directional ambiguity as well as models with imper-
fect order memory such as positional-coding
models (Caplan, 2005, Caplan et al., 2006).
Models with perfect within-pair order memory,
such as matrix and concatenation-based models,
would not necessarily predict reduced accuracy,
but could be modified (in an arguably uninteresting
way) with a simple assumption that participants are
challenged by the ambiguity in double-function
pairs and study them less efficiently.

No study has measured the correlation between
forward and backward cued recall of double-
function pairs, the main goal of the experiments
we report here. Kahana (2002) suggested that the
effect of competing associations would not reduce
the usual high forward–backward correlation
observed for verbal associations, but Caplan
(2005) suggested it would do precisely that. The
prediction in fact depends on how order is rep-
resented within the association. We consider each
of the aforementioned three classes of models in
turn, in terms of the predictions they would make
for mean accuracy and forward–backward corre-
lation measures for double-function pairs.
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1. Convolution-based models. Because the associ-
ations include no directional information, a
probe item vector would be applied without
regard to direction. Assume the model has
learned w 5 . . . + giji * j + gjkj * k +
gklk * i + . . . , where the g values are
assumed to be encoding strengths drawn inde-
pendently for each pair. A probe of the pair
J–K in the forward direction would be
implemented as j # w and, as argued for serial
lists previously (Caplan, 2005), would be sus-
ceptible to substantial levels of competition
from the I–J pair, i * j, proportional to gij. A
probe in the backward direction would be
implemented as k # w and would be susceptible
competition from the K–L pair, k * l,
proportional to gkl. Although both forward
and backward cued recall operations are suscep-
tible to common variability in learning (gjk),
the level of competition depends on different
sources of variability in learning, gij versus
gkl, respectively. Thus, a convolution-based
model would predict that independent sources
of competition should reduce the correlation
between forward and backward cued recall
probes of double-function pairs compared to
single-function pairs.

2. Matrix and concatenation-based models. In
current implementations of matrix and conca-
tenation-based models, order within a pair is
perfectly stored. For concatenation models,
probing J–K in the forward direction would
be implemented, for example, with j ⊕ h as
the probe vector, where h is a “noise” vector
used as a place-holder, filled with random
values. A backward probe would be h ⊕ k.
In current concatenation models, assuming
near-orthogonality of item vectors, j ⊕ h
would tend to be extremely similar to the
target pair, j ⊕ k, but dissimilar to the other
pair that shares the j (probe) item, i ⊕ j; like-
wise, for the backward probe, h ⊕ k would
tend to be extremely dissimilar to the poten-
tially conflicting pair, k ⊕ l. The consequence
is that forward and backward probes will be
correlated due to both probe directions being
sensitive to a common source of variability:

gjk, the encoding strength of the concatenated
target pair j ⊕ k, and only negligible indepen-
dent source of variability due to incidental
similarity between probe items and other list
items. Because the same logic applies to
double-function as to single-function pairs,
the prediction based on concatenation-based
models is that the forward–backward corre-
lation should not be reduced for double-func-
tion pairs. For matrix models, the same type
of argument applies, considering that a
forward probe with j by multiplying from the
left would retrieve k but not i. In order to
retain the near-perfect correlation between
forward and backward probes of single-func-
tion pairs, one has to assume either that the
model can probe the same outer-product term
(e.g., jkT) from both the left (forward probe)
and the right (backward probe), or that
probing is carried out only by multiplying
from one side but both forward and backward
associations are stored in separate memories
but with (nearly) perfectly correlated encoding
strengths. This also means that the forward and
backward probe will be driven by the same chief
source of variability. Current concatenation-
based and matrix models thus lead to the
alternative prediction that the forward–
backward correlation will be equal for double-
function and single-function pairs.

3. Positional-coding models. As mentioned above,
Caplan (2005) proposed that the high
forward–backward correlation observed for
cued recall of pairs (as contrasted with cued
recall of serial lists) could be explained in a pos-
itional-coding model if within-pair positional
codes were relatively much closer together
than between-pairs positional codes (the
“isolation principle”). Caplan (2005) further
argued that the repetition of items in a
double-function paradigm would result in pos-
itional ambiguity for double-function probe
items, resulting in an independent source of
encoding variability entering into forward
versus backward cued recall. Thus, similar to
convolution-based models, but in contrast to
matrix and concatenation-based models, a
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simple extension of the positional-coding
model to accommodate repeated items leads
to the prediction of reduced forward–backward
correlation for double-function relative to
single-function pairs.

We present three double-function experiments
with successive testing to assess the relationship
between forward and backward associations
and report mean-performance measures and
correlation measures that test assumptions of
convolution, matrix/concatenation, and pos-
itional-coding based models. Experiment 1 was
an experiment conducted in an undergraduate
class, which produced the initial results. Because
there was no randomization of list stimuli, we
feared that the results might be due to idiosyncra-
sies in the lists. Experiments 2 and 3 differed in
presentation rate; we thought that faster presen-
tation rates should produce more of a challenge
from associative interference than would slower
presentation rates. Thus, we wanted to know
whether the pattern of findings would replicate.
All experiments yielded the same pattern of corre-
lations. Thus, the three experiments suggest broad
boundary conditions for the correlations findings:
They occur whether mean accuracy is asymmetric
(Experiment 1) or symmetric (Experiments 2 and
3) and for slow (Experiments 1 and 2) as well as
fast (Experiment 3) presentation rates. To foresha-
dow the results, no model class provides a com-
plete account of the resulting pattern of
behaviour. In the Discussion we consider ways in
which each model class would need to be modified
to account for the full pattern of data we report.

Method

We report three experiments; because the methods
and results are similar, we present the methods
and results for all experiments together. Table 1
compares the design of the three experiments.

Participants
Participants were University of Alberta students.
Experiment 1 was carried out in a third-year
class of a Neurobiology of Learning and Memory

course in which 79 students participated volunta-
rily without compensation. A total of 90 and 60
participants took part in Experiments 2 and 3,
respectively, for partial fulfilment of course
requirements of introductory psychology courses.

Materials
Study sets were drawn from a 126-word pool con-
structed using the MRC Psycholinguistic
Database (Wilson, 1988). All stimuli were nouns
that were two syllables in length and composed
of six letters. Kucera–Francis frequency was con-
strained between 7–52 per million; imageability
and concreteness were both constrained to 240–
560 out of 700. As Experiment 1 was conducted
in a classroom setting, the same study set was
used for all subjects. For Experiments 2 and 3,
words were drawn at random. In all three experi-
ments, equal numbers of single-function and
double-function pairs were presented. Single-
function pairs did not share items with other
pairs in the list (i.e., A–B, C–D, E–F, G–H).
Double-function pairs shared items with other
pairs in the list (i.e., I–J, J–K, K–L, L–I),
forming a complete ring structure.

Procedure
Participants in all three experiments participated
in a practice round (excluded from analyses)
followed by experimental sets (Figure 2). Each
round in the task consisted of several phases:
study, distractor, cued recall (Test 1), distractor,
and cued recall (Test 2).

Participants were presented with study sets
comprising both single-function and double-func-
tion pairs in a randomized order with the restric-
tion that double-function pairs with a common
item could not be temporally contiguous at study
or test. Each pair was simultaneously presented
and was separated from the next by a blank
screen that appeared for 150 ms. Distractor tasks
were as follows. In Experiment 1, participants
had to count the total number of a given digit in
an 8 × 6 matrix made up of two digits. They
were given 20 s to count and record their
responses. In Experiments 2 and 3, participants
had five addition questions involving addition of
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three digits (from 2 to 8). Each distractor question
was separated from the next by a blank screen that
appeared for 150 ms. Participants were given 5 s to
type their responses.

Cued recall consisted of a probe word and a
blank line, either to the left or to the right of the
word. In this way the participants were tested in
either forward or backward direction for the pairs
just studied. Each probe was separated from
the next by a blank screen that appeared for
250 ms. In all three experiments, participants
were given 10 s to recall and record their responses.
Both response initiation (first key press) and

termination (“ENTER” key press) times were
logged in Experiments 2 and 3. Because
termination times exhibited the same qualitative
effects as initiation times but with less sensitivity,
we report only analyses of initiation times.

After each pair in the study set was tested
exactly once (“Test 1”), a second distractor task
followed, and then a second complete set of tests
was conducted (“Test 2”). The direction of test
on Test 1 and Test 2 could be the same
(forward–forward or backward–backward) or
different (forward–backward or backward–
forward) as depicted in Table 2.

Figure 2. A single round of the task. In the study/test phases, the order of presentation of single-function and double-function (bolded for
illustration only) pairs/probes was randomized. In the test phases, the order of forward and backward probes was also randomized.

Table 1. Three experiments with slight modifications were conducted with this paradigm

Experiment Setting
Number of
subjects

Mode of
response

Number of
rounds

Number of
pairs per round

Number of single-
function/double-
function pairs

Presentation rate of
stimuli (s)

1 In class 79 Written 3 8 4/4 4
2 Individual 90 Typed 7 12 6/6 4
3 Individual 60 Typed 7 12 6/6 2

Note: In Experiment 1 the distractor task was 20 s long, and in Experiments 2 and 3 it was 5 s per question. In all tasks, subjects were
given 10 s per probe to respond.
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In Experiment 3 only, participants were given a
final free recall test at the end of the session;
Participants were given 3 minutes to recall and
record words from the task in any order that they
remembered them (data not reported here). In all
experiments each participant was given a strategy
questionnaire at the end of the session (data not
reported here).

Correlation of accuracy on successive tests
Our measure of correlation between Test 1 and
Test 2 probes was Yule’s Q, a measure of associ-
ation related to the odds ratio, which is appropriate
for dichotomous data. The “same” Q value esti-
mates the correlation due to test–retest reliability
alone and will be the highest correlation when
successive testing is done in the same direction
(forward–forward and backward–backward).
The “different” Q value is the correlation
between forward and backward directions, when
Test 1 and Test 2 were in different directions
(forward–backward and backward–forward) and
is our measure of interest. The “control” Q value
is the lowest possible expected correlation and
measures the correlation between unrelated pairs
within the same round. It is calculated by correlat-
ing one pair from Test 1 with a different pair from
Test 2 (a bootstrap) and is included to control for
subject and study set variability. Note that for the
subject-level approach, we include all such pairs,
but for the aggregate approach we include only a
random pairing of each pair on Test 1 with
exactly one different pair on Test 2 to avoid
overestimating degrees of freedom. Thus, the

“same” and “control” correlations demonstrate
the effective range of the “different” correlation.
Yule’s Q was evaluated using the log-odds ratio
transform (Bishop, Fienberg, & Holland, 1975;
Hayman & Tulving, 1989).

Statistical analysis
Analyses of variance (ANOVAs) were performed
with the Greenhouse–Geisser correction for non-
sphericity. Effects are considered significant based
on an alpha level of .05. Effects not reported were
not significant.

Results

Mean accuracy
Prior to our measure of interest, the correlation
between accuracy on Test 1 and Test 2, we asked
whether mean performance varied as a function
of the factors in our design. We performed a
three-way repeated measures ANOVA on each
data set, on Test (2) × Function (2) × Direction
(2). In Experiment 1 (Figure 3a), single-function
pairs were recalled more accurately than double-
function pairs [main effect of function, F(1, 78)
¼ 64, MSE ¼ 0.33, p , .0001], suggesting that
interference presented a challenge to participants.
Test 2 was more accurate than Test 1 [main
effect of test, F(1, 78) ¼ 17, MSE ¼ 0.082, p ,
.0001], suggesting a small amount of output
encoding. Forward probes were recalled more
accurately than backward probes [main effect of
direction, F(1, 78) ¼ 14, MSE ¼ 0.40, p ,
.0001]. Finally, the interaction Test × Function

Table 2. Conditions of successive testing

Successive tests Test 1 probe Test 2 probe Correlation contributed to

Forward–forward REVOLT–? REVOLT–? Same
Backward–backward ?–VIRTUE ?–VIRTUE Same
Forward–backward REVOLT–? ?–VIRTUE Different
Backward–forward ?–VIRTUE REVOLT–? Different
Bootstrap (different pairs) ABSENCE–? REVOLT–? Control

Note: Participants can be tested in four possible conditions over two tests. Two of the conditions comprise the same probe in both
tests, and two comprise different probes in both tests. The examples assume that the participant studied the pairs REVOLT–
VIRTUE and ABSENCE–HOLLOW in the same study set.
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Figure 3. Mean accuracy in (a) Experiment 1, (b) Experiment 2, and (c) Experiment 3 for single-function and double-function probes in
forward and backward directions. Error bars are 95% confidence intervals.
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was significant, F(1, 78) ¼ 13,MSE ¼ 0.072, p ,
.001, but simple effects revealed a single-function
advantage over double-function pairs for both
tests, so the interaction was quantitative, not
qualitative.

Experiments 2 (Figure 3b) and 3 (Figure 3c)
showed a subset of significant effects with the
same pattern as that found in Experiment 1. For
these experiments, the main effects of direction
and test were not significant. However, the follow-
ing were significant: Experiment 2, main effect of
function, F(1, 89) ¼ 28, MSE ¼ 0.037, p ,
.0001; and Test × Function interaction, F(1, 89)
¼ 12, MSE ¼ 0.003, p , .001; Experiment 3,
main effect of function, F(1, 59) ¼ 21, MSE ¼
0.025, p , .0001; and Test × Function inter-
action, F(1, 59) ¼ 12, MSE ¼ 0.03, p , .001.
As in Experiment 1, these interactions were quan-
titative, not qualitative.

Response time
We analysed mean response times for correct
responses with ANOVAs with the same design
as that used for accuracy primarily to test for poss-
ible speed–accuracy trade-offs, which could have
complicated interpretation of the accuracy-corre-
lation analyses; however, all response time effects
were congruent with effects of accuracy,
suggesting that no significant trade-off was
present in our data. Response times were not
collected for Experiment 1 because responses
were handwritten. Both Experiment 2 (Figure
4a) and Experiment 3 (Figure 4b) had significant
main effects of function [Experiment 2: F(1, 89)
¼ 16, MSE ¼ 3.8 × 105 ms2, p , .0001;
Experiment 3: F(1, 59) ¼ 9.8, MSE ¼ 2.9 ×
105 ms2, p , .01] and of test [Experiment 2:
F(1, 89) ¼ 46, MSE ¼ 2.0 × 105 ms2, p ,
.0001; Experiment 3: F(1, 59) ¼ 14, MSE ¼ 3.1
× 105 ms2, p , .0001], where correct responses
on single-function probes were significantly
faster than correct responses to double-function
probes, and responses were faster on Test 2 than
on Test 1. Finally, for Experiment 2 only,
forward probes were recalled significantly faster
than backward probes: main effect of direction,
F(1, 89) ¼ 5.0, MSE ¼ 2.1 × 105 ms2, p , .05.

Correlation of accuracy on successive tests
The correlation (Yule’s Q) between forward and
backward probes was our measure of interest
because it is more diagnostic of model mechanisms
(see introduction). We also calculated the “same”
and “control” correlations (see Method) to estimate
the possible range of measurable Q values. We
calculated Yule’s Q in two ways, but the findings
did not differ qualitatively between methods. In
the first method—“aggregate”—the values in the
contingency table that were used to calculate the
correlation were collapsed across all subjects in a
given experiment, and one correlation value was
calculated for “same”, “different”, and “control”.
We calculated correlation this way for all experi-
ments. Confidence intervals and pairwise compari-
sons were done using the log-odds ratio transform
and standard error values, which can be computed
directly for log-odds ratios as discussed by Bishop
et al. (1975) and Hayman and Tulving (1989). In
the second method—“subject level”—we computed
values in the contingency table for each subject
individually and calculated a correlation value for
each subject individually. This removes correlation
due to subject variability, which can inflate corre-
lations (Simpson’s paradox; cf. Hintzman, 1972).
We calculated correlation this way for Experiments
2 and 3 (but not for Experiment 1 due to insufficient
data per participant).

As illustrated in Figure 5, the correlation of
“different” double-function probes was lower
than that of the “different” single-function
probes as predicted by convolution and pos-
itional-coding models due to interference in
double-function pairs. Pairwise comparisons
(aggregate method, via log-odds transform)
revealed that, for all three experiments, the differ-
ences between “same” and “different” within
single-function and double-function probes were
significant and that the differences between
“same” and “different” between single-function
and double-function were significant in all three
experiments (p , .01). All Q values were signifi-
cantly greater than the control Qs (p , .01).

Calculating Q using the subject-level method
allowed us to carry out ANOVAs. This yielded
consistent qualitative results as the aggregate
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method but better summarizes our 2 × 2 design.
We performed a two-way repeated measures
ANOVA on Type (2) × Function (2). The levels
of Type were “same” correlation and “different”
correlation. Both Experiments 2 and 3 exhibited
both significant main effects and a significant
interaction—Experiment 2: main effect of type,
F(1, 89) ¼ 31, MSE ¼ 0.353, p , .0001, with
“same” correlations greater than “different”; main
effect of function, F(1, 89) ¼ 140, MSE ¼ 0.25,
p , .0001, with single-function pairs more accu-
rate than double-function pairs; and a Type ×
Function interaction, F(1, 89) ¼ 24, MSE ¼

0.21, p , .0001; Experiment 3: main effect of
type, F(1, 59) ¼ 77, MSE ¼ 0.28, p , .0001;
main effect of function, F(1, 59) ¼ 41, MSE ¼
0.29, p , .0001; and Type × Function inter-
action, F(1, 59) ¼ 19, MSE ¼ 0.22, p , .0001.
The interaction in both experiments was quanti-
tative, not qualitative.

Discussion

Accuracy
Measures of mean performance show effects
expected based on prior research. Single-function

Figure 4. Mean response times in (a) Experiment 2, and (b) Experiment 3 for single-function and double-function probes in forward and
backward directions. Error bars are 95% confidence intervals.

THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2011, 64 (7) 1421

INTERFERENCE AND WITHIN-PAIR ORDER

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f A

lb
er

ta
] a

t 0
8:

09
 0

8 
Ju

ly
 2

01
1 



pairs were significantly better recalled than
double-function probes (Figure 3). This finding
has been replicated in many studies since Primoff
(1938): Howard et al., 2009; Slamecka, 1976;
Young, 1959, 1961. Effects of direction were
also not significant in accuracy, replicating numer-
ous findings (for a review see Kahana, 2002) except

for Experiment 1 in which materials were not
randomized across participants, so the overall
forward-probe advantage in that experiment may
be due to idiosyncrasies of the specific study sets
used. Critically, these overall asymmetries in
mean performance in Experiment 1 nonetheless
yielded a correlation pattern consistent with

Figure 5. Correlation of accuracy on successive testing (computing a single correlation value for each testing type for all subjects) in (a)
Experiment 1, (b) Experiment 2, and (c) Experiment 3 for single-function and double-function probes. For a description of “same”,
“different”, and “control” refer to Table 2. Error bars are 95% confidence intervals.
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Experiments 2 and 3, underlining the indepen-
dence of mean performance measures and Test
1–Test 2 correlation measures data (Madan
et al., 2010). Interestingly, a response-time advan-
tage for forward probes was observed in
Experiment 2, suggesting that sometimes even
when the association is symmetric (in both
senses—mean accuracy and correlation measures),
access can be asymmetric (Waugh, 1970).
Regarding the model classes we consider:

1. The finding that accuracy for double-function
pairs exceeds half the accuracy for single-
function pairs, a replication of numerous prior
results, presents a challenge to convolution-
based models because these models have no
way of distinguishing forward versus backward
associations. The model would at best have to
guess between two retrievable alternatives.
Convolution-based models clearly need an
additional mechanism by which to retrieve
within-pair order information better than
chance.

2. The lower accuracy of double-function than
that of single-function pairs presents a chal-
lenge to matrix/concatenation-based models
but only a mild one because, as mentioned in
the introduction, such models could be very
simply modified to assume that double-
function pairs are studied less well due to
repeated items being confusing or distracting
to the participant.

3. Positional-coding models can accommodate
the moderately reduced accuracy of double-
function pairs because they encode within-
pair position (along with pair position) but
positional confusability ensures that this order
information is imperfect. No major modifi-
cation of positional-coding models is necessary
to accommodate the mean-accuracy data.

Forward–backward correlation
The correlation between forward and backward
probes is the measure that speaks most directly
to the models we considered. All the “different”
correlations are quite high despite being lower
than possible (“same”), replicating numerous

prior findings (Caplan et al., 2006; Kahana,
2002; Madan et al., 2010; Rizzuto & Kahana,
2001). As predicted by the interference-theory
account (Caplan, 2005), the “different” correlation
for double-function pairs was lower than that for
“different” single-function pairs. Thus, interfer-
ence from other items in the study set may have
lowered the correlation. This finding relates to
models as follows.

1. Convolution models, as laid out in the introduc-
tion, predict the reduced correlation for
double-function pairs because within-pair
order ambiguity means that pairs with a
common item will compete with one another
and introduce independent sources of compe-
tition depending on probe direction.

2. Matrix and concatenation-based models—as they
are currently developed—are challenged by this
finding for the reasons laid out in the introduc-
tion. Namely, because within-pair order is
encoded perfectly (as long as the association
itself is stored), an item in the left position is
effectively entirely dissimilar to the same item
in the right position. Because this prevents
the very reversal errors that cause other classes
of models to exhibit a reduced forward–back-
ward correlation for double-function compared
to single-function pairs, current matrix and
concatenation models would need to be
enhanced to accommodate this novel property
of our findings—even if they were already
modified to account for the numerous preexist-
ing findings of reduced mean accuracy for
double-function pairs as suggested above.

3. Positional-coding models naturally accommodate
the reduced forward–backward correlation for
double-function pairs for a similar reason as
argued for convolution models—namely, that
the source of interference will differ depending
on probe direction. This argument was pre-
viously applied to cued recall of serial lists
(Caplan, 2005; Caplan et al., 2006).

Test/retest reliability: A challenge to all models
A finding we had not anticipated was that the cor-
relation of the “same” double-function probes was
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also significantly lower than that of the “same”
single-function pairs. The reason this character-
istic was surprising is that the mechanism by
which interference reduces the correlation
between probe directions is by introducing
substantial sources of interference that differ in
strength depending on probe direction. However,
two tests in the same direction (which enter into
the “same” correlation) should be susceptible to
precisely the same source of interference on both
tests. Thus, we had expected that the “same” cor-
relation would be just as high for double-function
pairs as for single-function pairs even while the
“different” correlation should have been reduced
for double-function pairs. This logic can be
applied to all three classes of model.

Modifications needed to retain each model class
Models arguably yield the most theoretical value
when they fail. From that perspective, the
present findings are useful in that they challenge
each of the three major classes of model we con-
sider, but each class is challenged in a different
way. Although we cannot reasonably select one
model class over another, we can use the empirical
challenges to each to lay out how each model class
must be extended; the further constraints on each
model will help guide future development of the
models to account for further empirical data. To
this end, we now discuss each model class in turn
with respect to how one might enhance the
model class to accommodate all the features of
the present findings that current implementations
would miss.

Convolution models. This class of model as cur-
rently developed fails at the earliest stage, being
unable to account for prior evidence of greater
than chance memory for within-pair order both
in associative recognition with reversed lures
(Green & Tussing, 2001; Kounios et al., 2003)
and in previous examples of better than chance
forward recall accuracy in double-function lists
(Howard et al., 2009; Primoff, 1938; Provyn,
Sliwinski, & Howard, 2007; Young, 1961), repli-
cated here. A complete exploration of means of
adding order information to convolution models

would be lengthy and beyond the scope of this
manuscript but there are a few candidate mechan-
isms that have been suggested previously (Plate,
1995; Westlake, 1970). First, a convolution
model could be combined with the concatenation
mechanism we discussed in reference to the
second class of models. Then, associations could
be learnt by autoconvolution of the concatenated
vector: w ¼ (a ⊕ b) * (a ⊕ b). This mechanism
would then be susceptible to the limitations of
Class 2, so further elaboration would be similar
to Class 2. A second approach might be to
devote a subset of item-vector features to an expli-
cit order code. Thus, associations would be stored
like w ¼ (a ⊕ tleft) * (b ⊕ tright), where tleft and
tright denote vector representations of the left-
handed and right-handed within-pair positions,
respectively. The outcome with respect to accuracy
on double-function relative to single-function
pairs and the correlation between forward and
backward probes of double-function pairs would
depend on the relative dimensionality and encoding
reliability of the position-code features. if the t
codes were too dominant in encoding and retrieval
operations, they might undermine the desirable
associative-symmetry properties of convolution
models too much, losing the ability to fit the mag-
nitude of the reduction in double-function accuracy
as well as the high forward–backward correlation in
cued recall of single-function pairs. A third strategy
might be to return to an old suggestion that the
convolution mechanism could be applied in the
temporal domain, originally termed “temporal
holography” (Gabor, 1968; Longuet-Higgins,
1968), but may be susceptible to similar limitations
as perfect-order models (matrix and concatenation-
based models). Following such an extension of
convolution models, the reduction of test/retest
reliability would still have to be addressed, probably
in a manner that we suggest for the other twomodel
classes below.

Matrix and concatenation-based models. This model
class missed findings that suggest that within-pair
order is not perfectly reliable (given retrieval of the
association). Thus, in contrast to convolution
models, this class of model needs a way of
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making within-pair order more ambiguous. Recall
first that to fit prior findings of highly correlated
forward and backward cued recall accuracy, these
models needed modification. Matrix models
needed either the ability to probe the same
encoded heteroassociation terms from the left or
right, or to store forward and backward associ-
ations separately but with correlated encoding
strengths. Concatenation-based models needed
the left- and right-handed item strengths (or
forward- and backward-directed association
strength) to be highly correlated. The most
obvious modification that could introduce direc-
tion ambiguity to these models would be to
assume that first, whatever within-pair order is
stored will be perfectly retrievable given retrieval
of the association and, second, the model makes
errors in initial encoding of directionality, some-
times storing the reverse within-pair order. Thus,
there is a probability, preversal, that the model will
store b ⊕ a rather than a ⊕ b (Caplan, 2004).
This would maintain the high correlation
between forward and backward cued recall of
single-function pairs since if a ⊕ b were stored,
both forward and backward probes would be effec-
tive, whereas if b ⊕ a were stored, both forward
and backward probes would fail. It would also
result in a reduction of accuracy for double-func-
tion pairs for the following reason. Consider a list
I–J, J–K, K–L, L–I. If I–J and J–K were
encoded correctly, but K–L were erroneously
stored as L–K, then a forward probe of K–L
would be likely to be highly accurate because j in
the left position is completely unconfusable with j
in the right position. However, the backward
probe of J–K would be susceptible to interference
from K–L (stored as L–K) since probing with k
from the right would retrieve both J–K and the
(incorrect) K–L. Because in general, forward and
backward probes could be susceptible to compe-
tition from independently stored associations, this
should reduce the forward–backward correlation
for double-function relative to single-function
pairs. Thus, a simple assumption of fallibility in
encoding of within-pair order could enable conca-
tenation and matrix models to explain most of the
features of the data reported here.

However, the reduced test/retest (“same”) cor-
relation for double-function pairs requires further
modification. To understand why, consider the
example just mentioned. On both Test 1 and
Test 2, the same source of interference (or lack
thereof) is present. Thus, if a double-function
pair faces a high level of competition on Test 1,
then (without further assumptions) it will face
the exact same level of competition on Test
2. Thus, there is no mechanism by which the
test/retest correlation (“same”) could be lower for
double-function than single-function pairs. One
might think that a probabilistic retrieval rule
such as Luce’s choice rule (Luce, 1959) would
solve this problem. However, to the extent that
one makes retrieval probabilistic, one will reduce
all correlations (“same” as well as “different”) for
single-function pairs as well as double-function
pairs. It may be impossible (or require precisely
tuned model parameters) to achieve a reduction
in forward–backward correlation for double-func-
tion pairs without undermining the model’s ability
to fit the remaining correlation values. We suggest
one plausible approach that can bypass these trade-
offs—output encoding, which simply refers to
learning during recall. The logic is similar for all
classes of model, so we expand on this idea in a
separate discussion section below.

Positional-coding models. Recently, positional/con-
textual coding models have been adapted from
their original motivation, to describe serial list
learning, to also explain data on paired-associates
learning (Caplan, 2005; Caplan et al., 2006;
Howard et al., 2009). Because this unified model-
ling framework can potentially provide a more par-
simonious account of verbal memory than do
distinct modelling frameworks, explaining two
classes of paradigms together, it is important to
consider whether positional-coding models could
also account for the paired-associate learning
phenomena reported here. Significantly, the pos-
itional-coding model applied here assumes statisti-
cally independent storage operations (with
uncorrelated encoding variability) for each of the
items within a pair. In this way, the positional-
coding model can treat memory for pairs
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identically to memory for serial lists, by only speci-
fying that the within-pair positional separation be
substantially less than the between-pair positional
separation. This class of model can nonetheless
produce the observed high forward–backward cor-
relation for pairs due to how variability combines
during the probe process and the presence of a
high degree of positional isolation between pairs
(Caplan, 2005; Caplan et al., 2006). Positional-
coding models should be able to explain the
reduced forward–backward correlation for
double-function pairs for the same reason as that
applied to cued recall of serial lists in which
paired items were not isolated from other list
items (Caplan, 2005; Caplan et al., 2006).
Rather, the overlapping pair, due to nearby pos-
itions being similar to one another, produces
some confusion about within-pair order. Thus,
double-function pairs are susceptible to interfer-
ence from competing pairs, and the source of com-
petition depends on probe direction. Assuming
that each list item is stored with an independently
drawn encoding strength, this differential source
of interference will serve to partially decorrelate
the otherwise high forward–backward correlation.
As with the other model classes, however, current
implementations of positional-coding models are
challenged by the reduced test/retest correlation
we found for double-function pairs because, as
discussed for matrix- and concatenation-based
models, the source and level of interference
on Test 1 and Test 2 should be identical.
Furthermore, the addition of a probabilistic
retrieval mechanism threatens to reduce the
forward–backward and test/retest correlation for
single-function pairs as well as double-function
pairs, causing the model to potentially be unable
to fit the full pattern of data. We next discuss a
possible solution that could be applied to this
and the other model classes: output encoding.

Output encoding
Output encoding, learning during retrieval, was
suggested as an account of the high “different” cor-
relation in memory for pairs by Rizzuto and
Kahana (2001). However, in their Hopfield
network model they found that output encoding

served to inflate correlations but could not quanti-
tatively explain the high value of the correlation
without assuming that the underlying forward
and backward encoding strengths were also
highly correlated. Sommer, Schoell, and Büchel
(2008) also found that output encoding could
not explain a related high correlation in memory
for object-location pairs and noted that cued
recall can also produce reminiscence (retrieval of
previously unrecalled items on Test 2). We
reason that output encoding might have the
effect of slightly increasing the “same” correlation
for single-function pairs whereas for double-
function pairs, output encoding could occasionally
strengthen the level of interference between Test 1
and Test 2 of a given double-function pair, thus
reducing the correlation between cued recall tests
even in the same direction. The assumption is
very simply that when a response is given
(whether correct or incorrect), the model encodes
the recalled association as though it were an
additional presentation of the probe item paired
with the recalled item (in the recalled direction);
if no response was given on a cued recall trial,
one can assume no output encoding occurs
(Rizzuto & Kahana, 2001). For matrix, concatena-
tion, and convolution models, the output-encoded
pair can be added in precisely the same way as in
initial study. For a positional-coding model, the
output-encoded pair can be straightforwardly
assigned a new positional code, which starts
immediately following the last studied list pos-
ition. A minimum of one additional free parameter
would be associated with the output encoding
mechanism, such as mean strength of output
encoding, Ce. This extension is theoretically
efficient in that it extends the applicability of an
existing model process rather than introducing a
completely new process.

For single-function pairs, output encoding
functions like an additional study trial, potentially
resulting in a higher encoding strength, which
could facilitate retrieval on Test 2 relative to Test
1 or reencoding an error. Either way, output
encoding serves to reinforce the correlation
between Test 1 and Test 2. For double-function
pairs, in addition to “same”, the additional
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potential benefit from the repeated encoding
event, a competing pair might be strengthened,
thus increasing the level of competition during
retrieval of a particular double-function pair.
This can reduce the test/retest reliability for
double-function pairs without undermining the
remaining high forward–backward correlations.

Positional-coding models of association memory
The success of positional-coding models, in that
they require the least amount of modification
from their current forms relative to the other
model classes, suggests that other positional-
coding models, as well as more complex models
with positional-coding-like properties, such as
Conrad’s box model (Conrad, 1965), the
Perturbation model (Lee & Estes, 1977, 1981),
Mensink and Raaijmakers’s context-dependent
Search of Associative Memory models (Mensink
& Raaijmakers, 1988, 1989; Raaijmakers, 2003),
the Start-End Model (Henson, 1998), Burgess
and Hitch’s phonological loop model (Burgess &
Hitch, 1999), the Temporal Context Model
(Howard & Kahana, 1999), Serial Order in a
Box (Lewandowsky & Farrell, 2000), and Scale-
Independent Memory, Perception, and Learning
(Brown, Neath, & Chater, 2007), could be
extended to explain paired-associate learning.

Associative interference from semantic
memory

The account presented here could apply to inter-
ference from preexperimental associates from
semantic memory. Kahana (2002) demonstrated
that one could produce either a forward- or a back-
ward-probe advantage, if the paired items differed
in their number of preexperimental associates. For
example, if all the “A” items of the studied pairs
had more preexperimental associates than the “B”
items, then cued recall should be better in the
backward direction on average, due to the “A”
items being more ambiguous as probes than the
“B” items. Our findings suggest that orthogonal
to the question of symmetry or asymmetry in
mean performance measures, the forward–
backward correlation should reduce monotonically

as the number of preexperimental associates
increases, regardless of whether those associates
were attached to the “A” items or the “B” items.
Indeed, in Experiments 2 and 3, we obtain sym-
metric mean performance but lowered forward–
backward correlation for our double-function
pairs, which were contrived to have an equal
number of (episodic-memory) associates (two
each). Thus, we predict that the forward–
backward correlation for cued recall of previously
learned semantic-memory associations (e.g.,
SALT–PEPPER) should be reduced relative to
novel (highly episodic) associations.

Conclusion

In sum, the combination of mean-accuracy and
correlation measures of cued recall of double-
function and single-function pairs posed major
challenges to existing forms of three major
classes of models of pair memory. First, this under-
lines the importance of modellers directly specify-
ing how within-pair order information should be
stored, rather than treating within-pair order as a
tangential question. Second, specific modifications
of each model class were suggested to accommo-
date the full set of findings and without losing
the ability to account for prior findings. Finally,
the further constrained and extended models
suggest specific ways in which participants might
use within-pair order information to resolve
associative interference.
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