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Abstract



Mathematical models of association memory (study AB, given A, recall B)

either predict that knowledge for constituent order of a word pair (AB vs.

BA) is perfectly unrelated, or completely dependent on knowledge of the

pairing itself. Data contradict both predictions; when a pair is remembered,

constituent-order is above chance, but still fairly low. Convolution-based

models are inherently symmetric and can explain associative symmetry, but

cannot discriminate AB from BA. We evaluated four extensions of convo-

lution, where order is incorporated as item features, partial permutations

of features, item-position associations, or by adding item and position vec-

tors. All approaches could discriminate order within behaviourally observed

ranges, without compromising associative symmetry. Only the permutation

model could disambiguate AB from BC in double-function lists, as humans

can do. It is possible that each of our proposed mechanisms might apply to

a different, particular task setting. However, the partial permutation model

can thus far explain the broadest set of empirical benchmarks.

Keywords: association memory; order memory; mathematical models; ver-

bal memory; convolution; associative symmetry;

Introduction

Memory for associations forms the cognitive basis for a large portion of behaviour

(Murdock, 1974; Lashley, 1951). In many cases, such as remembering face-name relation-

ships at a dinner party, or that colorful snakes are poisonous, it is sufficient to remember
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that stimuli are associated to each other. But sometimes it is important to remember an

association along with its constituent-order (AB versus BA). Indeed, many examples of

order-sensitive associations exist in language, such as modifier-head relationships in com-

pound words, PAN CAKE versus CAKE PAN, or HOUSE GUEST versus GUEST HOUSE

(Dressler, 2006; Caplan, Boulton, & Gagné, 2014). However, memory for order has typ-

ically not been a focus in the experimental study of verbal association memory. Standard

tests of association memory ask participants to study pairs of words (AB), followed by cued

recall (given A, respond with B). Participants can respond with B when given A, and vice

versa, without knowing the constituent-order of the pairing. Moreover, memory for order

is typically studied with separate tasks such as serial recall (study A, B, C, D, recall the list

in order).

Consequently, mathematical models of association memory are quite poor at account-

ing for constituent-order, either assuming that associations are stored with perfect order, or

with no order at all. Models based on convolution (Kelly, Blostein, & Mewhort, 2013;

Murdock, 1982; Metcalfe Eich, 1982; Plate, 1995), and recent models within the REM

framework (Cox & Criss, 2017, 2020; Criss & Shiffrin, 2005), assume associations are

stored with no order. Thus, AB is mathematically equivalent to BA. The face-value predic-

tion is that memory for constituent-order will be at chance. However, given evidence that

participants can remember constituent-order above-chance (Greene & Tussing, 2001; Kato

& Caplan, 2017; Kounios, Smith, Yang, Bachman, & D’Esposito, 2001; Kounios, Bach-

man, Casasanto, Grossman, & Smith, 2003; Yang et al., 2013), one might rescue convolu-

tion, and other symmetric models, by allowing for some additional source of information

to support order judgments, such as an additional term in the model. The consequence of

storing order separately from associations is that the models would predict that memory

for constituent-order should be unrelated to memory for the pairing itself. The second type

of prediction, that associations are stored with perfect order, comes from matrix models



REPRESENTING SYMMETRIC, ORDERED ASSOCIATIONS 3

(Anderson, 1970; Humphreys, Bain, & Pike, 1989; Osth & Dennis, 2015b; Pike, 1984) and

models that concatenate the two item vectors (Hintzman, 1984; Shiffrin & Steyvers, 1997).

These models can infer order with no ambiguity, predicting that memory for constituent-

order (AB versus BA) should be perfect given that the association itself can be recalled.

Kato and Caplan (2017) tested these predictions with a task which we refer to as

order recognition (Greene & Tussing, 2001; Kounios et al., 2001, 2003; Yang et al., 2013).

Order recognition tests memory for constituent-order directly by presenting pairs in their

original (AB) or reversed order (BA). Participants then provide a forced-choice judgment

whether the probe is intact or reverse. One group of participants were tested with cued

recall, and then order recognition for each studied pair, and compared to another group

tested with associative recognition after cued recall instead.1 Matrix models predict that

order recognition performance should be perfect for correctly recalled pairs. Convolution

models predict that order recognition performance should be equivalent for correct and in-

correctly recalled pairs. Contradicting both predictions, order recognition was significantly

better when cued recall was correct, but well below maximum, and well below associa-

tive recognition for correctly recalled pairs.2 These results indicate that verbal associations

are neither encoded with perfect order, nor are completely order-absent, inconsistent with

assumptions in all models.3

Another clue about the representation of associations and their constituent order

comes from from double function lists in Rehani and Caplan (2011), where cued recall

was direction-specific. Double function lists (Howard, Jing, Rao, Provyn, & Datey, 2009;

1Both cued recall and associative recognition test memory for pairings between words and tend to be
highly correlated. Thus, the cued recall-associative recognition group provided a realistic upper ceiling to
compare the order recognition group against.

2Kato and Caplan (2017) also addressed the possibility that testing with cued recall influenced order
recognition. In their second experiment they withheld half the pairs from cued recall testing, and in their
third experiment moved cued recall to the end of the session. In both cases they found that the order-cued
recall relationship persisted.

3Thomas, Ayuno, Kluger, and Caplan (2022) also came to similar conclusions, as we elaborate below.
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Primoff, 1938; Rehani & Caplan, 2011; Slamecka, 1976), contain pairs, where each con-

stituent item appears in two pairs, once in the left position, and once in the right position

(AB, . . . , BC, . . . , CA, . . . ). Consider a trial where B is presented as a cue on the left-

hand side. Correctly responding with C requires knowledge of relative position/order, for

example, that B appeared on the left in pair BC, but not AB. Performance is compared to

single function pairs that do not share items (EF, . . . , GH, . . . , IJ, . . . ). Because of their

extreme assumptions about order, matrix and convolution models generate direct predic-

tions about this task. A convolution model has no information to select between A and

C. Thus, assuming the model guesses between two possible responses, convolution pre-

dicts cued recall accuracy for double function pairs will be one-half that of single-function

pairs. In contrast, matrix-based models suffer no interference between AB and BC (see

below). Therefore, the model predicts equal accuracy for double and single-function pairs.

Contradicting both matrix and convolution model predictions, Rehani and Caplan (2011)

found double-function cued recall accuracy was somewhat lower, but well above one-half

of single-function accuracy, converging with evidence from the order recognition task that

associations are neither stored order-absent, nor with perfect directionality.4

In sum, participants can discriminate AB versus BA during a word pair task (Greene

& Tussing, 2001; Kato & Caplan, 2017; Kounios et al., 2001, 2003; Yang et al., 2013), and

even use order/item-position information to aid cued recall (B ?) to solve AB versus BC

interference (Rehani & Caplan, 2011). Taken together, this suggests that the constituent-

order of verbal associations is explicitly stored, and in a way that is moderately dependent

on memory for the pairing itself.

4One could argue that the ability to disambiguate double function pairs does not come from memory for
order, but rather, because each item in these pairs was repeated, and thus more available in memory. However,
Caplan, Rehani, and Andrews (2014) found when participants were able to respond with both associates for
double function pairs, double and single function cued recall accuracy was equivalent, arguing against this
confound.
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Associative Symmetry

Despite evidence that associations are stored with moderate levels of order, there is

also a sense in which verbal associations are rather symmetric. Initial support for idea,

known as associative symmetry, arose from the stable tendency for forward cued recall ac-

curacy (APPLE ?) and backward cued recall (? OVEN) accuracy to be equal on average

(Asch & Ebenholtz, 1962; Horowitz, Brown, & Weissbluth, 1964; Kahana, 2002; Kato

& Caplan, 2017; Murdock, 1962). However, Kahana (2002) showed that an asymmetric

model could produce symmetry in mean cued recall accuracy, suggesting this result is not

diagnostic of symmetric associations. Instead, Kahana (2002) proposed that associative

symmetry should be tested at the pair level, with two cued recall trials for each word, and

where test 1 and test 2 is either forward or backward cued recall. Indeed, multiple stud-

ies have returned a near-perfect correlation for incongruent conditions (forward-backward,

backward-forward), that are remarkably close to what are essentially test-retest correlations

for congruent conditions (forward-forward, backward-backward) (Kahana, 2002; Kato &

Caplan, 2017; Rehani & Caplan, 2011; Rizzuto & Kahana, 2000, 2001; Sommer, Schoell,

& Büchel, 2008). These findings either suggest forward and backward cued recall are test-

ing the same bi-directional association in memory, or, that there are distinct forward and

backward associations for a given pair, but these are highly correlated in their strengths

(Kahana, 2002).

We were particularly interested in associative symmetry here because of the potential

paradox between association memory that is highly symmetric, yet supports memory for

its constituent-order. As we elaborate below, it was especially challenging in previous

attempts to modify matrix models to simultaneously produce moderate order memory and

associative symmetry (Kato & Caplan, 2017). A strong account of association memory

should be able to account for both constraints, and thus, we include this as an additional
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benchmark for all models.

Attempts to produce order and symmetry in current models

Given that associations are symmetric, yet support a moderate ability to judge

constituent-order, how do existing models account for the potential tension between these

constraints?

Matrix-based models. Associations are encoded as follows, M = ab⊺, where M

denotes the memory matrix, a and b represent item vectors, and ⊺ denotes transpose.

Bold-face indicates column vectors. Cued recall is modelled with matrix multiplication,

for example, Mb ≈ a+ noise. Matrix multiplication is direction sensitive, meaning that

b⊺M ≈ 0+ noise. By comparing the outputs of Mb and b⊺M, the model can unambigu-

ously infer that item b appeared in the left position. For similar reasons, matrix models

also have a perfect ability to solve double function interference. If two pairs that share an

item are stored in memory, M = ab⊺+bc⊺, the direction specificity of forward and back-

ward cued recall means that a given item vector b can cue completely different pairs in

memory based on direction, Mb ≈ a and b⊺M ≈ c. One can eliminate this directionality by

simultaneously storing the forward and reverse association, α f a⊺b+αbb⊺a, where α f and

αb are scalar random values that represent variable encoding strengths. Assuming that α f

and αb are perfectly correlated, and that E
[
α f

]
= E [αb], this model can produce perfect

associative symmetry (Kahana, 2002), but as a direct consequence, cannot discriminate AB

from BA (Kato & Caplan, 2017) or solve double function lists (Rehani & Caplan, 2011).

To regain some ability to disambiguate AB from BA, E
[
α f

]
could be increased relative

to E [αb], so that the forward association is stronger in memory; however, the model now

produces a forward recall advantage violating associative symmetry, and predicts order

recognition performance would positively correlate with the difference between forward

and backward cued recall performance. Kato and Caplan (2017) found no evidence for
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the latter prediction; these correlations were not significant. Kato and Caplan (2017) also

tested a matrix model that always stored a definite order, but sometimes encoded pairs in

the incorrect order with probability prev. Increasing prev reduced the model’s order recog-

nition performance, even to the moderate levels seen in behaviour. However, the model

assumes that even wrong order judgments are made with perfect certainty, because they

come from perfectly directional associations in memory. The resulting prediction is that

participants should be unlikely to switch their response if they are tested twice for order

recognition, correct-correct or incorrect-incorrect judgments should be most frequent. This

prediction was also unsupported in Kato and Caplan’s (2017) data—participants did not

stick with their order judgments more frequently than they switched their order judgments.

Along with evidence from other analyses, order judgments seem to not be made with per-

fect certainty, but are rather more like uncertain, noisy decisions that are prone to change

on retest.

Convolution-based models. Convolution models do not store order at all. Associ-

ations are stored as follows, m = a∗b, where a and b denote item vectors, m denotes the

memory vector, and ∗ denotes circular convolution.5 If a and b are n-dimensional vectors,

with each element sub-scripted from 0 to k−1, circular convolution is defined as follows,

mi =
n−1

∑
k=0

akb(i−k)modn, (1)

Where m is an n-dimensional vector. Importantly, convolution is strictly commutative,

a ∗ b ≡ b ∗ a. This property causes convolution to naturally produce associative symme-

try (Kahana, 2002), but also means that there is no way to recover the constituent-order

of the pair after encoding. To retain order information in a convolution model, one could

permute the elements of item-vectors before encoding (Jones & Mewhort, 2007; Kelly et

5Models such as Plate (1995) have used circular convolution. From now on, convolution refers specifically
to circular convolution.



REPRESENTING SYMMETRIC, ORDERED ASSOCIATIONS 8

al., 2013; Plate, 1995; Recchia, Jones, Sahlgren, & Kanerva, 2010), expressed as follows,

m = pl(a) ∗ pr(b), where p denotes permutation operator, and subscript l and r indicate

the position-specific permutation pattern applied to each vector. Permutation allows con-

volution to encode order-sensitive relationships (Jones & Mewhort, 2007), along with other

useful side-effects (Kelly et al., 2013). In published implementations, the whole vector is

permuted which effectively implements a non-commutative operation, more like a matrix-

outer product, pl(a)∗ pr(b) ̸= pr(a)∗ pl(b). For this reason, fully permuting item vectors

may be incompatible with empirical data in a similar way as an unmodified matrix model.

However, we do test this idea, with a small twist, below.

Four ways to extend convolution to store order

In sum, the concurrent empirical constraints of associative symmetry and moderate

order memory prove difficult for all existing models. Convolution models and modified

matrix models can produce perfect associative symmetry, but disregard order, while non-

commutative versions of both matrix and convolution models over-predict the degree to

which order is remembered. One could address these challenges with two possible ap-

proaches, either modify non-commutative models to have reduced order memory, or extend

symmetric models to store order. In the present article we take the latter approach.

Our objective here is not to fundamentally alter basic model mechanisms, but design

modifications that store order while preserving useful characteristics, like associative sym-

metry, that make convolution a rich account of verbal association memory. To this end, all

of our four models (Illustrated in Figure 1) are intentionally very simple, each consisting

of only three free parameters. Furthermore, each model parameterizes order discrimination

ability with one free parameter, as we describe below.

• Model A (Figure 1a): Order is encoded as explicit associations between item vectors

and “position” vectors, bearing some resemblance to positional-coding models of
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a Model A b Model Σ

+ ** +*

*+ +

c Model φ d Model Π
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Figure 1. Four different mechanisms to store the constituent-order of associations within a convo-
lution model. Blue circles denote item features, green circles correspond to the left position, and
yellow circles correspond to the right position. Note, the color of the circles were for illustrative
purposes, and do not indicate that features were the same value.
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serial recall (Conrad, 1960; Brown, Neath, & Chater, 2007; Burgess & Hitch, 1999;

Farrell, 2012; Henson, 1998), or item-context associations in the Temporal Context

Model (Howard & Kahana, 1999) but with just two unique position vectors. These

two associations for the left and right positions are stored along with the item-item

association,

mA =
L

∑
i=1

αi ((fi ∗ l)+(gi ∗ r)+(fi ∗gi)) , (2)

where fi, gi are n-dimensional item-vectors, and l and r are n-dimensional position

vectors, and L denotes list length or number of pairs stored in the memory vector

mA. Features values for all vectors are sampled from N(0,σ2), and then vectors are

strictly normalized. Item-position, and item-item associations share an associative

encoding strength αi, which is a scalar value sampled from N(µ,σα), and where

σα , and µ are free parameters. Model A infers order by comparing a dot product

between a correct item-position pair to the memory vector, ((fi ∗ l)+ (gi ∗ r)) ·mA,

and a dot product between an incorrect item-position pair and the memory vector,

((fi ∗ r)+ (gi ∗ l)) ·mA. In our implementation of model A, we parameterize order

discrimination ability by modifying the strength of item-position associations with

single parameter, the mean associative encoding strength µ . By modifying the mean

associative encoding strength µ , we can increase or decrease the match of a correct

item-position pair to memory. Finally, because item-position and item-item associ-

ations share an associative encoding strength αi, this ensures that memory for the

association co-varies with memory for its order.

• Model Σ (Figure 1b): Similar to model A, position vectors are used to represent

order but are instead added element-wise to each item before convolving, which is
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mathematically similar to extensions of TODAM (Murdock, 1995) that summed item

vectors before convolving,

mΣ =
L

∑
i=1

αi((fi + l)∗ (gi + r)), (3)

where L, αi, fi, gi, l, and r are identical to their definitions in equation 2, and mΣ

denotes the memory vector. Interestingly, by expanding the encoding equation, mΣ =

∑
L
i=1 αi((fi ∗gi)+(gi ∗ l)+(fi ∗ r)+(l∗ r)), we can see that this model is equivalent

to model A (equation 2) with an additional noise term, l∗ r. This equivalency means

that we can parameterize order discrimination ability in the same way as model A,

by modifying the strength of item-position associations with a single parameter µ .

Thus, if the model infers order by comparing a dot product between a correct item-

position pair, ((fi+ l)+(gi+r)) ·mΣ, and incorrect item-position pair to the memory

vector, ((fi+r)+(gi+ l)) ·mΣ, modifying the mean associative encoding strength µ

can modify the match of a correct and incorrect item-position pair to memory.

• Model φ (Figure 1c): Order is encoded by incorporating dedicated positional feature

values into the item vector alongside item-unique features. This bears some resem-

blance to the ways in which numerous models have incorporated attributes such as

list context as specialized features. All items in the left position receive the same set

of positional feature values, and likewise for right position items,

mφ =
L

∑
i=1

αi((fi ⊕ l)∗ (gi ⊕ r)), (4)

where L is defined as before, and l and r consist of np positional features that are con-

catenated (denoted by ⊕) onto item vectors fi and gi respectively, and mφ denotes the

memory vector. Encoding strength αi is drawn from N(1,σα), but note the follow-
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ing difference from models A and Σ—σα is a free parameter and mean associative

encoding strength is fixed at 1. This is because order discrimination is parameter-

ized with the number of positional features np, instead of mean associative encoding

strength (see below). Vectors fi and gi each consist of unique item features, and have

n− np dimensions to ensure that resulting dimensions of the full vector, with posi-

tion features, is always equal to n. All feature values, including position features, are

independently sampled from N(0,σ2), and item vectors, with position features, are

strictly normalized. The order discrimination ability of model φ is parameterized by

a single parameter, the number of positional features np. The model can infer order

by comparing a dot product between a pair of items with correct position features

to the memory trace, (fi ⊕ l)∗ (gi ⊕ r) ·mφ , and a dot product between pair of items

with incorrect position features to the memory trace, (fi ⊕ r)∗ (gi ⊕ l) ·mφ . Increas-

ing np increases the difference between these two matches, and thus overall order

discrimination ability.

• Model Π (Figure 1d): To encode order, item-unique feature values are shuffled or

permuted in a pattern that is specific to the position of that item vector. This mecha-

nism is inspired by the use of permutation in other models (Jones & Mewhort, 2007;

Kelly et al., 2013; Plate, 1995), but the key difference in our implementation is that

here, only a subset of features are permuted, rather than the entire vector,

mΠ =
L

∑
i=1

αi(pl(fi)∗ pr(gi)), (5)

where L is defined as before, and fi and gi are n-dimensional item vectors, of which

n elements are independently sampled from N(0,σ2). Vectors are then strictly nor-

malized, and mΠ denotes the memory vector. A distinct pattern of permutation is
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applied to every left position item, denoted by pl , and another pattern of permuta-

tion is applied to the right position item, denoted by pr. Just like model φ , encoding

strength αi is drawn from N(1,σα), where σα is a free parameter and mean associa-

tive encoding strength is fixed at 1. The order discrimination ability of model Π is

parameterized by a single parameter, the number of permuted features nperm. Thus,

similar to model φ , and unlike models A and Σ, µ is not a free parameter. The model

can infer order by comparing a dot product between a pair of items with the correct

position permutations to the memory vector, pl(fi) ∗ pr(gi) ·mΠ, and a dot product

between a pair of items with incorrect position permutations and the memory vec-

tor, pr(fi)∗ pl(gi) ·mΠ. Increasing nperm increases the difference between these two

matches, and thus overall order discrimination ability.

Summary of modelling approach

A major focus in this article is the challenge presented by order recognition data

(Kato & Caplan, 2017; Thomas et al., 2022), which to our knowledge, has not been pre-

viously fit by models. To investigate whether each of our extensions of convolution can

address this challenge, we fit each to both aggregate data and single participants, as two

separate benchmarks. Single-participant data is better in the sense that it is less likely to

arise from a mixture of mechanisms, and more likely to be model-pure, reducing the chance

that the wrong model is favored. The disadvantage is that each participant has less data,

so they are, in principle, more noisy than aggregated data. By including both single par-

ticipant and aggregate model-selection, we could look for broad agreement between both

benchmarks, increasing the robustness of any conclusions we make.

We also evaluate whether each model can account for double function list perfor-

mance (Rehani & Caplan, 2011). While double function lists also provide a challenge to

models for similar reasons as order recognition data, our intention is not to provide a com-
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prehensive account of this task. Instead, we used double function lists to help characterize

conditions under which certain order-encoding mechanisms may be more preferable. Ac-

cordingly, we kept this section brief, opting to use algebraic arguments and simulations,

rather than quantitative fits to data. Our evaluation of these models will proceed as follows.

First, we simulate order recognition, cued recall, and associative recognition with each

model, to show the relationship between performance and key model parameters. Next, we

fit models to order recognition data at the aggregate level, to determine if each can produce

a moderate relationship between order recognition and cued recall, while preserving the

near-perfect correlation between forward and backward cued recall (benchmark 1a). Next,

we fit models to order recognition data for individual participants (benchmark 1b). Finally,

we evaluate each model against double function lists (benchmark 2).

Empirical benchmark 1: Order recognition and associative symmetry

We first wondered whether each of these models could produce above-chance order

recognition performance, with a moderate relationship to cued recall performance, and

alongside the near-perfect symmetry between forward and backward cued recall.

Target data-set

We fit models to data from experiment 1 in Thomas et al. (2022).6 This experiment

included 227 participants total, with two experimental groups, a strategy-instruction group

(N = 117) where participants received instructions to use a memory strategy, and a control

group (N = 114). We only used data from the control group in the following fits, as it was

most comparable to conditions in Kato and Caplan (2017).

The design of this experiment is illustrated in Figure 2, and the full methods can be

found in Thomas et al. (2022). Briefly, each participant completed study, cued recall, and

6Data is posted at https://osf.io/x78gp/
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recognition for eight lists total (excluding a practice list at the beginning of the experiment).

For each list, participants viewed eight word pairs in sequence, where each pair presented

for 2850 ms, with a 150 ms inter-trial interval. This was followed by eight cued recall

trials which tested all studied pairs. Then, depending on the condition that each participant

was assigned, this was followed by either eight order recognition trials (N = 56) or eight

associative recognition trials (N = 58) which tested all studied pairs.7 Interleaved between

study, cued recall and recognition trials were five trials of a mathematical distractor task.

Cued recall direction (forward versus backward), associative recognition probe type (intact

versus recombined), and order recognition probe type (intact versus reverse) was counter-

balanced across all lists. The design of this experiment was very similar to Kato and Caplan

(2017) except that cued recall was only tested once per pair, meaning that the correlation

between forward and backward cued recall could not be measured at the level of individual

pairs. Instead, as we elaborate below, we used general ranges from previous experiments to

check whether the correlations in the present models are consistent with previous reports.

We fit models to data averaged across all eight test lists.

We derived two empirical benchmarks (1a and 1b) from this data-set to evaluate

models. Benchmark 1a was order recognition performance separated by cued recall cor-

rectness (and associative recognition as a control), alongside the near-perfect correlation

between forward and backward cued recall. Benchmark 1b was individual differences in

order recognition performance, that occupied a range around the means observed in bench-

mark 1a. Here we wondered if models could not only produce means that characterized

empirical data, but account for individual participants within the data-set using different

parameter sets.

7Initially, both cued recall and recognition trials had 15000 ms time-limit, but this was removed halfway
through data collection.
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______DUTY

PUPIL CITY

COPY HERO

______PUPIL

STUDY CUED RECALLDistractor 

8 pairs 8 pairs 8 pairs

____________
DUTY

____________
HERO

ACID DUTY

CITY PUPIL

Distractor RECOGNITION

ACID

COPY HERO

Figure 2. The design of one cycle from experiment 1 in Thomas et. al. (2022), adapted from figure 1
of Thomas et. al. (2022). The recognition task performed (associative versus order) was a between-
subject factor. This procedure was repeated for a total of eight cycles, after which participants
completed other tasks and a questionnaire not pictured here.

Simulation Methods

To begin, we describe how order recognition, cued recall and associative recognition

are simulated in each of our models.

Encoding. Each model encodes a memory vector m according to its respective

encoding expression defined above (Equations 2–5). Each memory vector m stores L = 8

unique pairings of 16 different items, matching Thomas et al. (2022).

Order recognition. Two dot products are used to assess model order recognition

performance. First, a dot product between items with the correct position and the memory

trace, defined as follows for models A, Σ, φ , and Π respectively,
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ιA = ((fi ∗ l)+(gi ∗ r)) ·mA, (6)

ιΣ = ((fi + l)+(gi + r)) ·mΣ, (7)

ιφ = ((fi ⊕ l)∗ (gi ⊕ r)) ·mφ , (8)

ιΠ = (pl(fi)∗ pr(gi)) ·mΠ, (9)

And then, a dot product between items with incorrect positions and the memory trace,

simulated for each of our four models using the following expressions respectively,

ρA = ((fi ∗ r)+(gi ∗ l)) ·mA, (10)

ρΣ = ((fi + r)+(gi + l)) ·mΣ, (11)

ρφ = ((fi ⊕ r)∗ (gi ⊕ l)) ·mφ , (12)

ρΠ = (pr(fi)∗ pl(gi)) ·mΠ, (13)

For equations 8 and 12 (model φ ), position features are first concatenated to item vectors,

and then the entire vector is strictly normalized. For all other models (equations 6, 7, 9, 10,

11, and 13), all item vectors and position vectors are strictly normalized. Each equation

above is computed for all L pairs in memory, which returns L samples per list. Overall order

recognition sensitivity (d′) is computed from these L samples across all lists according to

d′ = (E[ιM ]−E[ρM ])√
0.5(Var[ιM ]+Var[ρM ])

,M ∈ {A,Σ,φ ,Π}, where E and Var respectively denote the mean

and variance of matching strengths.

Cued recall. As in previous models such as Plate (1995), cued recall is imple-

mented with the correlation operation, denoted with #. If f and m are n-dimensional vectors

with subscripts 0 to k−1, where f is the cue vector, and m is the memory vector, correlation
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is defined as,

gi =
n−1

∑
k=0

fkm(k+i)modn, (14)

Where g is an n-dimensional vector. In the following simulations, forward cued recall

fi # m ≈ gi, and backward cued recall, gi # m ≈ fi, are simulated for all studied pairs. For

each cued recall trial, a dot product is computed between the retrieved vector and all 2L item

vectors representing possible candidate responses, which we refer to as lexicon vectors.

Lexicon vectors are strictly normalized. The highest match is selected as the response with

a winner-take-all rule, and is scored correct if it matches the target item. Following the

procedure used by Thomas et al. (2022), where cue words had no positional information,

in all models position is excluded for the cue and lexicon vectors; 1) Models A and Σ,

positional vectors l and r are omitted from all cued recall operations. 2) Model φ , position

features for cue vectors and lexicon candidate item vectors are replaced with noise, sampled

from N(0,σ2) for each item. 3) Model Π, the cue vector and lexicon vectors are not

permuted, departing from previous implementations (Kelly et al., 2013).

Associative recognition. The following two dot products are used to assess model

associative recognition performance,

ι = (fi ∗gi) ·m, (15)

ρ = (fi ∗g j) ·m (16)

Where i ̸= j. Equation 15 is a dot product between the memory vector and an old (studied)

pairing of list items, and equation 16 is a dot product between the memory vector and a

new pairing of list items. For equation 16, this dot product is repeated for L unique new
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pairings between left and right items from the studied list. All item vectors fi and gi are

strictly normalized. Overall associative recognition performance (d′) is computed using

the outputs of these two dot products repeated for L pairs, across all lists, according to

d′ = (E[ιM ]−E[ρM ])√
0.5(Var[ιM ]+Var[ρM ])

. Just as for cued recall, we assume no positional information in

both equations; 1) Model A, and Σ, positional vectors l and r are omitted from intact and

recombined probes. 2) For model φ , this means that position features for item vectors in

intact and recombined probes are replaced with noise, sampled from N(0,σ2). 3) Model

Π, item vectors in intact and recombined probes are not permuted.

Procedure. Following Thomas et al. (2022), encoding, cued recall, order recogni-

tion, and associative recognition are repeated for eight word lists. For recognition tasks,

this results in 8L intact probe matches (OR: Equations 6–9, AR: Equation 15), and re-

verse/recombined probe matches (OR: Equations 10–13, AR: Equation 16), from which

order and associative recognition sensitivity (d′) is computed. Similarly, cued recall accu-

racy was computed across 8L trials for forward cued recall, and 8L trials for backward cued

recall.

Parametric plots of model performance.

Before fits to data, we wanted to understand the sensitivity of each model to parame-

ters, with special attention to the single parameter that directly modifies each model’s abil-

ity to discriminate order. This parameter was µ in models A and Σ, np in model φ , and nperm

in model Π. These parameters are now called the “order parameter” of each model. We

simulated cued recall, order recognition, and associative recognition at the following values

of each model’s order parameter; for models A and Σ, µ = {0, 0.1, 0.2 ...,1.0}, model φ ,
np
n = {0, 0.1, 0.2 ...,1.0}, and in model Π, nperm

n = {0, 0.1, 0.2 ...,1.0}. Simulations were re-

peated for σα = { 0.1, 0.5 ,1.0} (SD of associative encoding strength α). Total item vector

features was held constant at n = 100 for all simulations, and all procedures were accord-
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ing to the specifications stated above. Simulations at each parameter set were iterated 100

times, and predicted values were averaged across these 100 iterations.

Results. Parameter µ in models A and Σ had a positive relationship to performance

in all memory tasks (figure 3). In contrast, parameter nperm in model Π had a positive rela-

tionship with order recognition performance, but a negative relationship to both associative

recognition and cued recall performance. This meant that if order recognition becomes too

accurate, association memory becomes unrealistically low, below levels seen in behaviour.

This suggests that for model Π there may be a particular optimum, whereas for models

A and Σ, performance on one task does not come at the expense of performance on an-

other. Parameter np in model φ was similar to nperm in this way, but negatively affected

order recognition performance after roughly half of the item vectors consisted of position

features. With a few exceptions, reducing the value of σα , and therefore overall noise,

improved performance for all models and memory tasks. Some of these relationships be-

tween model parameters and performance could be changed if models were implemented

in different ways. For example, in model Π, we did not permute the cue vector based on

position, because cue words did not contain position information in Thomas et al. (2022).

However, if we did permute the cue vector, all of the features of the cue vector would be di-

agnostic for cued recall, rather than just the n−np non-permuted features, and there would

then be a positive relationship between nperm and cued recall performance.

Empirical benchmark 1a: The moderate within-subject relationship between order

recognition and cued recall correctness

Thomas et al. (2022) found that order recognition performance was significantly bet-

ter when cued recall for that pair was correct, but well below associative recognition for

correctly recalled word pairs (Figure 4). To test if each model could account for these

within-subject patterns we performed quantitative fits to means in figure 4, along with
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Figure 3. Parametric plots of cued recall, order recognition and associative recognition performance
for each model as a function of mean associative encoding strength (µ) for models A and Σ, number
of position features (np) for model φ , and the number of permuted features (nperm) for model Π. To-
tal item vector features was held constant at n = 100 for all simulations. Simulations were repeated
for σα = { 0.1, 0.5 ,1.0}.
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Figure 4. Benchmark 1a: Each model’s best fit to order recognition d′ (top row) and associative
recognition d′ (bottom row) for correct versus incorrectly recalled pairs from Thomas et. al. (2022).
Error bars in all panels represent 95% confidence intervals based on standard error of the mean.

some other empirical constraints described below.

Given the challenge associative symmetry posed in previous efforts to modify models

(see introduction), we also checked whether models maintained symmetry in the following

fits. We quantitatively fit the symmetry between forward and backward cued recall accu-

racy using data from Thomas et al. (2022). Additionally, previous studies (e.g., Kahana,

2002; Kato & Caplan, 2017) have used Yule’s Q (Bishop, Fienberg, & Holland, 1975), to

measure the within-pair correlation between forward and backward cued recall. Yule’s Q

quantifies the relationship between two tests with dichotomous outcomes, and like a Pear-

son correlation, ranges from -1 to 1. Thomas et al. (2022) could not compute Yule’s Q

because pairs were only tested with cued recall once. However, given that high Yule’s Q

more diagnostic of associative symmetry than average performance (Kahana, 2002), we

still checked whether each model could produce values in the basic empirical range, such

as Q ≈ .85 in Kato and Caplan (2017).

Parameter search and methods. Each model was fit to the following empirical

values from Thomas et al. (2022); 1) order recognition d′ for correctly recalled pairs, 2) as-

sociative recognition d′ for correctly recalled pairs, 3) the difference between order recog-
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nition d′ for correct and incorrectly recalled pairs, 4) the difference between associative

recognition d′ for correct and incorrectly recalled pairs, 5) forward cued recall accuracy,

6) backward cued recall accuracy. The empirical values for each of these measures are

reported in Table 2.

The closest fit for each model was determined via direct search, meaning that each

model was simulated at each combination of parameter values for the following param-

eters and parameter ranges; (1) σα = {0, 0.05, 0.1 ...,1.0}, (2) n = {10, 20, 30 ...,500}.

(3) Again, the third free parameter was known as the order parameter, and was

specific to each model. For models A and Σ, µ (mean of associative encod-

ing strength)= {0, 0.025, 0.05 ...,1.0}, model φ , number of positional features, np
n =

{0, 0.025, 0.05 ...,1.0}, and in model Π, the number of permuted features, nperm
n =

{0, 0.025, 0.05 ...,1.0}.8 This resulted in a 41×50×21 matrix of model predictions for

each model which we call the “direct search matrix”.

Forward cued recall, backward cued recall, order recognition and associative recog-

nition were simulated as described above, for 8 lists of L pairs. These simulations were

iterated 300 times for each cell of the direct search matrix, and model predicted values

were averaged across these 300 iterations. Root-Mean-Squared Error (RMSE) was com-

puted between empirical and model predicted values for the four means plotted in Figure

4. RMSE was then transformed to Bayesian Information Criterion (BIC) values via an es-

timation of log-likelihood (Burnham & Anderson, 2004). The BIC minimum was selected

from the direct search matrix to find the best fitting parameter set. By convention, if ∆BIC

> 2 the models are considered meaningfully different. We have included heat maps of BIC

values around the best fitting parameter sets in supplementary materials (Figure S1 and S2).

To compute model predictions for Yule’s Q, we used the outcome of cued recall simu-

8Note, that in model φ and Π, certain values of the order parameters nperm
n and np

n resulted in decimal values
of permuted or positional features (e.g., nperm

n = 0.325 at n = 130 would result in 42.25 permuted features).
In this case, the number of permuted or positional features was rounded to the nearest whole number.
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lations for each pair in the backward and forward direction. Predicted Yule’s Q values were

generated for each of the 300 iterations at each cell of the direct search matrix as follows.

The frequency of the following four outcomes was tallied; a = # of pairs where forward and

backward cued recall were correct, b = # of pairs where forward cued recall was correct and

backward cued recall was incorrect, c = # of pairs where forward cued recall was incorrect

and backward cued recall was correct, d = # of pairs where both backward and forward

cued recall were incorrect. Yule’s Q is then calculated according to (ad − bc)/(ad + bc),

and can range from -1 to 1. We added 0.5 observations to each outcome (a,b,c,d) to prevent

infinities. Yule’s Q values for each cell were then log-odds transformed, averaged, and then

inverse log-odds-transformed9 to generate a single predicted value at each cell of the direct

search matrix.

For comparison we also plotted and reported the performance of a reference model

by simulating 300 iterations of the Model Π at nperm
n = 0, σα = 0.5, and n = 400. At

these parameter values this model is equivalent to an unmodified convolution model with

no information for item position/order. This model is unable to produce order recognition

d′ above 0, and would thus be unconstrained by empirical order recognition performance,

unlike the other models. As a result, we did not fit the reference model to data.

Results. All four modified convolution models improved substantially on the ref-

erence model fits (Table 1), and Model A (item-position associations), and Model Π

(position-specific permutation) performed substantially better than model Σ (both ∆BIC >

2). For all other differences ∆BIC < 2. Although there were differences in quantitative

fits, in general, models could produce greater order recognition performance for correctly

recalled pairs compared to incorrectly recalled pairs, indicating a moderate relationship

between order memory and association memory. Models Σ and φ produced a smaller dif-

9This followed analyses of empirical Yule’s Q in Kato and Caplan (2017), who log-odds transformed
Yule’s Q to ensure that these measures met parametric assumptions.
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ference than other models and what is seen in behaviour (Table 2); however, because the

current fits were highly constrained, and required models to fit both order and associative

recognition with the same parameters (despite being performed by different participants

in the behavioural data-set), this does not necessarily indicate that models Σ and φ cannot

produce a moderate order recognition-cued recall relationship, and would perhaps produce

closer fits to behavioural values under different fitness measures and parameters spaces.

All models could produce order recognition performance that was well below asso-

ciative recognition for correctly recalled pairs, successfully producing the less than maxi-

mum relationship between order and association memory seen in behaviour (Figure 4).

All models were also successful at preserving associative symmetry. Additionally, all

models exhibited equal forward and backward cued recall accuracy, with values that were

close to empirical observations. There was a marked reduction in Yule’s Q for all models

compared to the reference model (Table 2), closer to what is observed empirically (Yule’s Q

> 0.85 for all groups in Kato & Caplan, 2017). Previous methods to reduce model Yule’s Q

in models such as adding noise between successive tests simultaneously reduced test-retest

correlations (forward-forward, backward-backward) which, in contrast, tend to be close to

1 in behavioural data.

In sum, all modifications extended convolution to support moderate order recogni-

tion, without compromising associative symmetry and indeed producing Yule’s Q values

that closer to empirical observations.

Empirical benchmark 1b: Fits to individual differences in order recognition perfor-

mance

Fits to aggregate data can be informative, but can lead to misleading conclusions if

participants vary substantially, where some participants are better fit by one model and oth-

ers, by a different model. Indeed, even though order recognition performance exhibits a
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Table 1
Best-fitting model parameters for fits to benchmark 1a. Data was obtained from experiment 1 in
Thomas et. al. (2022). All models produced substantially closer fits compared to the reference
model (∆ BIC> 2). Additionally, model A and model Π performed substantially better than models
Σ. All other differences in BIC values were not greater than 2. For all models σα and n were free
parameters. The order parameter was a free parameter unique to each model—for model φ this
was np, for model Π this was nperm, and for models A and Σ this was µ . Note, for models φ and Π,
parameter µ was held constant.

Model n σα Order parameter BIC
Reference 400 0.5 N/A 5.07
Model A 60 0.4 µ = 0.925 –13.05
Model Σ 400 0.2 µ = 0.775 –9.77
Model φ 380 0.3 np

n = 0.375 –11.25
Model Π 130 0.45 nperm

n = 0.325 –11.85

Table 2
Data from experiment 1 in Thomas et. al. (2022) along with predictions generated by each model
at best fitting parameters. Values under correct and incorrect are data and model predictions for
recognition performance for correctly and incorrectly recalled respectively. Under the label differ-
ence are data and model predictions for recognition performance for correctly recalled pairs minus
performance for incorrectly recalled pairs, and provides a measure of the dependence of recogni-
tion on cued recall performance. We also report model predicted values for Yule’s Q, although we
did not quantitatively fit models to empirical Yule’s Q values.

Order recognition d′ Associative recognition d′ Cued recall accuracy

correct incorrect difference correct incorrect difference forward backward Yule’s Q

Data 1.71 1.12 0.59 2.73 1.41 1.32 0.44 0.40 -

Reference 0 0 0 3.18 0.40 2.78 0.91 0.91 .99

Model A 1.90 1.38 0.52 2.62 0.83 1.79 0.38 0.38 .85

Model Σ 1.47 1.22 0.25 2.97 1.23 1.74 0.59 0.59 .85

Model φ 1.67 1.39 0.28 2.89 1.09 1.8 0.51 0.51 .87

Model Π 1.58 1.11 0.47 2.74 0.88 1.86 0.46 0.46 .87
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moderate relationship to cued recall, individual participants in Thomas et al. (2022) occu-

pied a range around these mean values (See Figure S5 in Supplementary Materials). Thus,

we tested how each model could fit individual differences.10

Parameter search. We fit models to individual participant values for; 1) order

recognition d′ for correctly recalled pairs, 2) order recognition d′ for incorrectly recalled

pairs, 3) log-odds transformed cued recall accuracy.11 Re-using simulated model predic-

tions from the direct search matrix for benchmark 1a, best fits were selected by minimizing

BIC for each participant.12

Results. Figure 5 plots residuals for fits to individual participant’s order recognition

performance for incorrectly recalled pairs (x axis) and correctly recalled pairs (y axis).

Model Π exhibited a tight, spherical scatter around the origin, indicating highly accurate

fits to individual participants on both measures. There were, however, two clear outliers

for model Π, indicating that certain participants were more challenging for this model to

account for. Figure S4 shows that these two participants had exceptionally high OR d′

for correctly recalled pairs. Next, residuals for models A and φ exhibited a larger and

less spherical scatter compared to model Π, although there were no clear outliers. Finally,

model Σ had the largest scatter, with a clearly non-spherical pattern, suggesting that this

model provides a weak account of individual participants relative to other models.

Additional insights can be garnered from Figure S4 as follows—Model Σ could only

produce a narrow range of performance values and was the poorest at accounting for in-

dividual differences across all models. In contrast, models A and φ produced a range of

predictions, although model A was biased towards predicting high order recognition d′ for

10We also examined whether models could produce empirical between-subject correlations between recog-
nition and cued recall performance (page S6)

11Log-odds transformed cued recall was included in the fitness measure because we also used the following
model fits for benchmark 1c (see below).

12The distribution of parameter values that each model used to fit individual participants is reported in
Table S1 and plotted in Figure S3.
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Figure 5. Residuals for fits to individual participant data from Thomas et. al. (2022). Coordinates
for each circle are the difference between data and model predictions for an individual participant’s
order recognition d′ for incorrectly recalled pairs (x axis), versus correctly recalled pairs (y axis).

correctly recalled pairs (relative to the central tendency of the empirical data), while model

φ tended to predict values closer to the center or even on the lower end of empirical order

recognition d′ for correctly recalled pairs. Finally, model Π produced the broadest range

of predictions, suggesting it was the most flexible out of all models.

As an additional way to compare model fits, we used a winner-take-all rule, tallying

the number of times each model produced the lowest BIC value for a given participant. If

a model did not win by significant margin compared to the other three models (∆BIC > 2)

we omitted that participant from reported counts. 37 participants were excluded on this

basis. Figure S5 plots this analysis.

Model Π provided the strongest account of benchmark 1b, producing the best fit to
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15 participants which were located throughout the scatter (Figure S5). This was followed

by model φ which provided the best fit to four participants. Finally, models A and Σ did

not win for any participant. This may indicate that, in addition to providing a good account

of mean order recognition performance, model Π provided the closest fit to the largest

number of individuals. However, given that certain participants were better described by

other models, and that 37 participants did not have a winning model, this suggests that

participants may, in fact, judge order in more than one way.

Empirical benchmark 2: double-function lists

Although models varied in their ability to account for individual differences, we have

shown that simple modifications to convolution can produce moderate order memory with-

out compromising its inherent symmetry. As a further test of each model, we leveraged

another paradigm that demands memory for constituent-order, double function lists (AB...,

BC..., CA...). Recall that standard convolution models are unable to disambiguate double

function pairs during cued recall (see introduction). For example, if A is presented as a cue

to a convolution model, both B and C are retrieved equally, and the model must guess. We

start with algebraic expressions to come to general conclusions about how each model may

solve this task, and then test these conclusions with simulations.

Model A. First assume that three double-function pairs are encoded in memory,

AB, BC, and CA. Following Rehani and Caplan (2011), each item appears in two pairs,

exactly once in the left position and exactly once in the right position. Dropping the asso-

ciative encoding strength (αi), this is expressed in model A as follows,

m = a∗b+a∗ l+b∗ r

+b∗ c+b∗ l+ c∗ r

+c∗a+ c∗ l+a∗ r

(17)
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where a, b, and c denote item vectors, and l and r denote left and right position vectors

respectively. Cued recall is expressed as follows,

a # m = b+ c+ l+ r (18)

We see that the retrieved vector is essentially a sum of b and c with noise. As a result, there

is no information to help the model select between competing items, resulting in perfect

double function interference. To address this, one could incorporate the positional vector

into the cue,

(a+ l)# m = 2b+2c+a+ l+ r (19)

However, the retrieved vector is still equally similar to c and b. This is because the posi-

tional vector l is associated to every item exactly once in the list, and provides no informa-

tion to solve double function interference.

Model Σ. Model Σ cannot solve double function interference for the same reason.

Again, assume that pairs AB, BC, and CA are encoded in memory,

m = (a+ l)∗ (b+ r)

+(b+ l)∗ (c+ r)

+(c+ l)∗ (a+ r)

(20)

Expanding the above expression shows that model Σ is equivalent to model A, with an

additional noise term (l∗ r) generated for each pair,

m = (a∗b)+(a∗ r)+(b∗ l)+(l∗ r)

+(b∗ c)+(b∗ r)+(c∗ l)+(l∗ r)

+(c∗a)+(c∗ r)+(a∗ l)+(l∗ r)

(21)

In its expanded form, we can see that both positional vectors are associated to every item
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in the list. As a result, if cued recall is simulated with the cue a+ l,

(a+ l)# m = 2b+2c+a+ l+4r (22)

the retrieved vector is equally similar to the target item b, and non-target item c. Just as in

model A, positional vector l provides no diagnostic ability.

Model φ . Position features also cannot be used to solve double function interfer-

ence. AB, BC, and CA would be encoded as follows,

m = (a⊕ l∗b⊕ r)+(b⊕ l∗ c⊕ r)+(c⊕ l∗a⊕ r) (23)

Assuming n = 3 and np = 1, this can also be expressed in its expanded form,


m1

m2

m3

=




a1

a2

l3

∗


b1

b2

r3


+




b1

b2

l3

∗


c1

c2

r3


+




c1

c2

l3

∗


a1

a2

r3


 (24)


m1

m2

m3

=


a1b1 +a2r3 + l3b2+

a1b2 +a2b1 + l3r3+

a1r3 +a2b2 + l3b1+

b1c1 +b2r3 + l3c2+

b1c2 +b2c1 + l3r3+

b1r3 +b2c2 + l3c1+

c1a1 + c2r3 + l3a2

c1a2 + c2a1 + l3r3

c1r3 + c2a2 + l3a1

 (25)

We can see that positional features l3 and r3 are distributed throughout the memory vector

after convolution, appearing in terms with item features from every item of the list. Ulti-

mately, this means that positional features are no longer specific to any item. This becomes

clearer if we proceed with cued recall, which is expressed as, x = (a⊕ l) # m, where x is

the retrieved vector. The expanded form of equation is expressed as follows,
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x1

x2

x3

=


a1

a2

l3

#


m1

m2

m3

 (26)


x1

x2

x3

=


a1m1 +a2m2 + l3m3

l3m1 +a1m2 +a2m3

a2m1 + l3m2 +a1m3

 (27)
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b1(a2

1 +a2
2 + l2

3)+ c1(a2
1 +a2

2 + l2
3)+a1l2

3 +noise

b2(a2
1 +a2

2 + l2
3)+ c2(a2

1 +a2
2 + l2

3)+a2l2
3 +noise

r3(a2
1 +a2

2 + l2
3)+ r3(a2

1 +a2
2 + l2

3)+ r3l2
3 +noise

 (28)

The retrieved vector x is essentially an equal sum of b⊕ r and c⊕ r, and to a lesser ex-

tent a⊕ r. As a result, dot products to both candidate items will be equal (E [x · (b⊕ r)] =

E [x · (c⊕ r)]), regardless of the number of positional features np. Thus, because position

features are repeated for multiple items, they cannot be used to cue a specific item in mem-

ory. Thus, the position-feature model cannot solve double function interference.

Model Π. Permutation, in contrast, can be used solve double function interference.

First assume that pairs AB, BC, and CA are encoded as follows,

m = pl(a)∗ pr(b)+ pl(b)∗ pr(c)+ pl(c)∗ pr(a) (29)

To understand why interfering pairs can be disambiguated with permutation, consider a

case where the whole item is permuted (nperm
n = 1) before encoding. Given this, pr(a) and
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pl(a) will behave as distinct, orthogonal items (assuming large n). As a result, if cued recall

proceeds with the following expression,

pl(a)# m (30)

pl(a) will only evoke pair, pl(a) ∗ pr(b)in memory, and grant the model perfect ability

to disambiguate double function pairs. If we assume only a subset of item vectors are

permuted (nperm
n < 1), The degree to which vector pl(a) retrieves the target pr(b) is pro-

portional to nperm. This is because the non-permuted portion of pl(a) is identical to the

non-permuted portion of pr(a), it will also evoke pair pl(c) ∗ pr(a). As we demonstrate

below, changing nperm allows the position-specific permutation model to produce a range

of performance values ranging from zero (like an unmodified convolution model) to perfect

(like a matrix model) ability to solve double function pairs.

Simulation methods

To test the insights gained from algebraic expressions, we also simulated double

function lists with each of our four models.

Encoding. Assume that each model stores double function pairs AB, BC, and CA.

Encoding for each model proceeds as follows,

mA = α1(a∗b+a∗ l+b∗ r)+α2(b∗ c+b∗ l+ c∗ r)+α3(c∗a+ c∗ l+a∗ r) (31)

mΣ = α1((a+ l)∗ (b+ r))+α2((b+ l)∗ (c+ r))+α3((c+ l)∗ (a+ r)) (32)

mφ = α1(a⊕ l∗b⊕ r)+α2(b⊕ l∗ c⊕ r)+α3(c⊕ l∗a⊕ r) (33)

mΠ = α1(pl(a)∗ pr(b))+α2(pl(b)∗ pr(c))+α3(pl(c)∗ pr(a)) (34)
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where a, b, and c are word vectors with n features, l, r represent positional vectors in models

A and Σ with n features, and α1, α2, and α3 represent associative encoding strengths.

Cued recall. Assuming that A is a left-position cue, cued recall proceeds as fol-

lows,

(a+ l)# mA (35)

(a+ l)# mΣ (36)

(a⊕ l)# mφ (37)

pl(a)# mΠ (38)

Then for all models, a dot product is computed between the retrieved vector, and each of

the vectors, b, and c, which represent candidate items B and C. Note that for model Π, the

output of equation 37 is permuted with the inverse of the right permutation pattern to repro-

duce the original non-permuted item, following previous implementations of permutation

(Jones & Mewhort, 2007; Kelly et al., 2013). If a model can disambiguate double function

pairs, the retrieved item should be more similar to item B than to item C.

Procedure. For item vectors, a, b, and c, and position vectors l, and r, n = 100.

Vector features were drawn from N(0,σ2), where σ2 = 1
n . Associative encoding strengths

(α1,α2,α3) were drawn from N(µ,σα), where σα = 1, and µ = 1 for models φ and

Π. We varied the number of item position features (np) in model φ , permuted fea-

tures (nperm) in model Π, and mean associative encoding strength (µ) in models A and

Σ according to the following ranges np
n = {0, 0.1, 0.2 ...,1.0}, nperm

n = {0, 0.1, 0.2 ...,1.0},

µ = {0, 0.1, 0.2 ...,1.0}. For each model, dot products between the retrieved vectors from

equations 35-38, and candidate items b and c were averaged across 10000 iterations, for

each value of np, nperm, and µ .
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Results

The main results from these simulations are plotted in figure 6. Confirming our argu-

ments above, models φ , A, and Σ, could not solve interference between b and c, even when

parameters np
n and µ were increased. In contrast, for model Π the difference in matching

strengths between the retrieved vector to both b and c increased with parameter nperm
n . At

nperm
n = 1, this difference reached the maximum possible value, where the matching strength

to c reached the minimum dot product between two normalized vectors (≈ 0). This indi-

cates that model Π is able to mimic both zero, and perfect ability to solve double function

interference, and all values in between. Taken together, this confirms the idea that mod-

els φ , A, and Σ suffer from cue-overload when tested with cued recall for stored double

function pairs. Permutation (model Π) overcame this challenge because permuting a given

item by two different patterns (e.g., pl(a) versus pr(a)) decreased similarity between both

versions, in proportion to the number of permuted features. This meant that a cue vector

with a certain positional permutation predominantly activated a single pair, overcoming

interference from the other pair containing that cue item.

Relating these simulations back to previous model fits, when we fit models to aver-

aged order recognition data (benchmark 1a), model Π achieved its best fit at nperm
n = 0.325.

The distributions of matching strengths at nperm
n = 0.3, plotted in Figure 7, show a clear

separation between the means of the target item and non-target item matching strength dis-

tributions that indicates some ability to disambiguate double function pairs, but also an

overlap between the distributions that is consistent with high rates of errors observed to

the non-target item in behaviour (Rehani & Caplan, 2011). In other words, model Π may

not need to deviate from the fits to the other benchmark data to be able to perform well on

double function lists.



REPRESENTING SYMMETRIC, ORDERED ASSOCIATIONS 36

Model 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n
p
/n

0

0.5

1

1.5

2
Model 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n
perm

/n

0

0.5

1

1.5

2
Target Item Match (B)

Non-Target Item Match (C)

Model A

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2
Model 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

D
o

t 
p

ro
d

u
c
t 

m
a

tc
h

Figure 6. Double function list simulations: For each model, dot products between the retrieved
vectors from equations 35-38, and candidate items b and c were averaged across 10000 iterations,
for each value of np, nperm, and µ . For models φ , A, and Σ matching strengths are identical for the
target and non-target at all parameter values. For model Π, the difference between the target and
non-target item match, and therefore the ability to solve interference, increases with the proportion
of permuted features. At nperm/n = 0, model Π is equivalent to an unmodified convolution model
and has no ability to solve this interference. At nperm/n= 1, model Π is essentially non-commutative
like in previous implementations of permutation (e.g., Kelly et. al., 2013), and has perfect ability to
solve interference.

Discussion

We started with the following puzzle: the perfect symmetry of convolution-

based models matched behavioural data well, but offered no ability to discriminate the

constituent-order of associations. As a result, convolution models could not account for

more recent empirical data, which revealed that the constituent order of an association could

be judged above-chance, and that this ability was moderately dependent on remembering

the pairing itself. To address this challenge we designed and evaluated four extensions of

convolution. Despite being extremely simple, consisting of only three free parameters each,
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Figure 7. Double function list simulations: Distributions of dot products computed between a
retrieved vector (from cued recall), and the target versus non-target item for model Π at nperm/n =
0.3. At this proportion of permuted features, model Π provided its best fit to the previous benchmark
1a.

all models provided reasonable accounts of order recognition data without compromising

the inherent symmetry of convolution. Our second benchmark, double function lists, could

only be accounted for by model Π. While it may be tempting to conclude that model Π

won on this basis, we emphasize here and below that our purpose was to build an under-

standing of how certain models might fit or miss certain aspects of behaviour, rather than

conclusively rule out certain models. Permutation showed its strengths in conditions in-

volving order-related interference during cued recall, but we also discuss conditions where

other mechanisms may be favored below.

Simple modifications can produce memory for order with symmetric associations.

We tested several possible mechanisms that could extend a convolution model to store or-

der. All models provided a reasonable fit to order recognition and associative recognition

data, although the item-position association model (model A) performed the best quanti-

tatively. Position-specific, partial permutation (model Π) produced its best fits to data at

only 32.5% permuted features, departing from previous implementations (e.g., Jones &

Mewhort, 2007; Kelly et al., 2013). This suggests convolution can be modified quite easily

to produce moderate order recognition performance.
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We also checked whether each model could preserve the inherent symmetry of con-

volution while fitting recognition data. This was especially important consider given the

difficulty this additional constraint posed in previous efforts to modify matrix models. Ma-

trix models start out asymmetric, but can be modified to produce associative symmetry by

storing both the forward and backward associations (and with highly correlated forward

and backward associative encoding strengths), although this removes any information for

order. To regain some order, one could increase the forward association strength, but this

causes the model to violate associative symmetry, along with generating additional erro-

neous predictions (see introduction). In contrast, all four of our models here maintained

symmetry between forward and backward cued recall accuracy, although not perfect, nor

as high as values from unmodified convolution model (Table 2). Interestingly, less-than-

perfect forward-backward Yule’s Q is, in fact more consistent with empirical findings. In

data, the test/re-test correlation (both tests forward or both backward) is typically nearly

perfect, whereas the forward-backward correlation is typically well below 1, around 0.8–

0.9 (Kahana, 2002; Kato & Caplan, 2017; Rehani & Caplan, 2011; Rizzuto & Kahana,

2000, 2001; Sommer et al., 2008). In a symmetric model, one way to reduce the forward-

backward correlation would be add noise between successive tests; however, this would

also reduce the test/re-test correlation. In contrast, all four of our models produced correla-

tions well below 1 without such a mechanism. Additionally, because we did not incorporate

testing effects into our models, test/re-test correlations for all models are trivially equal to

1. Thus, it seems that deviating from the perfectly commutative convolution operation can

also explain why forward and backward cued recall are slightly decoupled from one another

(compared to testing twice in the same direction), without losing other desirable character-

istics of convolution, such as equal accuracy in the forward and backward direction on

average.

The success of our models shows that symmetric item-item associations can still
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support order judgements. Furthermore, the paradox between associative symmetry and

moderate order memory may be particular to an unmodified matrix model, which assumes

order is derived directly from a perfectly directional association. However, these results do

not necessarily argue against matrix models, but suggest modifications to these models need

to take a different approach. For example, one could incorporate partial-permutation into a

symmetric matrix model as follows, M =α(pl(a)pr(b)⊺+ pr(b)pl(a)⊺), where the forward

and backward association share the same associative encoding strength α to produce high

Yule’s Q. The model could infer order by retrieving an item, then computing a dot product

to a copy of this item with the correct position, pr(b) · (Mpl(a)), and incorrect position,

pl(b) · (Mpl(a)). Order recognition performance, as the difference between these two dot

products, would be proportional to number of permuted features. This version of the matrix

model may be able to function similarly to its cousin implemented with convolution (model

Π).

Like convolution, some recent models within the REM framework such as Criss and

Shiffrin (2005) and Cox and Criss (2017, 2020) also disregard the order within associations.

The design principles of models Π and φ could also be applied to these models quite easily.

Indeed, Cox and Criss (2020) suggested something to this effect, where features represent-

ing the spatial locations of each item could be incorporated into item vectors in their model

to produce some memory for order. Partial permutation could be applied to REM-based

models with the same logic as with matrix models (described above). However, because

item-item associations are represented with concatenation within the REM framework, the

implementation of model A would be formally equivalent to the implementation of model

φ .

Modelling other asymmetric relationships. An interesting future application of

each of our models here may be asymmetric relationships beyond memory for the

constituent-order of random word pairs. For example, adjective-verb relationships,
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modifier-head relationships within compound words (GUEST HOUSE), and spatial rela-

tionships (above-below, front-behind) are asymmetric, where individual items have unique

identities in relation to each other. Convolution augmented with any of our examined mech-

anisms (e.g., partial-permutation, item-position associations) may also provide alternative

accounts of this type of information, which could be explored in future work.

The influence of order/position on associative recognition. Across six experi-

ments and under various conditions, Yang et al. (2013) found that associative recognition

probes were judged faster, and with higher accuracy when presented in the correct order,

consistent with results from previous studies (Haskins, Yonelinas, Quamme, & Ranganath,

2008; Wiegand, Bader, & Mecklinger, 2010). Our present models may help us understand

how these results are still consistent with symmetric associations in memory. First, con-

sider the position-specific permutation model (model Π). Assume the model stores the

following pairs in memory, m = pl(a) ∗ pr(b)+ pl(c) ∗ pr(d). If the model “knows” that

probes may be reversed at test, it is reasonable to assume that it will apply permutation to

probe items to incorporate order into the recognition process. The model could implement

a “forward” intact trial as follows, pl(a) ∗ pr(b) ·m, along with a “backward” intact trial,

pr(a)∗ pl(b) ·m. These two matches are identical to our implementation of order recogni-

tion in model Π (equations 9 and 13), so we already know that the model can produce an

advantage for forward intact probes. The model could not produce a forward advantage for

recombined probes, because both E [pl(a)∗ pr(d) ·m] and E [pr(a)∗ pl(d) ·m] are equal to

0. Thus, the permutation model would predict that forward asymmetries for associative

recognition are only driven by asymmetries in intact probe trials.

Model φ (position-features) would function similarly. Again, we know the model

can produce a correct-order advantage for intact pairs because the comparison between a

forward and backward intact trial is identical to its implementation of order recognition

(Equation 8 and 12), thus E [(a⊕ l)∗ (b⊕ r) ·m] > E [(a⊕ r)∗ (b⊕ l) ·m]. However, be-
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cause E [(a⊕ l)∗ (d⊕ r) ·m] and E [(a⊕ r)∗ (d⊕ l) ·m] are both equal to 0, like in model

Π, this model predicts no order-advantage for recombined pairs.

Model A (the item-position association model), and by extension model Σ, will pro-

duce an order-advantage for associative recognition. Given that encoding is as follows,

m = (a ∗b+ a ∗ l+b ∗ r)+ (c ∗d+ c ∗ l+d ∗ r), the model produces a correct-order ad-

vantage to intact probes because, E [(a∗b+a∗ l+b∗ r) ·m]> E [(a∗b+a∗ r+b∗ l) ·m].

However, unlike model Π and φ , model A (and Σ) can also produce a correct-order ad-

vantage for recombined probes, E [(a∗d+a∗ l+d∗ r) ·m] > E [(a∗d+a∗ r+d∗ l) ·m].

Thus, models differ in their ability to produce correct-order advantages for recombined

probes. In experiment 6 of Yang et al. (2013), associative recognition judgements were

more accurate for intact pairs in the correct order (compared to incorrect order), but with

no significant difference for recombined pairs. This may suggest that order did not influ-

ence judgements of recombined pairs, consistent with models Π and φ ; however, because

these were analyses of accuracy values, and not of d′, they did not account for bias effects.

In any case, our main point here is that symmetric associations can still cause associative

recognition to depend on constituent-order if position/order is incorporated at encoding and

at test.

Order incorporated into the item representation. Models were largely comparable

when fitting order recognition data. However, the double function task posed a major chal-

lenge to models A, Σ, and φ . In these models, incorporating position into the cue vector

retrieved a sum of the target item and items that shared the target item’s position, ultimately

providing no information to select between interfering pairs. Partial permutations (Model

Π) overcame this issue because permuting an item by a given pattern does not increase sim-

ilarity to other items permuted by that same pattern, allowing retrieval of a specific target,

without retrieving items sharing the position of the target. The success of permutation here

may provide some insight into how order is represented under certain conditions, revealing
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unique advantages to embedding position information into item representations (although

see section below).

The idea that item vectors are modified by their appearance in a word pair has prece-

dence in existing memory models (Benjamin, 2010; Caplan, Chakravarty, & Dittmann,

2021; Criss & Shiffrin, 2004; Cox & Criss, 2020). For example, Benjamin’s (2010)

DRYAD model encoded context as a subset of each item’s features to explain age-related

memory deficits in context memory. If we assume that order/position is also part of con-

text, this idea would be quite similar to our position-feature model. Caplan et al. (2021)

proposed a model where certain features of a word were selectively attended to, while oth-

ers were not, and set to zero. Attended features were based on the item it was paired with

at study, implementing the idea certain meanings of a word are highlighted based on the

context it appears in (e.g., BANK in RIVER BANK versus MONEY BANK). The model

could use the pattern of attended features to judge pairings between items without storing

any explicit associations. Vector permutation in our present model may be functionally

related to this idea, although with an important difference. Like permutation, setting cer-

tain features of an item to zero effectively rotates item vectors in vector space, causing

them to be dissimilar from the original word. However, unlike permutation, the effective

dimensionality of item vectors is reduced, decreasing the information stored in memory.

Nonetheless, this brings up an important point. There are likely many other ways to

embed positional information into an item vector that share the properties of permutation.

As another example, one could imagine a hybrid of model A and φ where the positional fea-

tures are the convolution of a subset of an item’s features and a subset of positional vector

features. This would make each item’s positional features unique, meaning no interference

between items that occupy the same position.

Experimental conditions may influence order-encoding strategies. Before ruling

out models, it is important to consider experimental conditions under which modifying
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item representations based on position (e.g., with permutation) may not be an optimal strat-

egy. For example, if participants studied word pairs, but were only required to judge their

constituent-order (rather than item-item pairings), it might be optimal to ignore associations

between items and instead remember the individual positions of each item. In this case, a

participant’s cognitive strategy might be more consistent with the item-position association

model (model A), or addition of item and position vectors (model Σ). Indeed, while model

Π was quite successful with our current benchmarks, there were still 37 participants who

did not have a clear winning model (benchmark 1b), and model φ won for four partici-

pants (Figure S5). This may already suggest that participants adopt qualitatively different

order-encoding strategies that cannot be accounted for by a single model.

Non-commutative convolution in the brain. Both Plate (2000) and Kelly, Me-

whort, and West (2017) noted that precisely implementing convolution in the brain would

require intricate patterns of neural connectivity. However, even if a network of neurons

is wired perfectly to compute convolution, it is unlikely that the synaptic strengths would

be perfectly equal within the network. Unequal synaptic strengths may actually be useful

from the perspective of encoding order. Consider the following expression, a ∗ b, which

can be expanded as follows,


a1b1 +a2b3 +a3b2

a1b2 +a2b1 +a3b3

a1b3 +a2b2 +a3b1

 (39)

Now consider a network of neurons that computes this operation, but by random chance,

has one synapse that is stronger than the rest, represented with the coefficient ζ ,
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m f 1

m f 2

m f 3

=


a1b1 +ζ a2b3 +a3b2

a1b2 +a2b1 +a3b3

a1b3 +a2b2 +a3b1

 (40)

If same network computes the reversed association, mb = b∗a,


mb1

mb2

mb3

=


b1a1 +ζ b2a3 +b3a2

b1a2 +b2a1 +b3a3

b1a3 +b2a2 +b3a1

 (41)

We can infer constituent-order by comparing m f and mb as follows. First consider the dot

product m f ·m f ,

m f ·m f = (a1b1 +ζ a2b3 +a3b2)
2+

(a1b2 +a2b1 +a3b3)
2+

(a1b3 +a2b2 +a3b1)
2

(42)

= (a2
1b2

1 +ζ
2a2

2b2
3 +a2

3b2
2)+noise+

(a2
1b2

2 +a2
2b2

1 +a2
3b2

3)+noise+

(a2
1b2

3 +a2
2b2

2 +a2
3b2

1)+noise

(43)

The expectation of this dot product can be expressed as the sum of specific products be-

tween random variables. The noise terms can be dropped for expectation calculations be-

cause they consist of odd powers of random variables, and the expectation for odd powers

of standard normal distributed variables is 0 (Anderson, 1970). Thus, the expectation of

this dot product can be expressed as follows,
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= E
[
m f ·m f

]
= (n2 −1)E

[
X2Y 2]+ζ

2E
[
X2Y 2] (44)

Where X and Y denote random variables drawn from N(0,σ2). Following Weber (1988),

expectations of squared random variables can be substituted,

= E
[
m f ·m f

]
= (n2 −1)σ4 +ζ

2
σ

4 (45)

Assuming that each element from a and b is drawn from N(0,σ2), and σ2 = 1
n , which

produces approximately normalized vectors, this equation can be simplified even further,

= E
[
m f ·m f

]
=

(n2 −1)+ζ 2

n2
(46)

Equation 46 reveals that E
[
m f ·m f

]
has a quadratic relationship to ζ . For comparison, let

us also derive E
[
m f ·mb

]
, which is expanded as follows,

m f ·mb = (a1b1 +ζ a2b3 +a3b2)(b1a1 +ζ b2a3 +b3a2)+

(a1b2 +a2b1 +a3b3)(b1a2 +b2a1 +b3a3)+

(a1b3 +a2b2 +a3b1)(b1a3 +b2a2 +b3a1)

(47)

= (a2
1b2

1 +ζ a2
2b2

3 +ζ a2
3b2

2)+noise+

(a2
1b2

2 +a2
2b2

1 +a2
3b2

3)+noise+

(a2
1b2

3 +a2
2b2

2 +a2
3b2

1)+noise

(48)

Again dropping the noise terms because odd powers of random variables have expectations

of zero, we can derive the expectation of this dot product as follows,

E
[
m f ·mb

]
= (n2 −2)E

[
X2Y 2]+2ζ E

[
X2Y 2] (49)
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= (n2 −2)σ4 +2ζ σ
4 (50)

=
(n2 −2)+2ζ

n2
(51)

These equations reveal that E
[
m f ·mb

]
has a linear relationship to ζ , while E

[
m f ·m f

]
has a quadratic relationship, meaning that the difference between these dot product would

increase with ζ . Thus, in this extremely simple implementation of a neural network with

unequal synaptic strengths (with only one “strong” synapse), we can start to see how this

type of mechanism could introduce differences between the forward and backward versions

of an item-item associations that could be leveraged to infer order, and without any explicit

mechanism to encode order. In sum, the simple assumption that convolution is not strictly

commutative when implemented in the brain could provide a simple way to support order

memory.

Applications to serial recall. Symmetric associations that support the ability to dis-

criminate the item position could also be useful for models of serial recall. Associative

chaining (e.g. Ebbinghaus, 1885/1913; Lewandowsky & Murdock, 1989) is a major class

of model of serial recall, and assumes that a participant learns a list of words in order by

forming direct item-item associations between neighbouring items. At test, the list is re-

membered by sequentially chaining through the items, using one item as the cue for its

next. A major competitor to chaining models are positional coding models, which strictly

avoid inter-item associations, and associate each item with a positional code (Conrad, 1960;

Brown et al., 2007; Burgess & Hitch, 1999; Farrell, 2012; Henson, 1998). Although it is

beyond the scope of this manuscript, evidence for and against both positional coding and

associative chaining models has been reported (Caplan, 2015; Henson, Norris, Page, &

Baddeley, 1996; Henson, 1998; Lindsey & Logan, 2019; Solway, Murdock, & Kahana,
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2012), leading some researchers to propose hybrid or mixture models for a full account

(Caplan, 2015; Logan & Cox, 2021; Kahana, 2012; Osth & Hurlstone, in press).

Implementations of chaining such as Lewandowsky and Murdock (1989); Solway et

al. (2012), and Caplan, Ardebili, and Liu (2022) have used symmetric operations like con-

volution to encode item-item associations. Symmetric chaining models have clear strengths

when accounting for certain behavioural benchmarks. For example, if participants acciden-

tally skip an item during serial recall (A,. . . C), participants frequently go backward in the

list and recall the missed word B (fill-in errors, Henson, 1998) rather than proceeding on

with the word D (in-fill errors). As Osth and Dennis (2015a) argued, a chaining model

such as Lewandowsky and Murdock (1989), with symmetric associations could skip an

item during serial recall, and still retrieve missed item to produce fill-in errors with high

frequency. 13 Symmetric chaining models may find it more difficult to account for findings

that suggest item-item associations are somewhat directional. One clear example is that se-

quential probes of serial lists (given item i from the list, recall item i+1 or recall item i−1)

are quite accurate, far above chance (e.g., Kahana & Caplan, 2002; Woodward & Murdock,

1968) suggesting that unlike TODAM, symmetry of association strengths does not entail

the absence of order, but rather, something more like our current models. Applying any of

our present order-encoding mechanisms to a symmetric chaining model (e.g., left-right pat-

terns of partial permutation for each item-item association), would allow a model to have

some ability to make use of the ability to discriminate the constituent-order of item-item

association, while preserving the ability to progress backward and forward equally through

13Some studies have found that in-fill errors are more frequent (Caplan, 2015; Solway et al., 2012); how-
ever, Osth and Dennis (2015a) showed that if participants are not able or willing to explicitly mark omissions
(e.g., typing “PASS”), this can inflate in-fill errors. This may not explain the near-equivalent ratios found
in data where participants explicitly marked omissions by typing “PASS” (word lists) or using the spacebar
(consonant lists), respectively Caplan (2015); Caplan et al. (2022). Surprenant, Kelley, Farley, and Neath
(1999) found that the high fill-in:in-fill ratio did not interact with output position, which is problematic for
positional-coding accounts of the phenomenon. Any model may need additional mechanisms to fit the data
at this level of detail.
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the list.

Conclusion

Multiple modifications to convolution preserved important properties of this model

while adding some ability to judge constituent-order. While only position-specific permu-

tations could successfully disambiguate double function pairs, future work should explore

task conditions under which other order-encoding mechanisms (e.g., item-position associa-

tions) might be favored. Overall, this work demonstrates that there are a number of possible

mechanisms by which symmetry can co-exist with some ability to judge constituent-order,

but the partial permutation model accounted for the broadest set of empirical benchmarks.
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Supplementary Materials

Supplementary Materials

Benchmark 1a

Visualization of fits to benchmark 1a data. Figure S1 and S2 are heat maps of

BIC values around the best fitting parameter sets for each model’s fit to benchmark 1a

(Figure 4). In order to visualize BIC values in 2-D space, we plotted two separate heat maps

for each model. Plotted on the left are model order parameters (µ , nperm, or np) versus n,

and plotted on the right, each model’s order parameter versus σα . For each heat-map, the

third free parameter (which does not have an axis) is set at the model’s best fitting value.

In general, visual inspection of these plots show a gradual slope in BIC values around best

fitting parameter sets, suggesting our best fits were robust and not due to noise.

Benchmark 1b

Distribution of best-fitting model parameters. Plotted in figure S3 are histograms

of the distribution of best-fitting model parameters to benchmark 1b. We included separate

plots for each free parameter and model, and also the descriptive statistics for these distri-

butions in Table S1. These plots indicate that models used a wide range of parameter values

to fit to individual participant performance, with roughly even distribution across the total

explored parameter space (Figure S3, Table S1). There were some notable exceptions. For

example, parameter distributions for n and σα in model Σ were noticeably skewed, using

high values of n and low values of σα to fit participants, both of which reduce the overall

noise in the memory trace. Interestingly, because model Σ had an additional noise term

compared to model A, it may have used parameters n and σα to counteract this effect. For

model φ , the distributions of parameter σα and n were similarly skewed (Figure S3).

Plots of individual participant fits from benchmark 1b. Figure S4 plots model

predictions from fits to individual participant data.
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A Model A

B Model Σ

Figure S1. Heat maps depicting BIC values around best fitting parameter sets for models A and Σ.
On the left is each model’s order parameter versus n, and on the right, each model’s order parameter
versus σα . Red circles denote the minimum BIC value.
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C Model φ

D Model Π

Figure S2. Heat maps depicting BIC values around best fitting parameter sets for model φ and Π.
On the left is each model’s order parameter versus n, and on the right, each model’s order parameter
versus σα . Red circles denote the minimum BIC value.
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a Model A

b Model Σ

c Model φ

d Model Π

Figure S3. Histograms of the distributions of each model’s free parameters for fits to benchmark
1b. Panels on the left plot the distribution of total item-features (n) used for model fits. Panels
in the middle plot the distribution of the standard deviation of associative encoding strengths (σα )
for model fits. Panels on the right plot the distribution of each model’s order parameter values
(µ ,np,nperm).
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Table S1
The mean and standard deviation (Mean(SD)) for the distribution of each model’s free parameters
used for fits to individual participants in benchmark 1b, along with Mean(SD) of the distribution of
BIC values. This distribution of parameters was also applied to benchmark 1c.

Model n σα Order parameter BIC
Model A 224 (227) 0.34 (0.26) µ = 0.62(0.31) 1.04 (4.97)
Model Σ 411 (141) 0.19 (0.21) µ = 0.67(0.29) 2.57 (4.09)
Model φ 403 (98) 0.27 (0.26) np

n = 0.42(0.25) –4.35 (6.29)
Model Π 401 (109) 0.56 (0.32) nperm

n = 0.39(0.29) –7.09 (8.38)
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Figure S4. Scatter plots of individual participant order recognition d′ data from Thomas et. al.
(2022) for correct versus incorrectly recalled pairs, along with model fits to individual participants.
Each circle is a participant, and crosses plot model predictions from best fits to each participant.
Each grey line connects a participant and the best-fitting model prediction for that participant.
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Figure S5. Scatter plots of individual participant order recognition d′ data from Thomas et. al.
(2022) for correct versus incorrectly recalled pairs. Each circle (open and filled) is a participant.
Filled-in circles in each plot denote the participants that each model could fit substantially better
than other models (by a margin of BIC> 2). Open circles in each plot were participants which the
model did not fit best. In total, 37 participants did not have clear winning model.

Plots comparing model fits to benchmark 1b with a winner-take-all rule. Fig-

ure S5 plots participants for which each model provided a substantially better fit than other

models (∆BIC> 2).

Benchmark 1c: Between-subject correlations between recognition and recall extrap-

olated from fits to benchmark 1b

Thomas et al. (2022) also examined between-subject correlations between both

recognition tasks and cued recall performance. These were consistent with benchmark

1a; there was a moderate correlation between order recognition and cued recall perfor-

mance, but this was well below the correlation between associative recognition and cued
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a Model A b Model Σ
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Figure S6. Model predictions and empirical data for order recognition versus log-odds transformed
cued recall accuracy (left panels), and also associative recognition versus log-odds transformed cued
recall accuracy (right panels). Model predicted values were generated in fits to benchmark 1b. Least
squares lines for model predicted values are plotted in red, and least square lines for behavioural
data are plotted in light grey. Each circle is a participant, and crosses plot model predicted values.

recall (Figure S6). We wondered if models would also exhibit a moderate between-subject

relationship between cued recall and order recognition. Rather than re-fit the models, we

simply plotted model output from previous fits to benchmark 1b. Note, this meant that

plotted model predictions for associative recognition d′ were not included in the original

fitness measure at all. This placed models at a significant disadvantage when producing the

associative recognition-cued recall correlation, especially considering that a completely

different set of participants were tested for associative recognition in Thomas et al. (2022).

Results. For models φ and Π the order recognition-cued recall correlation was

smaller than the associative recognition-cued recall correlation, but fell short in accounting

for the magnitude of correlations observed in behaviour (Figure S6). Models A and Σ pro-

duced order recognition-cued recall correlations that were comparable to the associative
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recognition-cued recall correlation, essentially predicting a maximal relationship between

order recognition and cued recall. Despite the mismatch between model predictions and

the magnitude of each correlation in behaviour, because models were not quantitatively fit

to this data, the conclusion here is not that models are unable to account for benchmark

1c. In fact, although we do not report it here, models were quite good at producing the

behavioural values for each correlation when directly fit to quantitative values for each

participant. Rather, the conclusion here is that models φ and Π explain individual differ-

ences by dissociating order recognition from cued recall performance (more than associa-

tive recognition from cued recall), while for models A and Σ, performance in all tasks is

correlated.


