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A better oscillation detection method robustly extracts EEG rhythms across brain
state changes: The human alpha rhythm as a test case
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Oscillatory activity is a principal mode of operation in the brain. Despite an intense resurgence of interest in
the mechanisms and functions of brain rhythms, methods for the detection and analysis of oscillatory activity
in neurophysiological recordings are still highly variable across studies. We recently proposed a method for
detecting oscillatory activity from time series data, which we call the BOSC (Better OSCillation detection)
method. This method produces systematic, objective, and consistent results across frequencies, brain regions
and tasks. It does so by modeling the functional form of the background spectrum by fitting the empirically
observed spectrum at the recording site. This minimizes bias in oscillation detection across frequency, region
and task. Here we show that the method is also robust to dramatic changes in state that are known to
influence the shape of the power spectrum, namely, the presence versus absence of the alpha rhythm, and can
be applied to independent components, which are thought to reflect underlying sources, in addition to
individual raw signals. This suggests that the BOSC method is an effective tool for measuring changes in
rhythmic activity in the more common research scenario wherein state is unknown.

© 2010 Elsevier Inc. All rights reserved.

Introduction

In 1929, Hans Berger was the first person to describe rhythmic
oscillations of electrical potential recorded from the human scalp. This
included a 10-Hz signal present over the occipital cortex which
became known as the alpha rhythm (Berger, 1929). The alpha rhythm
occurs at frequencies of 8–12 Hz, is most prominent during
behavioural states of relaxed wakefulness with eyes closed, and is
replaced by low-voltage, faster activity with eye opening. While alpha
was long thought to represent a brain idling state, its role in neural
processing now appears much more complex. Alpha power increases
are elicited in tasks requiring top-down inhibition or highly selective
processing, such as ignoring specific stimuli while attending to others
(Freunberger et al., 2009; Klimesch et al., 2007; Worden et al., 2000).
In addition, alpha power has been shown to increase with memory
load during the retention interval in amodified Sternberg task (Jensen
et al., 2002).

In the years since the discovery of alpha, many other electroen-
cephalographic (EEG) oscillations have been described at various
frequencies and locations, and have been associated with distinct
brain processes and behavioural states. EEG oscillations represent the
collective activity of rhythmically synchronized neuronal networks

(reviewed in Niedermeyer and Lopes da Silva, 2005) and are thought
to be essential for both ongoing modulation of behaviour and offline
processing, for example, occurring during sleep or rest (Buzsaki and
Draguhn, 2004).

Despite the fact that EEG oscillations have been studied for over
80 years, identifying oscillatory activity in EEG traces is still highly
variable across studies (van Vugt et al., 2007). The primary method in
the field is to calculate frequency spectra using either Fourier or
wavelet transforms of the signal, and to visually inspect the resulting
spectra for peaks in specific frequency bands. Each method has its
own particular strengths and weaknesses. The Fourier transform
efficiently decomposes any stationary signal as a series of sine waves
of different frequencies and amplitudes (Brigham, 1974). Unfortu-
nately, brain signals are rarely (if ever) stationary, and are often
dynamic on time scales that are too fast to allow for an adequate
representation of all frequency components using traditional Fourier-
based computational methods. Wavelet transforms, on the other
hand, fit more temporally discrete pieces of the signal using a family of
mathematical functions (known as “wavelets”) that vary both in
frequency and time windows (Kemerait and Childers, 1972; Schiff
et al., 1994). Wavelet methods avoid the problem of nonstationarity
by allowing spectral characteristics to change over time. Unfortu-
nately, the presence of a spectral peak at a given frequency using
either method does not necessarily imply underlying oscillatory
activity at that frequency because non-oscillatory, large-amplitude
artefacts and transient signals can produce power changes at specific
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frequencies. In addition, some functionally relevant oscillations are
highly transient, and depending on the size of the analysis time
window they can be obscured by other, larger amplitude, oscillatory
activity or they can be overshadowed by the overall power in the
background spectrum.

Autocorrelations of EEG signals are often performed to establish
the presence of oscillatory activity, but this analysis method also has
limitations: the fundamental frequency will dominate the autocorre-
lation function, and it is difficult to rigorously compute a significance
value for rhythmicities that may be apparent in the autocorrelation
plot. Further, the baseline for deciding when bandpass power reflects
an oscillation varies from study to study. In some cases, the
observation of a peak in the spectrum and/or autocorrelation is
sufficient, whereas in other cases, a direct comparison to some
baseline condition is used. In either approach, the determination of
rhythmicity depends upon the variable characteristics of the signals
themselves. Finally, pre-whitening (normalizing power across fre-
quency) can help to overcome the frequency bias due to the colored-
noise form of the EEG spectrum, but it can be overly conservative,
overcorrecting when peaks (potentially reflecting oscillations—the

signal of interest) are present. What is needed is a method of
detecting oscillations that derives detection thresholds in a way that is
consistent across frequency, electrode (brain region), task, electro-
physiological state and species.

The BOSC method

With these issues in mind Caplan et al. (2001) introduced a new
method to detect oscillatory activity in EEG signals which we term
the Better OSCillation detection method, or BOSC. This method is
designed to take into account the functional form of “background,”
non-rhythmic portion of the signal and to reveal segments of the
recording that deviate significantly from the spectral characteristics
of the background. In BOSC, one calculates a power threshold (PT)
and a duration threshold (DT) for oscillatory episode detection by
modeling the known functional form of the background power
spectrum. That is, at a given frequency, BOSC detects increases in
power, above PT, of a specific minimum duration, DT, thereby
rejecting increases in spectral amplitude that are non-repeating
(Fig. 1). Briefly, an average wavelet power spectrum is calculated,
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Fig. 1. The oscillatory episode detection method. A schematic representation of the application of a power threshold (PT) and a duration threshold (DT) to an EEG signal. In A, both
thresholds are exceeded and the method identifies this epoch as oscillatory. In B and C, PT or DT are not exceeded and therefore these epochs are not identified as oscillatory. (D) An
example power spectrum with a peak potentially reflecting alpha oscillations (blue), and the modelling of the background spectrum with a linear regression (green). (E) The
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detection, in this case based on the 95th percentile of the χ2(2) distribution.

861T.A. Whitten et al. / NeuroImage 54 (2011) 860–874



Author's personal copy

and this spectrum is modeled as colored noise (power scaling as 1/
frequency) with the possible addition of peaks at some frequencies
that potentially reflect the presence of oscillations (Fig. 1D). The
colored noise spectrum is a basic property of EEG as well as other
natural autocorrelated signals (Schlesinger and West, 1988). This
spectrum is then fit by linear regression in log-log space. In previous
applications of BOSC, the power threshold (PT) has been set to the
95th percentile of the theoretical probability distribution (with χ2

(2) form; e.g., Fig. 1E) of power values at a given frequency and the
duration threshold (DT) has been set at each frequency f to 3
complete cycles (3/f). Oscillations are only detected when both PT
and DT are exceeded. The qualitative outcome of application of the
method is robust to the exact choice of threshold values; Caplan
et al. (2001) characterized how variations in PT and DT affect the
frequency specificity and conservatism of oscillation detection. The
BOSC method also lends itself to a useful quantitative measure: the
proportion of time (within a trial or other time segment) that
detected oscillations are present, which we have termed Pepisode
(Caplan and Glaholt, 2007; Caplan et al., 2001, 2003; van Vugt et al.,
2007).

This BOSC method has been used successfully to identify and
quantify theta oscillations in the human neocortex that are
correlated with memory encoding and retrieval and sensorimotor
integration (Caplan and Glaholt, 2007; Caplan et al., 2001, 2003). It
has also been applied to oscillatory activity from intracranial
recordings in the human hippocampus (Ekstrom et al., 2005).
Previous work has demonstrated that the BOSC method provides
standardized detection criteria across frequency, electrode and task.
Ideally, this method can be generalized to extend to all types of EEG
recordings, providing standardized oscillation detection criteria
across electrophysiological state and species (Hughes et al., 2009).
Thus, we sought to more systematically evaluate the BOSC method
on a well-known and easy-to-induce oscillation that occurs during
wakefulness: Alpha. An ancillary goal was to determine whether the
BOSC method is compatible with independent component analysis
(ICA) which has been increasingly adopted as means of inferring
activity of presumed underlying sources (Makeig et al., 1997). This
would only work if the power spectrum of an independent
component also exhibited a colored-noise functional form. Our
final goal was to determine whether state changes that occur during
wakefulness present a challenge to the method. Because the method
relies on estimating the background spectrum, if the background
spectrum were to change sufficiently across state, this would very
likely result in false positives or false negatives or a bias across
frequency. We show in the present study that the BOSC method is
robust to state changes and reveals features that are entirely
consistent with previous research on the alpha rhythm.

Methods

Data collection

Twelve human participants recruited from the University of
Alberta community were fitted with a 256-channel HydroCell
geodesic sensor net (Electrical Geodesics Inc., Eugene, OR) with
electrode impedances kept below 50 kΩ (Ferree et al., 2001).
Data were amplified by the EGI NetAmps 300 amplifier with
a 400-Hz anti-aliasing hardware filter; digitized at a rate of
250 Hz and acquired via Net Station software using a 24-bit A/D
converter.

Experimental protocol

The task was presented in E-prime (Psychology Software Tools
Inc., Pittsburgh, PA); subjects received verbal and written instructions
to begin with their eyes open (or closed) and to close (or open) their

eyes gently upon hearing a beep. The beep was presented every 5 s,
with 10 beep presentations in total constituting 45 s.

Data analysis

Data were analyzed in MATLAB (v. 7.4; The Mathworks, Natick,
MA) using EEGLAB (Delorme and Makeig, 2004) and filtered from 0.5
to 45 Hz. Independent component analysis (Makeig et al., 2004) was
performed following an initial dimensionality reduction using a
principal component analysis, keeping the first 20 components.
Because independent components (ICs) have been suggested to
reflect underlying sources, ICs representing alpha oscillations were
selected for further analysis with the BOSCmethod based on a peak in
the conventional power spectrum in the 8–12 Hz bandwidth
accompanied by a clear dipole-like topography with a maximum
electrode weight at occipital loci. This allowed us to test whether the
BOSC method could be successfully applied to ICs. Individual
electrodes were selected for analysis based on their weighting in
the IC alpha components.

The Better OSCillation detection method

The BOSC method identifies episodes in the signal where the
power at a given frequency exceeds a power threshold, PT that is
derived from the theoretical background distribution of power values
at each frequency, for a minimum duration, DT that scales with
frequency (DT=3/f). First, spectral analysis of the selected compo-
nent or electrode was performed using a Morlet wavelet transform
(Grossmann and Morlet, 1985) with a window of 6 cycles and
frequency sampled in 18 logarithmic steps covering the bandwidth
from 2 to 38 Hz. A background window was selected (see below) and
this window was used to calculate the average background spectrum.
The background EEG spectra were assumed to be colored noise of the
form Af−α (e.g., Fig. 2B), typical of natural autocorrelated signals
(Schlesinger and West, 1988). This assumption allows us to estimate
the spectrum by fitting it with a linear regression in log-log
coordinates (Fig. 1D). PT was set to the 95th percentile of the
expected χ2(2) distribution of power values at each frequency with
the distribution mean set to the estimated mean from the linear
regression in the previous step (Fig. 1E). The χ2(2) distribution is a
characteristic that results from Fourier-transforming a Gaussian-
distributed signal (recorded EEG in the time domain), which yields a
complex number. Squaring this complex number to compute power
amounts to constructing a value from the sum of two squared
Gaussian values, one for the real part and one for the imaginary part of
the complex number, hence χ2 with 2 degrees of freedom (Percival
and Walden, 1993). DT was calculated based on the duration of three
complete oscillation cycles at each frequency, 3/f. Epochs when both
PT and DT were exceeded were tagged as oscillations. The measure
Pepisode, the proportion of time during which oscillations at a given
frequency were present, was used to assess performance of the
method.

Background window

To test the robustness of the method to electrophysiological state
changes, we asked whether the core assumption of the method, that
one can model and estimate the background spectrum, might pose a
problem for the BOSC method when analyzing data that includes
more than one state. To this end, we compared four different types of
background window to derive the BOSC threshold PT(f) First, the
entire epoch of the task (45 s) was used as the background, which is
similar to what has been used in previous applications of the method.
For comparison, background spectra were also calculated from
exclusively eyes-open or eyes-closed epochs, which should represent
the optimal match between background and signal of interest, or from
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data segments that overlapped both conditions, which should
represent the worst-case scenario, in which two different states are
treated as though they were one. For these calculations, the spectra
from eight 2.5-s epochs (totalling 20 s) that represented eyes-open,
eyes-closed or overlapping segments were averaged and used as the
background spectrum.

Results

Detecting alpha

In 11/12 subjects we found ICs with clear spectral peaks in the
alpha (8–12 Hz) band. Fig. 2 illustrates the detection of alpha
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Fig. 2. Oscillation detection in an ICA alpha component. (A) The spline-interpolated scalp distribution of an alpha component extracted by ICA. Color scale denotes electrode weight
(unitless). (B) Background wavelet power spectrum mean and standard deviation (blue) and the linear regression fit to the background (green). (C) Oscillations detected across all
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lines are the same as above. (F) An expansion of the highlighted section in E, to show the spindle-like appearance of the alpha oscillation.

863T.A. Whitten et al. / NeuroImage 54 (2011) 860–874



Author's personal copy

oscillations in a single independent component by BOSC. The
component was chosen for further study based on an 8–12 Hz peak
in the conventional spectrum (Fig. 2B) and a clear dipole-like
topography with a maximum weight in electrodes overlying occipital
cortex (Fig. 2A). Consistent with the peak in the conventional power
spectrum, the BOSC method detected oscillations in the alpha band
(Fig. 2C), and these oscillations were present more of the time during
the eyes-closed epochs. When the proportion of time during which
oscillations were present (Pepisode) was compared between condi-
tions, there was a clear difference between the eyes open and eyes
closed conditions in the alpha bandwidth (Fig. 2D). The relative
flatness of non-peak frequencies in this figure highlights the fact that
the Pepisode method removes the frequency bias present in the original
spectrum, putting all frequencies on an even footing. This is one
advantage of the method as described previously (Caplan et al., 2001,
2003). A plot of the raw EEG trace with periods of identified 9.5-Hz
oscillations highlighted in red confirms that these oscillations occur
preferentially during the eyes-closed condition (Fig. 2E), and that the
identified oscillations indeed look rhythmic when inspected visually
(Fig. 2F). Furthermore, Fig. 2F shows that these alpha oscillations have a
spindle-like appearance, waxing and waning in amplitude within the

eyes-closed condition, as has been observed previously (Niedermeyer
and Lopes da Silva, 2005).

To evaluate the oscillations detected byBOSC, across all subjectswho
hada clear alpha independent component, Pepisode (seeMethods) for the
peak alpha frequency in the representative alpha component was
calculated for both eyes-open and eyes-closed conditions (Fig. 3A).
Average Pepisode for eyes-closed was 0.62±0.05 (mean±SEM) com-
pared to 0.13±0.02 for the eyes-open, and these were significantly
different (paired two-tailed t-test: t(10)=−11.61, pb0.05). It should
be noted that these are actually conservative estimates of the difference
in alpha-frequency Pepisode for the two conditions, since conditionswere
divided by the time-points of the audible beep. Due to the delay
between the beep onset and the subjects' actual reaction times to the
beep, this is likely offset from the actual time-points of eye-closure and
opening.

ICA vs. individual electrodes

The application of BOSC to ICs is novel; for comparison, we
applied BOSC to the raw signals derived from individual electrodes,
as conventionally done in the past. Electrodes of interest were
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Fig. 4. Oscillation detection in a single electrode with strong alpha. The electrode was selected from the same subject as in Fig. 2. (A) The 256-electrode array with the selected electrode
highlighted in yellow. (B) Background wavelet power spectrum mean and standard deviation (blue), and the linear regression fit to the background (green). (C) Oscillations detected
across all frequencies by the oscillatory episode detection method. Red vertical lines indicate when participants were instructed to close their eyes and black vertical lines indicate when
participantswere instructed to open their eyes. (D) Theproportionof time (Pepisode) during the eyes-closed condition (red) andeyes-open condition (black) that oscillationswere detected
at each frequency. (E) The raw signal from the chosen electrode, with detected oscillations at the peak alpha frequency (9.5 Hz) highlighted in red. Vertical lines are the same as above. (F)
An expansion of the highlighted section in E to show the spindle-like appearance of the alpha oscillation.
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selected as sites with the maximum (Fig. 4) and minimum (Fig. 5)
weighting from the representative alpha independent component.
While the amplitude of alpha oscillations recorded over the occipital
cortex (Fig. 4) was clearly larger, alpha specific to the eyes-closed

condition was still detected by the method from the electrode with
the smallest weighting in the representative alpha component
(Fig. 5). In theory, all electrodes should detect activity from all
sources within the brain. The similarity of Pepisode values for both
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electrodes shown (Figs. 4D and 5D) highlights the sensitivity of the
method. In accounting for the background spectrum in each case, it
produces similar Pepisode values despite differences in the power of

the oscillation. This suggests that the BOSC method is relatively
resilient to other signals that might accompany the signal of
interest. Note that this does not mean the BOSC method is blind to
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differences between recording sites; rather, one could straight-
forwardly follow up oscillation detection with analyses that
quantify amplitude (not to mention phase) of oscillations once
detected—this type of measure would reveal the difference in
relative weighting of the alpha rhythm for different electrodes.

The similarity of the spectra for the ICs and the individual
electrodes was confirmation that the colored-noise background
spectrum assumption of the method was valid for both ICs and
individual electrodes. A second assumption of the method is that the
background signal power values at each frequency have a χ2(2)
probability distribution function. In Fig. 6, the distribution of
wavelet power values for an alpha component is plotted (histo-
gram) with a χ2(2) probability distribution function (line plot), for
the peak alpha frequency (Fig. 6A), as well as two other nearby
frequencies (Fig. 6B–C). The same plots are shown for a single
electrode in Fig. 6D–F. First, note that when oscillations are not
thought to be present (non-peak frequencies in Fig. 6B–C, E–F), the
distribution of power values is quite close to the expected χ2(2)
form. For the peak frequency, the probability distribution deviates
substantially from χ2(2), due to the presence of more oscillatory
activity, which produces a power distribution weighted more to
higher values (a thicker tail). The vertical lines mark the 90th, 95th
and 99th percentile levels of the χ2(2) distribution, to demonstrate
how the selection of the percentile threshold would affect the
detection of oscillations. A more conservative threshold could result
in more false negatives, while a less conservative threshold would
let more oscillations through, resulting in potential false positives
(Caplan et al., 2001).

Background window

A principal aim of this study was to find out whether state
changes during wakefulness could present a problem to the BOSC
method. Thus, we systematically varied the epochs included in the
background window that were used to derive the averaged
background spectrum. In the analyses reported to this point the
background window spanned the entire experiment. This window
therefore averaged across the state changes elicited by the eyes-
open and eyes-closed protocol. In this case, changes in the
background spectrum could affect the model fit (i.e. the threshold)
and thus be inappropriate for one or both states. To examine the
effects of brain state on the background fit (and thus, power
thresholds as a function of frequency and, ultimately, detected
oscillations) three separate background spectra were calculated:
one using the average spectrum from exclusively eyes-open epochs,
one using the average spectrum from exclusively eyes-closed
epochs, and one using the average spectrum from epochs that
overlapped both states (see Methods).

The theoretical form of the background spectrum is a straight line
in log-log coordinates. Thus, we can characterize the shape of the
background spectrum (disregarding any peaks) by inspecting the
values of slope and intercept of the regression line. The average slope
of the regression line fitting the background spectrum for the bilateral
alpha component using the full experiment as the background
window was −1.00±0.07 dB/Hz, which was not significantly
different (paired two-tailed t-test) from the slope for the eyes open
condition (slope=−0.98±0.08 dB/Hz, t(10)=−0.64, pN0.05), nor
from the slope for the eyes closed condition (slope=−0.99±0.09, t
(10)=−0.40, pN0.05). The average y-intercept of the regression line

using the full experiment to calculate the background window was
1.66±0.15, which was again not significantly different from the y-
intercept for the eyes open condition (y-intercept=1.56±0.13, t(10)
=2.10, pN0.05) nor from the y-intercept for the eyes closed condition
(y-intercept=1.76±0.16, t(10)=−1.91, pN0.05), although both of
these were nearly significant (pb0.1).

Despite the lack of significant differences in the parameters used
to fit the background spectrum (slope and y-intercept), there was a
difference in the detected oscillations using the different back-
ground windows. More oscillations were detected when the eyes-
open condition was used to calculate the background spectrum, and
fewer oscillations were detected when the eyes-closed condition
was used as the background. This can be seen for a single
experiment in Fig. 7 and is displayed as averages across all
experiments in Fig. 8.

Two alpha components

In 10/11 subjects, more than one alpha IC was extracted. In most
of these cases, the strongest alpha component was distributed
symmetrically over the occipital cortex, (Fig. 2), whereas the
weaker alpha component was lateralized (Fig. 9). In all cases, the
peak alpha frequency was identical in both components (mean
peak alpha frequency 11.4±0.4 Hz; Fig. 3C). Despite the fact that
the peak frequencies were identical, the fact that the two
components were extracted separately by ICA indicates that they
were temporally independent. This is illustrated in Fig. 10, where
the alpha oscillation in the lateralized component (Fig. 10B)
appears maximal when alpha in the bilateral component
(Fig. 10A) is weak, and the bilateral component starts to show
rhythmic activity just before the lateralized component. The
Pepisode values for the lateralized alpha components were qualita-
tively similar to the bilateral alpha components (Fig. 3B), and were
significantly different across states (eyes closed Pepisode=0.58±
0.05; eyes open Pepisode=0.18±0.02; significantly different via
paired two-tailed t-test: t(9)=−8.45, pb0.05). This finding of
multiple alpha components is consistent with other ICA-based
alpha studies (Jeong et al., 2004; Makeig et al., 2002), and is
consistent with the idea that alpha arises from the synchronization
of multiple alpha generators (Nunez et al., 2001). This confirms
that the BOSC method is succeeding in identifying the features of
alpha that have already been described, but unlike previous
methods it provides a more quantifiable and reproducible means
of characterizing those features.

Alpha harmonic

In 4/11 subjects, an alpha harmonic at twice the alpha frequency
was detected by the BOSC method (Fig. 11). For these experiments,
the average Pepisode at the harmonic frequency for the eyes closed
condition was 0.18±0.03 compared to 0.024±0.009 for the eyes
open condition, and these were significantly different in a paired two-
tailed t-test (t(3)=−6.05, pb0.05).

Discussion

Our findings support the BOSC method as a powerful tool for
identifying oscillations in neural data. It does so by setting parameters
in a manner that minimizes bias across frequency, electrode and task

Fig. 7. The effect of background window on oscillation detection. For A (eyes open background window); B (eyes closed background window) and C. (across state background
window): (i) The average wavelet power spectrum with standard deviation. Overlaid are the regression lines calculated using the whole experiment (black), the eyes open epochs
(blue), the eyes closed epochs (green), and the state-overlap epochs (red). (ii) Detected oscillations across all frequencies using the background estimates illustrated in i. Red vertical
lines indicate when participants were instructed to close their eyes and black vertical lines indicate when participants were instructed to open their eyes. (iii) Pepisode plots for eyes-
closed (red) and eyes-open (black) conditions, using the background estimates illustrated in i. (iv) Component time courses with detected oscillations at the alpha frequency
(9.5 Hz) highlighted in red, using the background estimates illustrated in i. (v) An expansion of the highlighted section in iv.
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(as shown previously), electrophysiological state (shown here) and
species (Hughes et al., 2009). The alpha rhythm was an ideal
candidate for testing the validity of this method: It is large in

amplitude, it dominates the recording when present, and it is easily
evoked. In addition to evaluating detection of alpha, two corollary
predictions were made as tests of the method: alpha oscillations
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should be larger in amplitude in electrodes near vs. distant from the
occipital cortex, and alpha oscillations should be more prominent
during eyes-closed vs. eyes-open conditions. The method succeeded
in both of these tests, for both raw signals at individual electrodes and
for ICs, although it was also shown that the method could detect
small-amplitude alpha oscillations from electrodes distant from the
presumed source.

The characteristics of the alpha components extractedby ICAand the
presence of both bilateral and lateralized components were consistent
with previous studies on alpha (Jeong et al., 2004; Makeig et al., 2002).
Moreover, the BOSCmethod also extracted a harmonic at about 20 Hz in
a subset of our subjects, a feature of subject variability which has been
reported previously (Niedermeyer and Lopes da Silva, 2005).

One of our objectives was to determine whether the BOSC method
would succeed at identifying oscillations in IC timecourses. We found
that the critical assumptions about the background spectrum that
underlie the method, that is, a colored-noise background spectrum
and a χ2(2) distribution of wavelet power values at each frequency,
were shown to be valid for ICs and not only recordings from individual
electrodes. This is important because ICA is becoming increasingly
adopted as a means of artefact removal as well as data analysis.
Because the functional form of the background spectrum is the same
for ICs as for the original electrodes, the BOSC method could be
applied to ICs, which are thought to reflect discrete underlying
sources, without modification.

The eyes-open and eyes-closed conditions can be thought of as
inducing different brain “states.” A key question was whether the

modeled background spectrum would vary substantially enough
across waking states to present a problem to the method. By looking
at background windows exclusively from one state or spanning both
states, we were able to assess the effects of state on the parameters
that affect the detection of oscillations. Although the selection of
background window affected the absolute Pepisode for each frequency,
the detected oscillations were still qualitatively similar (Figs. 7 and 8).
When the optimal background (same-state) was used, the method
became more conservative, detecting fewer oscillations, particularly
at non-alpha frequencies. Considering that the BOSC method is
typically used for exploratory research, in which the timing and task
dependence of oscillations are by definition unknown and any
potential state changes are unknown as well, our findings suggest
that changes in the background spectrum and their estimates over
unrecognized state changes may not be a major concern. However, as
we elaborate below, it is still important to cross-check the form of the
spectra to determine whether or not the colored-noise background
assumption is violated; if so, then the assumptions underlying the
method are invalid and the method may produce unpredictable
results. The above results also suggest that an initial run of the analysis
could be performed to identify gross state changes, and a subsequent
analysis using a within-state background window once state changes
are known would produce more stringent identification of oscillatory
activity.

The colored-noise form of EEG signals has been used elsewhere to
estimate the background spectrum. For example, with a different
application in mind–online spectral analysis for use with brain-
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computer interfaces–Blankertz et al. (2010) model the spectrum in
the same way as we have, namely, as colored noise plus peaks. The
BOSC method differs in how the spectrum estimate is used. Blankertz

et al. use it to identify peaks in the spectrum. The BOSC method does
not require peaks to be identifiable and is, instead, used to estimate
the background signal compared with which runs of rhythmic activity
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may be inferred. Thus, the BOSC method includes the additional
assumption of the chi-square probability distribution function of
wavelet power values at a given frequency as well as the duration
threshold, which makes the method conservative about identifying
oscillations in a signal.

The BOSC method shares some features with other existing time-
frequency analysis methods such as EEGLAB's event-related spectral
power (ERSP) method (Makeig et al., 2004). However, as has been
elaborated elsewhere (van Vugt et al., 2007), the BOSC method goes
further in several ways, which means that the BOSC method enables
the researcher to ask questions about oscillations in different ways.
First, most other methods, including ERSP, use a baseline condition
as a control with which to compare the signal of interest, with the
consequence that significance will depend on the precise choice of
comparison condition. The BOSC method fits the signal's own
background spectrum, both the colored-noise form of the mean
spectrum, and the chi-square form of the expected probability
distribution of wavelet power values. The power threshold can be
seen as a stand-in for the background-signal modeling aspect of the
BOSC method. We have shown elsewhere (Caplan et al., 2001, Fig. 6,
parameter varying across rows) that when the power threshold is
made more liberal (inclusive), bringing the method closer to
conventional spectral analysis methods, the signal-to-noise ratio
(ratio of rate of detected oscillations relative to an approximate
false-positive rate) goes down. In addition, other methods lack a
duration threshold, which helps to restrict findings to segments of
signal that would be interpreted as rhythmic even by more
conservative standards. We have shown elsewhere (Caplan et al.,
2001, Fig. 6, parameter varying across columns) that when the
duration threshold is shortened, the frequency specificity becomes
worse, suggesting that non-oscillatory signal is detected yielding
false-positive findings if we are only interested in truly rhythmic
activity.

Recommendations

First, it is possible to apply the method to independent
components. For both independent components and raw EEG signals,
it is important to check the form of the background spectrum to

ensure that the coloured-noise assumption is met. Further to this,
some care must be taken in selecting the appropriate frequency range
over which to estimate the background spectrum, particularly
because the 1/f spectrum form must be adhered to for the linear-
regression to be a meaningful fit of the background spectrum. As
rigorously laid out by Miller et al. (2009, see also their supplementary
materials), roll-off frequencies due to bandpass filtering can be
problematic and should be avoided. Miller and colleagues also point
out that a “noise floor” due to non-physiologic (e.g., instrumental)
noise is typically present, with approximately white spectrum. This
could potentially affect the background fit, in particular at higher
frequencies. Ideally, this white noise could be estimated and included
in the fit of the background spectrum. Alternatively, the frequency
range could be adjusted to avoid the potentially problematic higher
frequencies. In addition, examining the fit of power values at each
frequency to the theoretical χ2(2) distribution, as shown in Fig. 6,
could help determine if the white noise floor introduces substantial
bias at a particular frequency.

When applying the method in situations where state changes
are known in advance, a within-state background window is
optimal for the detection of oscillations. If these state changes are
not known in advance, they can be identified by initial analysis
using the method with a non-state-specific background. Finally,
once oscillatory episodes are detected, they can be used as a starting
point for further analyses to examine amplitude, frequency and
phase characteristics.

Conclusion

This study presented a test case for the BOSC method in detecting
an oscillation that is strong, easy to elicit and well described in the
literature. The results show that the method can detect alpha
oscillations that are temporally restricted to periods when they are
expected (eyes-closed condition) in both ICs and single electrodes.
Furthermore, the detection of alpha oscillations is robust to the
selection of the background window. These findings, along with
recent validation of the method applied to hippocampal recordings
from rats (Hughes et al., 2009), suggest that the BOSC method will
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Fig. 10. Temporal independence of two alpha components. (A) An 8-s epoch from the alpha component shown in Fig. 2, with detected alpha-frequency oscillations highlighted in red.
(B) The same time segment as in A, from the alpha component in Fig. 6. Note the alpha oscillation is maximal in Bwhen the oscillation is at a minimum in A, demonstrating why these
were extracted as temporally independent components.
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play an important role in comparing oscillatory activity across
frequency, brain region, task, electrophysiological state and species.

Supplementary materials related to this article including the core
BOSC scripts and documentation can be found online at doi:10.1016/j.
neuroimage.2010.08.064.
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