Three models of the prospective relations between child maladjustment and peer victimization are examined: (a) internalizing results directly from victimization, (b) internalizing leads to victimization, and (c) physical aggression fuels retaliatory victimization that leads to increases in internalizing over time. Data came from assessments of children at the beginning of Grade 1 ($n = 432$; average age = 6.3 years), with follow-ups at the end of Grades 1, 2, and 3. Most children showed low stable internalizing trajectories (73%); however, high stable and increasing curvilinear trajectories were evident for 7% and 20% of children, respectively. Findings suggest that children’s adjustment problems at entry to Grade 1 affect the course of their internalizing, in part, by setting the stage for peer victimization.

Entry into the first grade marks a turning point that provides opportunities for the early detection and treatment of young children’s adjustment problems, but it also can set in motion or enhance problematic personal and peer responses to these problems (Ladd, 2006). Externalizing problems such as physical aggression and hyperactivity are detectable and stable across the early elementary school grades and increases in externalizing relate to both child characteristics and adversities in their relationships with peers (Ladd, 2006; NICHD Early Child Care Research Network, 2004; Pedersen, Vitaro, Barker, & Borge, 2007). Internalizing problems such as anxiety and depression are also stable across early childhood (Stalets & Luby, 2006; Sterba, Prinstein, & Cox, 2007). However, less is known about the developmental course and predictors of increases in internalizing problems in early elementary school.

Transactional theories of developmental psychopathology (Cicchetti, 2006) argue that children’s vulnerabilities and behaviors transact with adversities in their environments to maintain or increase their maladjustment over time. As children enter elementary school, establishing positive relationships with new peers presents a challenge that may be particularly difficult for children vulnerable to internalizing problems. A meta-analysis of cross-sectional studies with children and adolescents (Hawker & Boulton, 2000) shows significant associations between internalizing and peer victimization across different respondents and methods for assessing victimization. However, longitudinal research is needed to increase understanding of the direction of relations between children’s vulnerabilities to internalizing and peer victimization.

Short-term longitudinal research suggests that relations between internalizing and peer victimization are cyclical: Children who display internalizing symptoms (e.g., cry easily, worry excessively, overly fearful, sadness) may become chronic targets of peer victimization. In turn, chronic victimization can maintain or lead to more internalizing, particularly if children feel bad about peers not liking them or rejecting them or if they feel helpless or hopeless about stopping others’ hurtful behaviors toward them (Boivin, Hymel, & Bukowski, 1995; Graham & Juvonen, 1998; Ladd, 2006; Pedersen et al., 2007; Rudolph, Ladd, & Dinella, 2007; Troop-Gordon & Ladd, 2005). However, understanding these reciprocal relations is
complicated by the established links between physical aggression and peer victimization (Hanish & Guerra, 2002; Kochenderfer-Ladd, 2003; Leadbeater, Boone, Sangster, & Mathieson, 2006; Morrow, Hubbard, McAuliffe, Rubin, & Dearing, 2006). Moderately high correlations between internalizing and physical aggression in early childhood are also well established (Egger & Angold, 2006), but the mechanisms that link them together have not been explicated. A lack of attention to co-occurring physical aggression can have serious consequences for anxious or depressed children who may be punished for their aggressive attempts to avoid anxiety-provoking situations while their internalizing problem go untreated. Hence, we hypothesize three prospective transactional models that specify the relations between child characteristics and context differences experienced as peer victimization. As past research has shown, (a) internalizing may be the direct result of peer victimization or (b) it may lead to victimization. We also argue that peer victimization may be linked to increases in children’s internalizing problems through their aggressive behaviors, such that (c) children’s physical aggression may fuel retaliatory peer victimization that leads to increases in internalizing over time.

We compare the relative fit of these alternative theoretical models using four waves of longitudinal data collected from a large, school-based sample of children at the beginning of Grade 1 with follow-ups at the end of Grades 1, 2, and 3. We first examine a baseline model of changes (and stability) in children’s internalizing. Consistent with a transactional theory of the development of childhood psychopathology (Cicchetti, 2006) and past literature, we expect that internalizing and peer victimization are reciprocally related over time and that the course of each is influenced by the child’s physical aggression. Previous short-term research with this sample (Hoglund & Leadbeater, 2004) demonstrated the salience of both internalizing and externalizing problems (including physical aggression) in predicting increases in internalizing across first grade, over and above the significant effects of ecological differences in family contexts (number of moves, low maternal education) and school contexts (number of children in the school from families on income assistance). In this research, we extend these findings by focusing on the transacting effects of adverse peer contexts created by peer victimization and the child’s physical aggression on changes in internalizing from first to third grade.

Detecting Internalizing Problems in Young Children

The potential for understanding the course of internalizing has been advanced by recent progress in delineating markers of depressive disorders in very young children (Angold & Egger, 2007; Egger & Angold, 2006; Luby, Heffelfinger, Koenig-McNaught, Brown, & Spitznagel, 2004; Stalets & Luby, 2006). Their consistently observable internalizing symptoms include excessive whining and crying, sad or irritable affect, excessive worrying, anhedonia, and somatic problems. Acknowledging the early stage of the field in diagnosing childhood mental health disorders and the need to distinguish these from variations in temperament, emotional liability, and problematic parenting, reviews of epidemiological research on the prevalence of clinically diagnosable depression in community samples of preschoolers suggest average rates that range from 0% to 2% (Egger & Angold, 2006; Stalets & Luby, 2006). These rates increase to 2.8% for children under age 13 and double to 5.6% in children 13 to 18 years old. Sex differences in rates are typically not found for children under age 13 (Costello, Erkanli, & Angold, 2006). Reviewing the research using dimensional assessment approaches (checklist measures), Egger and Angold (2006) estimate overall prevalence rates of 7% to 25% for preschool internalizing and externalizing disorders. Rates of co-morbid internalizing and externalizing increases from ages 2 to 5 and as many as 50% of children diagnosed with one disorder are also diagnosed with the other (Egger & Angold, 2006; Stalets & Luby, 2006).

Both the stability of and increases in internalizing in elementary school are related to children’s preschool levels. One 4-year study showed 60% of children diagnosed with preschool depression continued to show clinical levels of either internalizing or externalizing problems 4 years later (Lavigne et al., 1998). Using data from the NICHD Study of Early Childcare and following children age 2 to 11, latent trajectory class analyses indicated that two thirds of children (65% of boys and 69% of girls) have low stable levels of internalizing problems. However, 13% of boys and 21% of girls showed stable high levels. In addition, a similar number of boys (22%) and girls (21%) showed initially decreasing and then—starting at about age 6—increasing trajectories of internalizing. Gender differences were also noted: Twice as many girls as boys showed stable elevated trajectories and girls in the increasing and then decreasing classification showed greater increases and less decreases than boys.
The Links Among Peer Victimization, Internalizing, and Physical Aggression

Research with community-based samples estimates that 10% to as many as 30% of children are chronic victims of peer aggression; higher percentages are more likely in early grades (Hawker & Boulton, 2000). In a four-wave longitudinal study of kindergarten to third-grade children, Kochenderfer-Ladd and Wardrop (2001) classified children as victims based on their reported frequency (sometimes or more) of experiencing physical or verbal victimization, with 14% classified as victims at three or more time points. In a second study with the same sample (Kochenderfer-Ladd, 2003) cluster analyses indicated that 22% to 36% of the victimized children were also physically aggressive. Also, early levels of physical aggression predicted increases in the frequency of victimization in first grade and in the chronicity of victimization over time. The higher risk for adjustment problems in physically aggressive victims has also been noted in research with elementary school students and older samples (Rudolph, Hammen, & Burge, 1994; Schwartz, Proctor, & Chien, 2001).

Short-term longitudinal research also suggests links between peer victimization, internalizing, and externalizing (including physical aggression) in early elementary school. Gender differences in these associations also have been reported. For example, Snyder et al. (2003) found that boys’ initial levels of externalizing problems (antisocial behaviors) were related to less victimization; however, over time, externalizing and victimization were reciprocally related and increased together (evidenced by significant relations between their slopes). In contrast, girls who exhibited externalizing problems were at increasing risk for victimization even in the short term. In addition, boy’s initial levels of depressive symptoms were related to increasing victimization and ongoing victimization exacerbated depressive symptoms. Girl’s initial levels of depressive symptoms also contributed to increases in victimization over time. Similarly, Rudolph et al. (1994) found that children 7 to 12 years of age with comorbid internalizing and externalizing problems showed the most impaired social functioning (including more hostile problem solving strategies and greater peer rejection).

In a series of studies with children followed from kindergarten to fourth grade, Ladd and his colleagues found support for the additive and interactive effects of both individual vulnerabilities and peer rejection on later adjustment problems (Gazelle & Ladd, 2003; Ladd & Troop-Gordon, 2003). Children’s early anxious/fearful behaviors predicted later internalizing, but this pathway was not mediated by peer rejection. However, children’s aggressive behaviors and chronic victimization predicted lower self-acceptance and higher internalizing by fourth grade. Following the same sample to sixth grade, Ladd (2006) compared the fit of four persons by context models that specified the effects of children’s displays of early physical aggression and peer rejection on later externalizing and of early social withdrawal and peer rejection on subsequent internalizing. Strongest support was found for additive affects models that demonstrated the independent contributions of both childhood vulnerabilities (early aggression or social withdrawal) and peer rejection to their later externalizing or internalizing problems, respectively. However, the crossover effect of physical aggression on internalizing was not assessed.

Summary and Current Research

Interpretations of past longitudinal research are limited by several methodological concerns. First, they are complicated by differences in how outcomes and childhood vulnerabilities or precursors to adjustment problems are measured. Ladd and colleagues categorized early physical aggression as a propensity factor for other externalizing problems (including conduct disordered and hyperactive behaviors) and withdrawal as a predisposition to internalizing (depressed, anxious behaviors). Other studies have used composite assessments of internalizing that confound withdrawal, depression, and anxiety (Hoglund & Leadbeater, 2004; Snyder et al., 2003). Given recent strides in the identification of symptoms of internalizing in early childhood and support for their stability (Luby et al., 2004), we focus exclusively on symptoms of anxiety and depression and utilize the same assessment across elementary school (see also Ladd, 2006; Sterba et al., 2007). Second, past research has generally assessed predictors of either externalizing or internalizing without accounting for their stability and co-occurrence (e.g., Ladd, 2006; Sterba et al., 2007). In this study, we control for their co-occurrence by estimating the paths that link them over time. We also extend past research on the development of internalizing that has focused exclusively on physical victimization (e.g., Graham & Juvonen, 1998; Hanish & Guerra, 2002; Ladd, 2006; Troop-Gordon
& Ladd, 2005) by including items assessing relational victimization.

To add to knowledge about the developmental course and predictors of internalizing problems in early elementary school, we compare three models that specify the hypothesized relations among peer victimization, internalizing, and physical aggression to a baseline stability model (Model 1). These are shown in Figure 1. Model 1, the stability model, examines the combined effects of stable individual differences in internalizing, peer victimization, and physical aggression over time, controlling for their within-time correlations. This is the most parsimonious model that is estimated. It is used as a baseline for comparison of the improvement in fit obtained by adding the paths that the following three nested models hypothesize to explain increases in internalizing in early elementary school. Model 2, the victimization-driven model, examines the unidirectional or additive effects of peer victimization on changes in internalizing by adding paths from peer victimization to subsequent internalizing to Model 1. This model is consistent with the idea that the starting point for children’s

Figure 1. Hypothesized models of directional and additive associations between peer victimization, aggression, and internalizing problems from first to third grade.

Note. Model 1 denotes individual stability model. Model 2 denotes victimization-driven model. Model 3 denotes transactional model. Model 4 denotes co-occurring aggression model.
problems in early elementary school can be located in their problems with peers. Model 3, the transactional model, examines the hypothesis that peer victimization and internalizing problems operate through cyclical paths leading to increased internalizing across time by adding paths from internalizing to victimization to Model 2. Finally, in Model 4, the co-occurring aggression model, we add direct paths from physical aggression to both victimization and to internalizing to examine the hypothesis that early individual differences in physical aggression create risks for increases in peer victimization that can lead to higher levels of internalizing over time. Support for this model is consistent with the idea that aggressive children elicit peer victimization that lead to increases in their internalizing over time.

Method

Participants

Children (n = 432) were recruited in the fall of first grade (51% boys; average age = 6.3 years) from 44 classrooms in 18 public schools in a medium-sized Canadian city. Baseline data (T1) were gathered in the fall of first grade (2000). Follow-up data were collected in the spring of each year of Grade 1 (T1, n = 423; a 98% retention rate), Grade 2 (T2, n = 397; 92%), and Grade 3 (T3, n = 385; 89.1%). Children not followed had moved out of the school district and refusals to continue to participate were rare. Participants were also involved in an evaluation of a first- to third-grade peer victimization prevention program (see Leadbeater & Hoglund, 2006; Leadbeater, Hoglund, & Woods, 2003). The effects of treatment versus control group assignment on children’s victimization, aggression, and internalizing are controlled in these analyses by regressing each construct at each time point on program status.

According to parent reports at baseline, 65% of children lived in a two-parent household. Mothers’ education ranged from eighth grade to university graduate-level education, with the average level being some college or technical training beyond high school. Thirty-two percent of children lived in a household with an annual income under $30,000 (range = less than $8,500 to over $50,000 per year). Children represented a range of ethnicities: 73% European Caucasian, 9% Southeast and East Asian, 4% South Asian, 7% Aboriginal, and 5% other (e.g., Hispanic, Caribbean; 2% did not report). For 73% English was the only language spoken at home.

Procedure

Evaluation packages were sent to all parents of first grade children in participating schools informing them of the study and seeking consent for participation. The overall consent rate was 64% across schools (range = 47%–91%). Nonparticipants included children who did not speak English and special needs children who could not be interviewed even on an individual basis (e.g., due to autism). Parents who granted consent completed a demographic questionnaire and rated their children’s externalizing and internalizing problems and social competence at home and returned the forms to their children’s teachers in sealed envelopes. Teachers completed questionnaires rating the externalizing and internalizing problems and social competence of each child in their class with consent to participate. (Social competence data are not used in this study.) Children completed questionnaires reporting their experiences of victimization and their interpersonal negotiation strategies (not used in the current analyses) in small class groups (n = 5–20). All questions were read out loud and one research assistant sat between pairs of children to monitor their placement of responses and to answer the children’s questions.

Measures

Peer victimization was measured from self-reported episodes of relational and physical victimization on the Social Experiences Questionnaire (Crick & Grotpeter, 1995). Children are told ‘‘Here is a list of things that sometimes happen to kids your age at school’’ and asked ‘‘How often do they happen to you?’’ Two practice items are used to help children to understand the response scale and each item is read out loud. The relational victimization subscale taps experiences of social exclusion and friendship restriction (e.g., ‘‘other kids leave you out on purpose,’’ ‘‘other kids say they won’t like you unless you do what they want you to do,’’ ‘‘other kids keep other students from liking you’’). Physical victimization assesses incidents of physical harm and threats of harm (e.g., ‘‘get hit by another student,’’ ‘‘other kids kick you or pull your hair,’’ ‘‘other kids say they will beat you up’’). These subscales contain five items each rated on a 3-point scale depicted pictorially to help younger children understand the 3-point scaling (□ = never, □ = sometimes, □ = almost all the time). This was adapted from the original 5-point scale to reduce the difficulty for this young age group. As the latent
constructs of relational and physical victimization correlated highly at each time point \((rs = .62–.97) \), the 10 items are used to create an overall victimization construct.

Physical aggression and internalizing problems were assessed from teacher reports on the Early School Behavior Rating Scale (Caldwell & Pianta, 1991) at each time point. The teacher version includes 40 items that assess a variety of *externalizing behaviors* (e.g., aggression, temper tantrums, hyperactivity, inattentiveness), *internalizing* (e.g., anxiety, shyness, sadness, withdrawal), and *social competence* (e.g., cooperative with peers and adults, follows directions, adheres to rules). Social competence is not used in the current analyses. Items were rated on a 4-point scale \((1 = \text{hardly ever}, 4 = \text{almost always}) \). We selected the items that best represented the constructs of physical aggression and internalizing. For physical aggression, we selected three items that reflected clear physically aggressive behaviors in early childhood: “destroys other children’s property,” “fights with other children,” and “kicks other children.” For internalizing, we chose four depressive and anxious symptoms items that are among the most consistently observed symptoms of depression and anxiety in young children, namely, “worries,” “appears unhappy, sad,” “cries easily,” and “complains of headaches” (see Luby et al., 2004). Symptoms of social anxiety, withdrawal loneliness, shyness, and asocial tendencies that are not exclusively characteristic of internalizing problems are excluded from our assessment of internalizing.

Because we are interested in adjustment problems that are evident at school, only teacher reports of aggression and internalizing are used in this study. Although peer judgments of these problems may fuel their victimization of affected children, peer ratings could not be collected due to the high costs of collecting sociometric data and due to logistical and ethical concerns of our school district. Teacher and parent reports of aggression and internalizing were moderately correlated at each time point: aggression \((rs = .30–.43) \) and internalizing \((rs = .15–.31) \). In addition, parent reports were available for only 80% of children at T1, 75% of children at T2, and 70% of children at T3, reducing the power for our complex analyses.

Demographic Covariates

We include a series of four demographic covariates in our analyses: child sex \((0 = \text{boys}, 1 = \text{girls}) \), family socioeconomic status (SES) risk (sum of four dichotomous household demographic indicators: low parental education, low income, single-parent household, high household moves; range = 0–4), school-level poverty (proportion of low-income students), and program status of school \((0 = \text{control schools}, 1 = \text{WITS program schools}) \). We also test the moderating effects of child sex, family SES risk \((0 = \text{no risks}, 49.8\%; 1 = \text{one to four SES risks}, 50.2\%) \), and program status on our best fitting structural equation model.

Attrition for child- and teacher-reported data was minimal across the 3 years and four waves of data collection. Comparison of children who dropped out of the study \((n = 47; 10.9\%) \) with children who remained at the final assessment point \((n = 385) \) on the baseline demographic covariates indicated differences for the two of four variables related to SES risks: Compared to children who remained in the study, children who dropped out experienced more family SES risks \((Ms = 1.68 \text{ vs. } 0.79; \text{range } = 0–4) \) and attended schools with more low-income students \((Ms = 13.98\% \text{ vs. } 11.62\%; \text{range } = 3\%–24\%) \).

Results

Descriptive Data

Psychometric data and mean levels of the three constructs at each time point are presented in Table 1 for girls and boys. Intraclass correlations \((\text{ICCs}) \) indicate that 1%–11% of the overall variance \((\text{ICCs} = .01–.11) \) in the constructs is attributable to the clustering of children within schools. This suggests that the data were relatively independent of school context. However, to account for the nesting of students within schools, all models tested are clustered by school, which adjusts the standard errors using a sandwich estimator. Mean levels of peer victimization declined after first grade. Mean levels of physical aggression and internalizing increased after first grade. Mean levels of peer victimization (including both relational and physical victimization) were similar for girls and boys, except that girls reported significantly higher levels in second grade. Boys showed higher mean levels of aggression at each time point than girls likely reflecting our exclusive focus on physical aggression (and not relational).

Data Analytic Strategy

Data analyses were conducted in four steps. First, we establish measurement models and confirm factorial invariance of the latent constructs.
To reduce data processing demands, the latent factor scores from these measurement models were used for the remaining analyses. Second, to describe trajectories of internalizing in this sample for comparisons with past studies, we used a person-oriented approach to estimate the best fitting latent growth mixture model. Third, we estimate our hypothesized autoregressive cross-lagged models to determine the best fitting, theoretically coherent model. Latent growth mixture analysis is a person-centered approach used to identify different clusters of children who show similar starting points and growth trajectories of a construct over linear or quadratic time. In contrast, autoregressive cross-lagged analysis is a variable-centered approach used to estimate the overall average level of change between specified linear time points and to estimate directional associations among constructs. Last, we test the moderating effects of sex, family SES risk, and program status in our best fitting cross-lagged model. Mplus 4.2 (Muthén & Muthén, 1998–2004) was used for all analyses.

For all analyses, model fit precision is examined using a combination of the comparative fit index (CFI), root mean square error of approximation (RMSEA), and standardized root mean square residual (SRMR). The CFI estimate compares the specified model with a model in which all variables are assumed to be uncorrelated (i.e., the null model) and tends to be an overly conservative estimate of model fit with complex measurement models; values of .95 or greater indicate an excellent model fit whereas values of .90–.94 suggest an adequate fit (Kline, 2005). The RMSEA index incorporates adjustments for model complexity so that the evaluation of model precision is not overly influenced by the number of parameters included in the model. RMSEA and SRMR values of .05 or less are considered indicative of excellent fit whereas values of .06–.08 suggest adequate model fit (Kline, 2005). The chi-square likelihood ratio difference test is used to assess the difference of model fit statistics for nested models (e.g., fit of all models compared to the individual vulnerability model). Maximum likelihood parameter estimates with robust standard errors are used.

Measurement Models and Factorial Invariance

We used confirmatory factor analyses to assess the fit of the first-order latent measurement models and the factorial invariance of the latent constructs across time. Measurement models of the three latent constructs (victimization, aggression, and internalizing) showed good fit to the data (RMSEAs < .06, SRMRs < .06), with standardized factor loadings of .41–.69 for peer victimization, .68–.84 for aggression, and .54–.76 for internalizing. Factorial invariance across the four time points was confirmed for each latent construct separately. Fit

Table 1

<table>
<thead>
<tr>
<th>Variables</th>
<th>α</th>
<th>ICC</th>
<th>Range</th>
<th>Boys (n = 222)</th>
<th>Girls (n = 210)</th>
<th>Total (N = 432)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peer victimization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>.85</td>
<td>.03</td>
<td>0-2</td>
<td>0.51 (.46)</td>
<td>0.57 (.47)</td>
<td>0.54 (.47)</td>
</tr>
<tr>
<td>T2</td>
<td>.84</td>
<td>.08</td>
<td>0-2</td>
<td>0.53 (.43)</td>
<td>0.53 (.44)</td>
<td>0.53 (.43)</td>
</tr>
<tr>
<td>T3</td>
<td>.82</td>
<td>.02</td>
<td>0-2</td>
<td>0.41 (.34)*</td>
<td>0.48 (.38)*</td>
<td>0.46 (.36)</td>
</tr>
<tr>
<td>T4</td>
<td>.86</td>
<td>.04</td>
<td>0-2</td>
<td>0.41 (.39)</td>
<td>0.40 (.37)</td>
<td>0.40 (.37)</td>
</tr>
<tr>
<td>Physical aggression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>.84</td>
<td>.01</td>
<td>1-4</td>
<td>1.29 (.54)*</td>
<td>1.15 (.36)*</td>
<td>1.22 (.47)</td>
</tr>
<tr>
<td>T2</td>
<td>.78</td>
<td>.04</td>
<td>1-3.67</td>
<td>1.29 (.52)*</td>
<td>1.14 (.36)*</td>
<td>1.22 (.46)</td>
</tr>
<tr>
<td>T3</td>
<td>.76</td>
<td>.03</td>
<td>1-3.67</td>
<td>1.31 (.51)*</td>
<td>1.18 (.31)*</td>
<td>1.25 (.43)</td>
</tr>
<tr>
<td>T4</td>
<td>.79</td>
<td>.06</td>
<td>1-4</td>
<td>1.32 (.59)*</td>
<td>1.21 (.35)*</td>
<td>1.27 (.48)</td>
</tr>
<tr>
<td>Internalizing problems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>.70</td>
<td>.04</td>
<td>1-3.50</td>
<td>1.42 (.48)</td>
<td>1.37 (.43)</td>
<td>1.40 (.46)</td>
</tr>
<tr>
<td>T2</td>
<td>.68</td>
<td>.05</td>
<td>1-3.25</td>
<td>1.41 (.49)</td>
<td>1.38 (.42)</td>
<td>1.40 (.47)</td>
</tr>
<tr>
<td>T3</td>
<td>.70</td>
<td>.08</td>
<td>1-3.50</td>
<td>1.52 (.54)</td>
<td>1.46 (.44)</td>
<td>1.49 (.49)</td>
</tr>
<tr>
<td>T4</td>
<td>.79</td>
<td>.11</td>
<td>1-4</td>
<td>1.64 (.62)</td>
<td>1.57 (.55)</td>
<td>1.60 (.59)</td>
</tr>
</tbody>
</table>

Note. T1 = Time 1, fall of first grade; T2 = Time 2, spring of grade 1; T3 = Time 3, spring of second grade; T4 = Time 4, spring of third grade; ICC = intraclass correlations at school level (proportion of variance attributable to differences between vs. within schools). *Mean levels differ significantly (p < .05) between girls and boys.
of the three measurement models with the factor loadings constrained to be equivalent over time was good and did not vary significantly (at \(p < .001 \)) from the unconstrained models, indicating factorial invariance in the factor loadings over the four time points: peer victimization, \(\chi^2(734, N = 432) = 1141.60, p < .01, \) RMSEA = .036, \(\chi^2_{\text{diff}}(36) = 45.13 \); aggression, \(\chi^2(45, N = 432) = 115.11, p < .01, \) RMSEA = .060, \(\chi^2_{\text{diff}}[6] = 21.59 \); and internalizing, \(\chi^2(95, N = 432) = 182.02, p < .01, \) RMSEA = .046, \(\chi^2_{\text{diff}}[6] = 18.24 \). To reduce the number of parameters estimated in the following models, the standardized factor scores for these latent measurement models were saved for use in the growth mixture and autoregressive cross-lagged analyses.

Latent Growth Mixture Models for Internalizing

To estimate the latent trajectory classes of internalizing using latent growth mixture modeling, we specified a single cluster with a stable-flat shape and then tested a series of models by increasing the number of clusters and allowing linear slopes and quadratic growth curves (where significant) for each trajectory cluster. The optimal model was selected based on the combination of the Bayesian information criterion (BIC); the Lo, Mendell, and Rubin (2001) likelihood ratio test (LRT); entropy; and the average posterior probability of participants’ trajectory class membership. Smaller BIC and LTR values suggest that the number of latent classes selected fit the data significantly better than \(K + 1 \) and \(K - 1 \) classes, respectively. Entropy values closer to 1.0 and posterior probabilities greater than .80 are indicative of good fit (Nagin, 1999). All trajectory clusters were regressed on the series of demographic covariates (child sex, family SES risk, school-level poverty, and program status).

A three-cluster model with linear and quadratic growth factors was selected as the best solution based on a combination of the above criteria (see Table 2). Cluster 1 (high stable, 7%) showed the highest levels of internalizing at school entry followed by a stable trajectory over time. Cluster 2 (average accelerating, 20%) showed moderate levels of internalizing at school entry with a moderate linear decreasing and then accelerated rate of growth over time. Cluster 3 (low decelerating, 73%) showed the lowest intercept at the onset and followed a low linear increasing but decelerating rate of growth over time. There was significant variation around the intercepts and quadratic growth factors but not the linear growth factors and these were fixed at zero.

Multinomial logistic regression analyses were used to assess demographic, victimization, and aggression differences in internalizing Clusters 1 and 2 relative to Cluster 3. Compared with children in Cluster 3 (low decelerating), children in Cluster 1 (high stable) were more likely to be in high-SES-risk families (\(t = 1.84, p < .10 \)) and in the control schools (\(t = -2.59 \)). Children in Cluster 2 (average

Table 2

<table>
<thead>
<tr>
<th>Latent Trajectory Classes of Internalizing Problems From First to Third Grade</th>
<th>Intercept</th>
<th>Linear slope</th>
<th>Quadratic slope</th>
<th>Model fit statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (%)</td>
<td>Est.</td>
<td>SE</td>
<td>Var.</td>
</tr>
<tr>
<td>1 Class solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average stable</td>
<td>432 (100)</td>
<td>-0.09*</td>
<td>.06</td>
<td>.11**</td>
</tr>
<tr>
<td>2 Class solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High acceleration</td>
<td>37 (9)</td>
<td>0.08</td>
<td>.58</td>
<td>.09**</td>
</tr>
<tr>
<td>Low stable</td>
<td>395 (91)</td>
<td>-0.05</td>
<td>.05</td>
<td>.09**</td>
</tr>
<tr>
<td>3 Class solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High stable</td>
<td>31 (7)</td>
<td>0.07</td>
<td>.31</td>
<td>.02**</td>
</tr>
<tr>
<td>Average acceleration</td>
<td>86 (20)</td>
<td>-0.05</td>
<td>.22</td>
<td>.02**</td>
</tr>
<tr>
<td>Low deceleration</td>
<td>315 (73)</td>
<td>-0.22**</td>
<td>.05</td>
<td>.02**</td>
</tr>
<tr>
<td>4 Class solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High stable</td>
<td>44 (10)</td>
<td>-0.39*</td>
<td>.16</td>
<td>.01**</td>
</tr>
<tr>
<td>High acceleration</td>
<td>27 (6)</td>
<td>1.29**</td>
<td>.22</td>
<td>.01**</td>
</tr>
<tr>
<td>Average acceleration</td>
<td>78 (18)</td>
<td>-0.02</td>
<td>.15</td>
<td>.01**</td>
</tr>
<tr>
<td>Low deceleration</td>
<td>283 (66)</td>
<td>-0.26**</td>
<td>.04</td>
<td>.01**</td>
</tr>
</tbody>
</table>

Note. Unstandardized estimates shown. Models use the standardized factor scores saved from the measurement models.
Prob. = posterior probability; BIC = Bayesian information criteria; LRT = Lo–Mendell–Rubin test.

\[^p < .10. *p < .05. **p < .01.\]
accelerating) were less likely to be in high-SES-risk families \((t = -3.23)\) but were more likely to attend higher-poverty schools \((t = 2.19)\). Sex differences were not significant. Three trajectory classes with linear (but not quadratic) growth factors were also found for victimization (high decreasing, 12%; low increasing, 17%; and low stable, 71%) and aggression (high, 7%; average, 10%; and low stable, 83%). One victimization trajectory class discriminated children in internalizing Cluster 3 from children in the other two clusters: Children in internalizing Cluster 1 (high stable) were less likely to be in the low stable victimization class \((t = -2.14)\). The three aggression classes discriminated children in each of the internalizing clusters. Compared with children in internalizing Cluster 3, children in internalizing Cluster 1 were more likely to be in the high stable aggression class \((t = 2.00)\) and less likely to be in the low stable aggression class \((t = -2.19)\). Similarly, children in internalizing Cluster 2 were more likely to be in the average stable aggression class \((t = 2.05)\) and less likely to be in the low stable aggression class \((t = -2.03)\).

Hypothesized Models of Relations Among Victimization, Aggression, and Internalizing

Autoregressive cross-lagged path analyses are used next to examine average levels of change in internalizing over time and to test the hypothesized models (see Figure 1). All path models are clustered by school to account for the dependence of students nested within schools. Each regression model includes the estimated means for each construct, the autoregressive regression paths within each construct for \(t + 1\) (e.g., T2 internalizing regressed on T1 internalizing), and within-time covariances among the latent residual components (e.g., correlation between the latent residuals for victimization and internalizing at T2; Sayer & Cumsille, 2001). Each construct is also regressed on the series of four demographic covariates at each time point.

The individual stability model (Model 1) is our baseline model that examines the stability in each of the three constructs from entry of first grade to the spring of third grade, as well as the covariances among these constructs within time. These stability and covariance estimates are adjusted for the effects of child sex, family SES risk, school-level poverty, and program status. Model 1 fit the data adequately: \(\chi^2(45, N = 432) = 159.18, p < .01, \text{CFI} = .909, \text{RMSEA} = .077, \text{SRMR} = .076\). As shown in Figure 2, stability in the autoregressive paths across each time point for victimization was moderate \((b = .47–.61)\) indicating modest variability in children’s experiences of peer victimization over time. Aggression showed high stability across each time point \((b = .77–.87)\). Internalizing also showed high stability from fall to spring of first grade \((b = .85)\) that decreased noticeably from spring of first to third grade \((b = .43–.57)\), again indicating moderate changes and variability in children’s internalizing over the course of the early grades.

Examination of the significant within-time correlations among the variables shows modest associations between victimization and aggression in the fall of first grade and the spring of third grade \((r = .12 \text{ and } .08, \text{ respectively})\). Victimization

![Figure 2. Individual stability model (Model 1).](image)

Note. Model 1: \(\chi^2(45, N = 432) = 159.18, p < .01, \text{CFI} = .909; \text{RMSEA} = .077; \text{SRMR} = .076\). Dashed lines indicate nonsignificant path estimates.

\(^{1}p < .10 \,(t \pm 1.61).\) \(^{*}p < .05 \,(t \pm 1.96).\) \(^{**}p < .01 \,(t \pm 2.58).\)
was associated with modestly higher levels of internalizing only by the third grade \((r = .08)\). Aggression and internalizing were positively correlated at each time point \((rs = .06–.29)\). Respectively, Model 1 explained 39%, 67%, and 22% of the variance in victimization, aggression, and internalizing by the spring of third grade. Autoregressive paths and within-time covariances are included in each of the following models (indicated by the faint lines in each figure) but are not reported as they do not change substantially.

The victimization-driven model (Model 2) adds paths from victimization to subsequent levels of internalizing to test the theory that early and ongoing experiences of victimization are a primary driving force behind increases in internalizing across the early elementary grades, beyond stability in internalizing and concurrent associations with victimization and aggression. These three paths were not significant, although a modest trend \((\beta = .04, p < .10)\) was found from victimization to internalizing across first grade. Fit of Model 2 was adequate, \(\chi^2(42, N = 432) = 152.63, p < .01, \text{CFI} = .912, \text{RMSEA} = .078, \text{SRMR} = .076, \) and was a modest improvement in fit over Model 1, \(\Delta \chi^2(3) = 6.55, p = .08\). Model 2 explained an additional 1% of the variance in internalizing at T3 compared to Model 1 (see Figure 3).

The transactional model (Model 3) adds bidirectional path estimates between victimization and internalizing to assess the hypothesis that early peer risks and individual vulnerability to internalizing reciprocally increase risks for internalizing, beyond stability in internalizing and concurrent associations with aggression (see Figure 4). Model 3 fit the data adequately, \(\chi^2(39, N = 432) = 146.08, p < .01, \text{CFI} = .915, \text{RMSEA} = .080, \text{SRMR} = .073\). Model 3 was a significant improvement over Model 1, \(\Delta \chi^2(6) = 13.10, p < .05\), and a modest improvement over Model 2, \(\Delta \chi^2(3) = 6.55, p = .08\). By T2, changes in internalizing contributed to significant increases in victimization by third grade \((\beta = .08, p < .01)\). Compared to Models 1 and 2, Model 3 explained an additional 1% of the variance in internalizing and victimization at T3.

The co-occurring aggression model (Model 4) builds on Model 3 by adding bidirectional regression paths between aggression and victimization and from aggression to subsequent levels of internalizing (see Figure 5). Model 4 fit the data adequately, \(\chi^2(30, N = 432) = 13.04, p < .01, \text{CFI} = .934, \text{RMSEA} = .080, \text{SRMR} = .049\). This model was a significant improvement over Model 1, \(\Delta \chi^2(15) = 46.14, p < .01\); Model 2, \(\Delta \chi^2(12) = 39.59, p < .01\); and Model 3, \(\Delta \chi^2(9) = 33.04, p < .01\). Consistent with Model 3, increases in internalizing by T2 led to increases in victimization by T3, although this path estimate was attenuated in Model 4 in the context of the lagged regression estimates for aggressive behaviors \((\beta = .06, p < .10)\). Consistent with Model 4, aggressive behaviors at T2 significantly increased risks for victimization by T1 \((\beta = .11)\). In turn, increases in victimization by T1 and T2 elevated risks for aggression by T2 \((\beta = .07, p < .10)\) and T3 \((\beta = .09)\), respectively. Aggressive behaviors at T2 led to increases in both victimization \((\beta = .08)\) and

Figure 3. Victimization-driven model (Model 2).
Note. Model 2: \(\chi^2(42, N = 432) = 152.63, p < .01, \text{CFI} = .912, \text{RMSEA} = .078, \text{SRMR} = .076\). Dashed lines indicate nonsignificant path estimates.

\(^1p < .10 (t = 1.61)\).
internalizing ($\beta = .19$) by T3. These estimates suggest that early aggressive behaviors increase risks for victimization that, in turn, contribute to the maintenance of aggression. Ongoing aggression was directly predictive of increases in internalizing. Compared to Model 3, Model 4 explained an additional 4% of the variance in internalizing, 2% of the variance in victimization, and an additional 3% of the variance in aggression at T3.

The estimates for the effects of the demographic covariates (child sex, family SES risk, school-level poverty, and program status) on each of the three constructs at each time point were modest (see Table 3). Overall, boys showed higher levels of aggression at T3 than girls, and girls reported higher levels of victimization at T2 than boys. High family SES risk was associated with higher levels of aggression and internalizing at T3 and with higher levels of aggression by T3. School-level poverty contributed to higher levels of victimization by T1. Finally, being in a WITS program school reduced levels of internalizing by T1, victimization by T2, and aggression by T3.

Moderator Effects

For the co-occurring aggression model, multiple-group analyses were used to assess differences in
fit related to the moderating effects of sex, family SES risk (low risk vs. high risk), and program status (WITS program vs. control schools). Chi-square difference tests were used to compare the fit of models with the cross-lagged path estimates allowed to vary by the moderator against the fit of the model with the cross-lagged parameters fixed to be equal across sex, family SES risk, or program status. Each of the multiple-group models was significant, indicating that the path parameters presented in Figure 5 (Model 4) differed by sex, $\Delta \chi^2 (15) = 29.63$, $p < .01$; low and high family SES risk, $\Delta \chi^2 (15) = 27.40$, $p < .01$; and by program status, $\Delta \chi^2 (15) = 35.22$, $p < .01$.

Sex. Meaningful moderating effects of sex were found. The path from aggression at T^b to victimization by the end of first grade was significant for girls ($\beta = .19$) but not boys ($\beta = .05$). Alternatively, aggression at T_2 predicted internalizing at T_3 for boys ($\beta = .22$) and not girls ($\beta = .08$). The paths from victimization at T_2 to both aggression and internalizing at T_3 were also significant for boys ($\beta = .14$) but not girls ($\beta = .05$ and $-.01$, respectively).

Family SES risk. Aggressive behaviors at school entry and at T_2 led to increases in lagged levels of victimization for high ($\beta = .13$ and $.11$, respectively) but not low ($\beta = .04$) SES risk children. However, the reverse was found in the path from aggression at T_1 to victimization at T_2, with significant effects for low ($\beta = .19$) but not high ($\beta = .06$) SES risk children. In addition, the path from internalizing at T_2 to victimization at T_3 was significant for high ($\beta = .09$) compared with low ($\beta = .02$) SES risk children.

Program status. Across first grade, the path from aggression at T^b to victimization at T_1 was significant for WITS program children ($\beta = .14$) but not control schoolchildren ($\beta = .04$), as was the reciprocal path from victimization at T_1 to aggression at T_2 (WITS program $\beta = .08$ and control program $\beta = .03$). However, the path connecting victimization at T_2 to aggression at the end of third grade was significant for control schoolchildren ($\beta = .17$) but not for WITS schoolchildren ($\beta = .05$). The effects were also stronger for control school than WITS schoolchildren for the paths from victimization at baseline to internalizing at T_1 ($\beta = .07$ and $.02$, respectively) and also from victimization at T_2 to internalizing at T_3 ($\beta = .12$ and $.03$, respectively).

Discussion

To illuminate the developmental course and predictors of internalizing problems in early elementary school, we compared models that specified the relations among peer victimization, physical aggression, and internalizing to a baseline model.
representing the stability of these variables from first to third grade. We also advance past research by taking account of the within-time correlations among peer victimization, children's aggression, and internalizing; and by examining the effects of physical aggression on the development of victimization and internalizing over time. Consistent with past research (Boivin et al., 1995; Ladd 1996), findings indicate that children's physical aggression and experiences of peer victimization have reciprocally enhancing effects over time. The significant paths in Models 3 and 4 help to explain the relations among peer victimization and children's physical aggression and their internalizing by third grade: First stable levels of internalizing appear to lead to increases in victimization by the third grade. Alternatively, increases in internalizing by the third grade, particularly for boys, may stem from the reciprocal effects of physical aggression and victimization over time. We discuss each of these in the following.

As in Sterba et al. (2007), three clusters best represented the different trajectories of children's internalizing in the current study. The majority (73%) showed low initial levels of internalizing with modestly decelerating trajectories over time. The other two clusters describe children at higher risk: Children (20%) with moderate initial levels of internalizing showed curvilinear trajectories with initial decreases and then increases over time. A smaller number of children (7%) followed a high stable trajectory that declined only slightly over time. Children in the two higher-risk internalizing clusters were more likely to be in the higher-risk victimization and aggression classes. No gender differences were found. Egger and Angold (2006) estimate overall prevalence rates of 7% to 25% for preschool problematic behavior and our findings show similar levels in elementary school. However, there appear to be two different trajectories for children with internalizing problems: one enters first grade with high levels of internalizing that persist and the second manifests increasing internalizing over time. We used variable-centered path analyses to test interrelations among internalizing, aggression and peer victimization that may sustain internalizing over time or give rise to the increases observed in this sample.

Stability in Internalizing and Subsequent Trajectories to Peer Victimization

The overall stability in children’s levels of internalizing was moderate but declined over time (from .85 to .43) suggesting other factors also influence changes in internalizing. The greater stability across first grade compared to subsequent grades reflects the fact that the same teacher rated the children in first grade whereas different teachers gave subsequent ratings. It is likely that by third grade behavioral manifestations of chronic internalizing problems (whining, crying easily, excessive worrying, and chronic somatic complaints) are seen as increasingly age inappropriate. Children with depression and anxiety who withdraw from social contacts may be neglected or actively rejected by their peers (Ladd, 2006) or have poorer quality peer relationships (Rudolph et al., 2007). Some children may lack group entry skills or withdraw from social interactions to avoid anxiety-provoking social encounters. Anxious children who wander alone around the edges of peer groups on the playground may look unhappy, believe no one likes them, become easily embarrassed, and try not to draw attention to themselves. In the absence of protective friendships, these children may become prime targets for peer victimization.

Children with high levels of internalizing may also have negative self-attributions about victimization that are global and stable (i.e., ‘It’s my fault,’ ‘It happens all the time,’ ‘It happens everywhere’) and that leads them to expect and self-report more peer victimization (Gibb & Alloy, 2006; Graham & Juvonen, 1998). Social comparisons with and by other more competent children may also increase the likelihood that initially depressed, anxious children will experience and perceive greater victimization. This is consistent with past findings that children with higher initial levels of internalizing problems (unhappy, depressed) reported more victimization from first to second grade, but only when they were in classrooms where their classmates collectively showed higher levels of social competence (Leadbeater et al., 2003). Also, children who overreact to peers by whining and crying may reward or affirm the power and dominance of bullies by not retaliating through fighting back, using assertive responses, or effectively seeking help (Kochenderfer-Ladd & Skinner, 2002; Veenstra et al., 2007). Symptoms of internalizing may also make children undesirable playmates and school project partners if they cry easily, have little energy or are not interested in play activities, fail to initiate activities, or cannot concentrate on the project at hand. Depressed children may also be less sociable and more hostile in their interactions with peers (Rudolph et al., 1994, 2007). Finally, depressed, anxious children with negative body images due to
a stigmatizing feature, obesity, a disability, or ethnic or racial differences may encounter teasing about how they look which, in turn, enhances depressed affect.

Reciprocal Effects of Aggression and Victimization and Subsequent Increases in Internalizing

The prospective effects of aggression on increases in internalizing, observed in Model 4, have not been previously reported. The cycling of physical aggression and victimization across the early grades contributed to increases in aggression by second grade, and, in turn to increases in both victimization and internalizing by third grade (controlling for significant within-time correlations). In first grade, the links between aggression and victimization were stronger for girls, children from high-SES-risk families, and WITS program children; however, the moderating effect of sex and program were not sustained and the direction of effect of SES reversed over time. These first-grade findings may reflect context differences where physical aggression is censored by peer victimization as particularly non-normative (i.e., for girls, treatment group children, and higher SES families; Leadbeater et al., 2003; Snyder et al., 2003). However, the instability of these findings over time reduces confidence in these interpretations. In addition, and possibly reflecting our exclusive focus on physical aggression, paths were stronger for boys from victimization in second grade to aggression and internalizing in third grade and also from second grade aggression to third grade internalizing.

A study of fourth-grade students (Murray-Close, Ostrov, & Crick, 2007) found that relational aggression was positively associated with internalizing across a 1-year period for both girls and boys; however, levels of relational aggression were consistently higher in girls and they increased over the 1-year period for girls, but not boys. Further research examining associations of both types of aggression with internalizing is needed.

Substantial past research shows that physically aggressive children and adolescents are often rejected or victimized by their peers (Ladd, 2006; Leadbeater, Boone, et al., 2006) or bully others (Menon et al., 2007). Aggressive children who unjustly attribute hostility to others may experience victimization in retaliation for their own hostility and aggression (Hoglund & Leadbeater, 2007; Rudolph & Clarke, 2001; Yeung & Leadbeater, 2007). Chronic peer victimization may, in turn, increase negative self-appraisals and feelings of helplessness and hopelessness as the aggressive child is unable to halt retaliation through his or her own actions. Children who increase their aggressive behaviors in second grade likely also attract the negative attention of parents and school authorities, further fueling both self-criticism and their depressive beliefs that others are unfair and overly critical. Moreover, as physically aggressive children become more depressed, they may not care what happens to them in terms of punishments or they may become fatigued and disinterested in schoolwork or conventional activities (Buhs, Ladd, & Herald, 2006). This, in turn, can further damage relationships with parents and teachers, foster impulsive behavior or sensation seeking for momentary relief, and promote relationships with deviant peers who are similarly criticized by adults. It is possible that these negative trajectories could launch longer-term problems seen in childhood and adolescence.

Surprisingly, the single model that did not provide a significant improvement in fit over the stability model was the victimization-driven model (Model 2). The influence of victimization on subsequent internalizing was not significant at any time point for the overall sample. However, the influence of victimization on internalizing across first grade and from the end of second to third grade was significant for children in control schools (particularly for boys and children from families with high SES risk). The effects of the WITS program, which seeks to alter school contexts to reduce peer victimization (Leadbeater & Hoglund, 2006; Leadbeater et al., 2003), may have attenuated support for this model. In support of past findings of positive relations between victimization and internalizing, children in the control schools are perhaps more typical of children in general. However, our analyses also accounted for both physical aggression and the stability in internalizing problems. It is possible that past confounds between these problems lead to overestimations of the independent effects of peer victimization on internalizing. Past research has focused on older children and the reciprocal effects between victimization and internalizing begin to be evident in our sample by third grade.

Study Limitations

Limitations of the current study relate to the sources of data: Children’s self-reports of peer victimization could be upwardly biased by negative expectations related to their internalizing. Also, using self-report questionnaires to assess very
implications and future directions

Typical expectations that children will learn the interpersonal skills, in vivo, as they interact with their peers, school staff, families, and media may not be met by some children. Just as some children learn to read with greater difficulty than others and require extra assistance initially or remediation when they begin to lag behind, depressed and aggressive young children show signs that they may not understand the complex social contexts of peers and adults in ways that allow them to easily learn conventional behaviors. Given the severity of the consequences of early child internalizing for peer relationships and its stability across the early grades, active screening and interventions for these children are warranted.

Children who enter first grade with notable co-occurring aggression and internalizing may differ in their needs and responsiveness to intervention from children with high stable levels of internalizing. The latter children may benefit from learning effective strategies specifically for coping with peer abuse, for example by standing up for themselves and learning to ask adults for help. Increasing the responsiveness of adults in school environments to children's requests for help may also improve the school contexts for these children (Leadbeater, Ohan, & Hoglund, 2006). The negative effects of internalizing, on its own, may have minimal nuisance value in terms of disrupting class activities. Because of this, depressed or anxious children may go unnoticed and untreated until serious absenteeism or academic problems begin to emerge.

Physically aggressive children and aggressive-internalizing children also need active guidance and remediation from parents and school staff to limit their aggression, to make friends with conventional students, and to manage the challenges of widening peer ecologies as they enter first grade. Schools frequently strive, with inadequate resources and little access to mental health professionals, to manage the most negative consequences of children's aggression with punitive warnings, suspensions, and appeals for parent involvement. Universal programs that singularly attempt to improve social competence or censor aggression may not be successful in halting aggression in high-risk children (Smith, Schneider, Smith, & Anania-dou, 2004). Raising awareness of the risks for peer abuse for sad/anxious and aggressive children is essential. Schoolwide norms that help depressed, anxious children to assertively cope with peer victimization and to feel safe at school, and efforts to enhance the effectiveness of their seeking help in the context of responsive environments are needed (Leadbeater et al., 2003).

References

