
IMA Journal of Mathematics Applied in Medicine & Biology (1991) 8, 31-56

A Unifying Model for the Substitutional Genetic Load

F. M. PHELPS IV

290 Cedar Dr., Mt. Pleasant, Michigan 48848, USA

[Received 16 January 1990 and in revised form 10 October 1990]

In this paper, a general deterministic model for gene substitution at all
segregating loci is derived. The results of a rigorous mathematical analysis of the
equations are stated and found to be consistent with results derived by making
typical simplifying assumptions. All previous deterministic calculations of possible
rates of gene substitution and the 'substitutional genetic load' are shown to be
special cases of the model. New expressions for the substitutional genetic load
and rate of substitution in hard selection with cth-order epistasis are given. In
addition, the concept of 'threshold selection' is generalized to less extreme 'rank
selection', and formulae for the relationship between the substitution rate and the
selection coefficient are given. The 'load argument' for the neutral theory is
reviewed in light of the new findings and strongly rejected. Several other areas of
disagreement, such as the effect of population dynamics and competition on the
substitutional genetic load, are sorted out using the model. Some remarks
regarding experimental input are made.

Keywords: cost of natural selection; epistasis; genetic loads; hard, soft, and rank
selection; neutral theory; rate of evolution.

1. Introduction

BEFORE the adverit of protein and DNA sequencing techniques, Haldane (1957)
attempted to compute a theoretical upper limit to the rate of evolution based on
what he called the 'cost of natural selection'. His observation was that, in order
for allele B to replace allele A in a population, all carriers of A must be weeded
out. Now if rapid evolution is proceeding at many loci simultaneously, there is a
limit to how many individuals can be wiped out each generation if the population
is to survive. Haldane computed how many such 'selective deaths' were required
during the process of a single gene substitution, and found, remarkably, that the
answer was quite large and essentially independent of the selection coefficient. He
argued that such 'selective deaths' place a limit on the rate at which inferior
alleles can be weeded out and therefore a limit on the rate of gene substitution.
He then made what amounted to an assumption of multiplicative fitnesses and
concluded that evolution could not proceed at a rate much more than 1
substitution every 300 generations.

His argument, which led many astray (and continues to do so (Hoyle &
Wickramasinghe, 1986: pp. 21-2)), received renewed attention when Kimura
(1968) used the discrepancy between the rate of evolution estimated from protein
sequence data (2 substitutions per generation) and Haldane's calculation (less
than 1 substitution per 300 generations) to propose the neutral theory. See
Kimura (1983) for a historical summary. During the period from 1968 to 1975,
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many papers were written, some attacking and some defending Haldane's
calculation. Although those disagreeing with Haldane clearly had a stronger case,
there was, and certainly remains, much confusion as to the proper resolution of
the issue. Perhaps the most important contribution of the present paper is the
general model derived in Section 2 which encompasses all previous deterministic
calculations of the substitutional genetic load as special cases. In Section 3,
approximate formulae for the selection coefficient and average population fitness
are derived. In Section 4, the crucial concepts of 'hard', 'soft', and 'rank'
selection are given precise definitions. In Section 5, the results of the analysis of
the model equations are stated. They are shown to be consistent with the
approximations made in Section 3. In Section 6, previous work is considered and
each model is found to be a special case of the general equations derived here. In
Section 7, several new results are discussed. In Section 8, several areas of
confusion in the load literature are cleared up. Finally, in Section 9, the question
of what actually happens in nature is addressed and some comments regarding
experimental input are made.

2. Hie model equations

At issue is the substitution rate r measured in DNA base changes (substitu-
tions, insertions, and deletions) per generation. In the model used below, and
also by other authors, favoured mutants will attain fixation (frequency equal to
one) only after infinite time. Thus r must be defined as the rate at which favoured
alleles cross some arbitrary proportion (say 0-99) in the population.

The process of gene substitution is a stochastic one, but, until we have a clear
understanding of the deterministic case, there is no point in considering stochastic
complications. Using diffusion equations, Kimura & Maruyama (1969) found that
including stochastic effects increases the 'selective deaths' required, as it counts
those wasted on favoured alleles which ultimately go extinct. However, their
work applies only to a single locus unless the assumption of multiplicative
fitnesses is made.

It should be noted that the motivation for the model derived below was to
incorporate all previous work as special cases of one set of very general
equations, and to do so in a mathematically precise way. The result is an example
of how the precision of careful (not difficult) mathematics can be used to sort out
several areas of controversy in a biological problem.

2.1 Haploids

The model derived here will apply to sexually reproducing haploids. Modifica-
tions for diploidy will be considered in the next subsection.

We seek equations for a steady flux of substitution at rate r. Equations for the
case where r depends on t are given in Phelps (1989).

Since the model is deterministic, every favourable allele will spread, so that the
rate of origination of favourable alleles, R alleles per generation, must equal the
substitution rate r. We assume that each favourable allele arises at a new locus.
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Thus, each generation, substitution begins at R = r new loci. Each substituting
locus LJk can be identified by two parameters, the number of generations/ since
the superior allele at that locus first appeared and k = 1,..., r which specifies to
which one of the r such loci we are referring. Note that the first subscript of a
locus increases generation by generation. Let the two alleles at Lhk be denoted
Sfjk (superior) and $hk (inferior). Let pjk denote the frequency of yjk. In a
steady flux, pjk is independent of t.

We assume that all 5̂  alleles are equally advantageous and that the fitness of an
individual is a function of the number of inferior alleles it possesses. This
'identical advantages' assumption does not alter our results, as is discussed below,
but it greatly simplifies the details of the theory. We also assume that the initial
frequency pOk is a certain constant p0 for all k. This being the case, pjk is
independent of k for all j and will be denoted pf where appropriate.

We assume random mating and no linkage. The no-linkage assumption is not as
bad as it may appear because the probability that any two segregating loci chosen
at random are linked is very small. It seems unlikely that the loci which are linked
will introduce enough of a systematic bias to alter the conclusions of this paper,
but that must be left as an open question.

Let Z be the number of inferior alleles an offspring receives from its parents.
Let Bjk be one if Ljk is inferior and zero otherwise, so that

j-o *=i

Assuming Mendelian segregation, the allele at Llk in an offspring should be Sfl>k

with probability pt so that Bjk is one with probability qt = \— pj. Thus Z is a
random variable and an individual's fitness depends on the integer n that Z turns
out to be. The assumption that there is no linkage means that the Bjk's are
independent. In order to keep the problem deterministic, we assume that the
fraction of individuals that actually receive n inferior alleles is exactly P[Z = n],
the probability that Z is n.

We assume that selection operates through differential viability. 'Fitness' means
the fraction of individuals in the class specified that survive to breed. Let w(n) be
the fitness as a function of n, the number of inferior alleles an individual has.
Because fitness is a viability, 0 < w(n) =£ 1. The average population viability V is
given by

-0

w{n)?[Z = n].

In order to derive the equation for gene frequency change, it is necessary to
compute the advantage due to having a superior allele at a specified locus. Let
Vj denote the expected viability of an individual conditional upon having the
superior allele at Ljk. (Note that Vf is independent of A:.) Then

n-0

where the new notation denotes conditional probability. Let P[Z = n] and
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P [ Z - Bji = n] be abbreviated by P(n) and Qj(n), respectively. Now

P[Z = n | flM = 0] = P[Z - Bf,k = n | flM = 0] = fiy(«)

by independence. By conditioning on n,

so that
Q,(n)-P(n) = qJ[QJ(n)-QJ(n-l)]

and

n - 0
n) ~ Q,(n - 1)]. (1)

This equation shows the increase in viability conferred upon an individual by the
favourable allele at Ljk.

Next, we consider the population dynamics. Let N(t) be the population size in
generation t and let B be the per capita birth rate of the population. The
population equation is

N(t + 1) = N(t)BV. (2)

The equation relating p ; and pj+l is

; = N(t + l)p,+l. (3)

To see this, note that the left-hand side is the number of offspring with allele Sfjwk

in generation t times their viability, whereas the right-hand side is the number of
those alleles (now labelled Sfl+lyk) in the (t+ l)th generation. Using (2) and (3),
we arrive at

Letting A/? = pj+1 — pj and substituting into (1), we obtain

Let the factor in braces be denoted st. This simplifies the above to the standard
equation for gene frequency change,

Ap = sjp,qj. (4)

Here, Sj is called the 'selection coefficient'. The system of equations is now fully
specified. In summary, the important equations are equation (4) above,

and

, (5)
n-0

= 2 w(n)[Qj(n) - Q,(n - 1)], (6)
n-0
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where Z = Sf-o Zi_i Blik, P(n) = P[Z = n], and Q,(n) = P[Z - BJA = n].
Equations (5) and (6) will be called the 'viability' and 'selection' equations,
respectively.

2.2 Diploids

The derivation of the viability and selection equations in the diploid case
parallels the haploid case, but differs in several details. In this section, the
derivation is outlined.

Let the segregating loci be labelled as before. In a diploid species, the three
genotypes at Ljk are &jik$lik, •9JikSfJnk, and SfJwk£fjk. Let these three genotypes be
labelled B (bad), H (heterozygote), and G (good), respectively.

In the diploid case, we assume that the fitness of an individual is a function of
the vector A = (X, Y), where X is the number of type B loci, and Y is the number
of type H loci the individual has. Thus we let w{m, n) denote the fitness of an
individual for which A is (m, n).

To determine A for an offspring, let the random vectors Cyjt be independent
with distribution

{(0, 0) with probability pj,
(0, 1) with probability 2ptqj,
(1,0) with probability qj.

Here it is assumed that pjk is independent of A: as in the haploid case. Then

A=(x, Y)=i 2 c,.k.

It is important to note that X is not independent of Y.
In order to derive a selection equation, it is necessary to compare the

conditional viability of an individual given a certain genotype at locus Ljk with
the average population viability. Let Vf be the expected viability of an individual
given that Ljk is type d, where d is one of the three genotypes B, H, or G. Let
?[A = {m, n)\ and P[A - CjA = (m, n)] be denoted by P{m, n) and Q,(m, n),
respectively. Following the method used to compute Vf in the previous section,
it can be shown that

V? = 2 i w(m, n)Q,(m, n)
n-0 m-0

and that

V? = S i w(m, n)Q,(m, n - 1).
n— 0 m— 0

By definition, the viability equation is

n— 0 m—0
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The population equation (2) can be used to show that

%? V), (7)

where Apy =Pj+\ — Pj- Using the above formulae, equation (7) can be written as

Ap, = Ujpflj, (8)

where ut is given by
oo ao1

"7 = v 2 2 "("i . «)[(2py - 1) AyGy(m, n) + 9 / AxGy(m, n)],

and A^g/m, n) is defined by

&xQj(™, n) = Qj(m, n) - Q,{m - 1, n),

while AyQj(m, n) is defined by

AyQy(m, n) = Gy("»» ") ~ Qj(™, n - 1).

Equation (8) is the diploid version of the selection equation.

3. The integral approximations

In this section, we make an approximation suggested by the central limit
theorem (CLT), and obtain simple expressions which approximate the integral
and viability equations. For simplicity, we will analyse the haploid equations and
merely state the corresponding results for the diploid case.

3.1 Haploids

The key to analysing the equations is to note that Z (or even Z — Bjk) is a sum
of independent (but not identically distributed) random variables and therefore
(as suggested by the CLT) is distributed approximately normally. Exact condi-
tions under which this is a good approximation are given in Section 5. We only
remark here that the CLT provides a good approximation if the typical selection
coefficient is small relative to the substitution rate.

Let/(x) be the density function for an N(0,1) random variable, that is

If there is a simple formula for w(n) which can be interpreted as a function of all
n, not just the positive integers, the viability equation is approximated by

where n and a2 are the mean and variance of Z.
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If the difference is approximated by a derivative, the selection equation
becomes

where fit and of are the mean and the variance of Z — Bjk, respectively.
However, if a is large (which it must be for the CLT to apply), the selection
equation (and so Sj) is virtually independent of ; and

S =

These approximations are not new: they are given in Kimura & Crow (1978) in
the context of the mutation load. The significance in deriving them from the
above model is that, if a rigorous justification of these approximations is needed,
the starting point for that argument is specified.

In order to use these equations, we must calculate fi and a2. Since the Bt t ' s are
independent,

oo oo

/* = r ZJ 1j a n d " = r ZJ Pflj-
i-0 i-0

If the selection coefficient s is small and essentially independent of ;, the
difference equation (4) can be replaced by the differential equation

dp

Then

,=o J,-o s Jpo p s

Thus

s

A similar calculation gives

3.2 Diploids

In the diploid case, the integral approximation to the viability equation is

~f f w(x,y)fA(x,y)dxdy,
Jy-0 Jx-0
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while the approximation for the selection equation is

«(p) - ^ f f »<•*> y)(pp - l)irf^x> y)+«T/*(*.
V Jy^o Jx_o \ ay ox

where fA(x, y) is the density of a bivariate normal random variable with mean and
covariance matrix equal to that of A.

If h is a measure of dominance in diploids, it is natural to assume that fitness is
a function of the quantity 2Z, where Z = X + hY. The factor of 2 is unnecessary,
but natural, so that, in the case of no dominance (h = \), 2Z is exactly the
number of inferior alleles. This means that there is a function <o such that, for
every (x, y) pair, a>(2z) = w(x, y), where z=x + hy. If this is the case, it is
possible to reduce the selection and viability integrals to one dimension. The
results are

j [ ( ^ ) z (9)
and

where \i and a2 are the mean and variance of Z. Note that, from this point on,
expressions involving (o refer to diploid populations while expressions involving w
as a function of a single variable refer to haploids.

We must calculate /i and o. Let Cj'l be the ith component of Cy k and let Dj k be
C$1 + hCfl Then

*-iy-o

Thus

l-o i-o

where E denotes the expected value or mean. Similarly,

/-o

Let

' 2[(2p,-l)h + q,]'
so that, when h = \, Sj = ut. The slow selection approximation to the difference
equation is now

¥; = 2[(2p-l)h+q\spq.
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To a good approximation,

where

(11)

°l-h+p<@h-l))

if h =t 0 or 1. In the case of total dominance of the inferior allele, h = 1 and

Po Po
which is very large for small p0. At the other extreme, if h = 0, the result reduces
to / = log (1/po)- If h = \, then / = 2 log (l/p0)- The important quantity / is
plotted as a function of /t for p0 = e~10 in Fig. 1. Note that it blows up as complete
dominance, h = 1, is approached.

By the same method, the variance is found to be

(12)
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FIG. 1. The function l(h) for po= NT5.
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Fio. 2. The function J(h) forp0" 10"3.

where

2h(l - h) log

' P o ) =

-po)[3 +po(2h - 1)]

if h =£0 or \. Since p0 is likely to be extremely small, this is approximately

2 A - 1

which is plotted in Fig. 2. Note that / is not very sensitive to h, unlike / above.
For h = | , the formula does not apply, but it is easy to verify that J{{, Po) =
1 - p 0 . For h = 0, we find that / is \(\ -po)(3 -p 0 ) -

4. Hard, soft, and rank selection

The terms 'hard' and 'soft' selection were coined by Wallace (see Wallace,
1975) and have been quite popular in discussions of genetic loads. The term 'rank
selection' was used by Wills (1978) in a discussion of the segregational genetic
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load. Since these terms are used in different ways by different authors, it is best to
define our usage at the outset. Here, these terms are given precise definitions for
the haploid case. The generalization to diploidy is obvious.

The issue is what determines viability. If, in a given environment, the viability
of an individual is determined (up to a density-dependent constant factor) by n,
the number of inferior alleles it carries (without reference to other individuals in
the population), then selection is said to be hard.

If selection is hard, fitness has the form

w(n) = w(0)e-'w(")

for some positive function g and some constant e. Of course, e could be absorbed
into the function g, but we retain it for reasons which will become apparent
below. Here, w(0) = w(0, N) is allowed to depend on the population size N, but
we will not write out this dependence. If selection is not hard, it is said to be soft.

Next, we consider the case where the composition of the population determines
an individual's fitness. Suppose an individual has Z = n inferior alleles. It is
important to have a measure of how the individual stands relative to the rest of
the population. The cumulative distribution function R(n) defined by

is such a measure and R(n) will be called the individual's rank. Note that rank 0
is optimal, while the least fit possible individual has rank 1. If fitness is a function
of rank, that is, if there is a function G such that w(n) = G(R(n)), the scheme is
said to be rank selection. In such a case, G is called the viability function. Rank
selection is a special form of soft selection.

The classical example of hard selection is the law of multiplicative fitnesses,
that is, w{n) = H-(0)(1 - s)n = w(0)e~m, where e = -log (1 - s) = s. The classical
example of soft selection is the threshold or truncation rank selection model
where the most fit fraction V of the population live and the least fit fraction 1 — V
die. In this case, G(y) is 1 for y less than V, and 0 for V <y =s 1.

5. Analysis of the model

5.1 Rank selection

The integral approximation formulae have been established for large r in the
case of rank selection with h = \ in Phelps (1989). The results are stated here for
arbitrary h e [0,1], but the lengthy and technical proof will be omitted.

In order to state the result, we need to define some notation. As before, let
f(x) denote the density of an N(0,1) random variable and let F(x) be its integral,
that is,
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Let K be the constant defined by

G(F(x))f'(x)dxf
G(F(x))f(x)dx

J—oo

(13)

THEOREM 1 (Asymptotic Formulae for Rank Selection) Under any diploid rank
selection law with G(y) nonincreasing, nonconstant, and continuous almost
everywhere,

Let s+(r) = supy st(r) and s_(r) = infy Sj(r).

2. \ i (
3. l i n w o(r)2/r2 = [J(h,p0)/K]2,
4. U2

The first part shows that st is essentially independent of;. The second part says
that r is proportional to Us, so arbitrarily rapid substitution is possible if 5 is
made sufficiently small. The third and fourth parts give asymptotic expressions for
the mean and variance of the number of inferior alleles.

These results can be derived from the integral approximations with

The same formulae apply in the haploid case with J = l-p0, 7 = log(l/p0)>
and the factor 2 in the denominator of the second formula omitted. Applications
of these results will be discussed in the following sections.

5.2 Hard Selection

For hard selection, the following conjecture has not yet been proved. The exact
conditions required on g are still uncertain, but the formulae should hold if g is a
polynomial with positive coefficients.

CONJECTURE 1 (Asymptotic Formulae for Hard Selection) Let g(x) be positive
and increasing on [0 , » ) , with \imz_^,g(x)/axc = 1 and Umx_^g'(x)/acx':~1 = 1
for some positive constants a and c. Let the fitness function (o{x) be given by
(o(x) = (o(0)e-'g(x). Then

2. \im^os+/eg'(2n) = 1,
3. lim^o V7a>(0)e-«s(2'l) = 1,
4. l i m ^ fis+ = \rl{h, p0),
5. Umlf^0 o

2s+ = \rJ{h, p0).

Again, the first part shows that sf is independent of/. The second part gives an
asymptotic expression for the selection coefficient which is very different from the



SUBSTITUTIONAL GENETIC LOAD 43

rank selection case. The third part gives an asymptotic expression for the average
population viability. The fourth and fifth parts give the mean and variance.

These results are suggested by the integral approximations (9) and (10) as
follows. Let v = z/[i. The viability integral becomes

In the small-e limit, fitness differences are small and so selection is weak. Thus,
is large (see (11) and (12) above), and so the function

acts like the delta-function b(v - 1). This suggests that, in the limit,

V = (o(2n) = o>(0)e-<;»(2'j)

which is part 3 in the conjecture above. An integration by parts and the same
change of variables yields

s = —

The same delta-function argument and simplification gives

s =

which is part 2 above. The formulae for the mean and the variance are just
equations (11) and (12) above.

The results for the haploid case are obtained by putting / = 1 — p0 and
/ = log (1/po) in the above, dropping the factor 2 in parts 2-5 in the conjecture,
and changing w to w.

From parts 2 and 4 above, we conclude that lime^o \I = °°. Then parts 2, 3, and
4 imply

where L = log [<u(0)/V)]. The important quantity L is the log of the ratio of the
fitness of the optimal possible individual to the average fitness of the population.
In the literature, this quantity (or sometimes the simple ratio w(0)/V) has been
called the 'substitutional genetic load'.

This is truly a remarkable formula in that the rate of substitution is
independent of e and the selection coefficient.

6. A unification of previous work

Although several different quantitative approaches to the substitutional genetic
load have been made in the literature, essentially all of them can be seen to be
special cases of either hard or rank selection applied to the integral
approximations.
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6.1 Previous Hard Selection Models

Although Haldane did not fill in the details, he implicitly assumed multiplica-
tive fitnesses, or w(x) = (0(0)6'". Kimura (1971 and many other papers)
accepted Haldane's assumptions.

With multiplicative fitnesses, g(x) = x, so (14) becomes

If the population is constant, BV = 1, so that L = log [<o(0)B]. By putting
reasonable estimates on L and pQ and making allowance for various values of h,
Haldane (in essence) used this formula to make his famous estimate that r = jfc.
It is clear that this low estimate bothered him (see Hoyle & Wickramasinghe,
1984: pp. 194-5), and the whole problem became known as 'Haldane's dilemma'
(Maynard Smith, 1968).

The substitution rate as a function of h is plotted for <u(0)/ V = 10 and p0 = 10~5

in Fig. 3. Although these parameter values are less conservative than those
chosen by Haldane, the substitution rate falls far below r = 2. As the dominance
h of the inferior allele increases, substitution grinds to a halt.
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Fio. 3. Rate of substitution as a function of dominance in hard selection with multiplicative fitnesses,
L =• log 10, and p0 = 10~3.
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Fio. 4. Rate of substitution as a function of per capita birth rate in hard selection with multiplicative
fitnesses, no dominance, and p o = 10"5.

If <u(0) = 1 and the population size is constant, then the substitution rate is a
function of the per capita birth rate. This is plotted in Fig. 4 for p0 = 1CT5. As can
be seen, high fecundity, which allows more selection, results in higher substitu-
tion rates, but not as high as r = 2.

Note that, if there were no inferior alleles, V would be eo(0). If substitution is
going on at a locus, this implies that there is an 'inferior' allele at that locus, and
so the fitness V is correspondingly reduced. It may be objected that the
favourable mutant is 'superior', while the allele it is replacing is as good as it
always was, so that there should not be a decrease in V. Yet the only way to
increase V is to increase a>(0), and, by definition, w(0) *£ 1. So, even in the
optimal case where <u(0) = 1, a substitution rate of r = 2 implies (for h =\ and
p0 = 10~4) log V = -36-8, which is an intolerably low population fitness.

Because Haldane and Kimura both used a hard selection model, it appeared
that such a reduction in fitness was a necessary consequence of the weeding out of
inferior alleles. Haldane unfortunately called this reduction 'the cost of natural
selection', while Kimura introduced the equally misleading terminology 'substitu-
tional genetic load'.

While the terminology suggests that the evolutionary process itself necessitates
a reduction in population fitness, it is actually the assumption of hard selection
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which forces the reduction. The failure to come to grips with this subtle
distinction is at the root of a lengthy controversy. See Van Valen (1963), Brues
(1964), Feller (1967), Brues (1969), Kimura & Crow (1969), Moran (1970), Nei
(1971), Felsenstein (1971), Ewens (1972), Grant & Flake (1974), and Maynard
Smith (1978) for details.

The only author who has attempted a non multiplicative fitnesses hard selection
model is O'Donald (1969). In our notation, his fitness function (for haploids) was
w(x) = 1 — ex2. This choice is, however, impossible as the fitness goes negative
for large x. O'Donald's function should be replaced by e~"\ which agrees with
his function for small x. O'Donald's model assumed that the frequency of the
superior allele at each segregating locus was a certain constant p, and so his work
is only of qualitative interest in computing possible rates of gene substitution. He
used his model to argue that evolution could be more rapid than Haldane had
suggested, while not nearly as rapid as suggested by Maynard Smith's (1968)
model, which we consider below.

The correct formula for this case (g(x) = x2 and eo(0) = 1) in diploids is

2L

I(h,p0)'

Thus, for fixed r, the load is half of what it is under multiplicative fitnesses, or,
for fixed L, the substitution rate is doubled. This halving of the load agrees with
what Kimura & Maruyama (1966) found in the mutation load.

6.2 Previous Soft Selection Models

Sved (1968) was the first to use a quantitative rank selection model to compute
possible rates of gene substitution. In our notation, his fitness as a function of
rank R is <o(2z) = G(R(z)), where G is defined by

10 ify>V.

If we let 6 = F~'(V), then K defined above in equation (13) becomes f(8)/V.
The rate of substitution is given by

r * -s \2J{h, Po)V2/'

This is plotted as a function of V for s = 001, h = \, and small p0 in Fig. 5. Note
that r = 2 is attained for V ra 0-9, which means about 10% of the population must
die selectively each generation. Thus r = 2 creates a load L of only log (1/V) =
0-10, whereas in the multiplicative fitnesses model L = 36-8!

Sved's work differs in that he assumed only a fraction H2 of the variance would
contribute to the selective process. He did this, no doubt, in order to soften the
extreme threshold implied by G. This fraction is called the heritability, and its
effect, for a given r, is to reduce the selection coefficient by a factor of I///2. In
order to work heritability into our model, we must change our interpretation of Z
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FIG. S. Rate of substitution as a function of viability in truncation selection in diploids with no
dominance and s = 0-01.

to be some sort of 'fitness potential' that has both a genetic and an environmental
component which are independent and additive. The genetic component is
assumed to be the quantity X + hY with variance o2 as computed above, while
the environmental component is assumed to have mean zero and variance VE

satisfying

A more direct way to soften the threshold behaviour is to change G, which is
done below.

Sved did not plot his version of (15) above, but he did evaluate it for several
values of V, s, and H2. Sved used his numbers to conclude that there is no upper
limit to the possible rate of gene substitution. This is now known to be the case in
any rank selection model in light of Theorem 1 above, because the substitution
rate is inversely proportional to the selection coefficient, which can be arbitrarily
small. In contrast, recall that Haldane's bound for r is independent of s.

Maynard Smith (1968) used Sved's threshold function G with V = \ in an
influential paper challenging Kimura's load argument for the neutral theory.
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However, he assumed that the superior allele at each segregating locus has
frequency p and concluded that, for a wide range of values of p, thousands of loci
could be selected for simultaneously. With the above formulae, and using
Maynard Smith's numbers (s = 001, p0 small, and V = {), we arrive at

s\n(l-p0))

for diploids.

6.3 Ewen's Work

Ewens (1972) also considered the substitutional genetic load problem and its
implications for possible gene substitution rates in a haploid population. Recall
that the definition of the load involves the fitness of the optimal possible
individual, w(0). Ewens and others noted that such an optimal individual, that is,
an individual with no unfavourable alleles, would never exist in a real population,
because P[Z = 0] is vanishingly small for realistic parameter values.

This being the case, he calculated ratio of the fitness of the most fit existing
individual to the average population fitness. If cN is the expected value of the
largest of N independent N(0,1) random variables, the most fit existing individual
in a population of size N will have about x* = fi — CN<J inferior alleles. Although
Ewens was sceptical of multiplicative fitnesses, for the sake of argument he
assumed they operated over the range of existing individuals. In effect, he chose

w(x) = H'OOe-^-*')

for all x such that \x - fi\ ^c^o . With Kimura's numbers, he computed the ratio
w(x*)/V in a haploid population to be 1-56, which is not very large at all
compared to the ratio w(0)/V ^e36"8 for the nonexistent optimal individual.

Let us now incorporate this into a load model. First, the above fitness function
is an incomplete model. An 'optimal individual' may never arise in nature, but
the mere possibility of its existence requires that it be assigned a fitness. For
example, such an individual could be created in a future laboratory, and its fitness
measured. The natural way to define w(x) for small x in a way which preserves
the emphasis of Ewens' calculations is to take w{x) = w(x*) for x «x*. If this is
assumed, L = log 1-56 and rapid evolution is shown to be possible. However, the
model is quite artificial, and therefore quite unlikely to describe reality to any
useful extent. In particular, it draws attention to the finiteness of the population
as opposed to what I suggest is the real issue, that fitness depends strongly on the
composition of the population.

Note that this modified Ewen's model is not hard selection because x — x* is
not determined by x alone.

7. New results

Given the asymptotic formulae in Section 5, several new results are immedi-
ately available.
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7.1 Epistasis in Hard Selection

Several authors (e.g. Ewens, 1979: p. 254) have pointed out that the genes do
not determine fitness independently, as in the multiplicative fitnesses model, but
that there is certainly some epistatic interaction which may reduce the load. If
g(x) = xc in hard selection, fitness falls off as the cth power of the number of
inferior alleles. This case will be called 'cth-order epistasis'. From (14) above, the
rate of substitution in a constant population of diploids is

cL

which is c times the rate Haldane found for multiphcative fitnesses. Equivalently,
L is reduced by a factor of c. Again, r is independent of the selection coefficient.

Although r is certainly increased over Haldane's estimate, it is impossible to
achieve rates of the order of r = 2 for reasonable parameter values (certainly
c < 5 in nature). It thus appears that this sort of epistasis is unlikely to resolve
Haldane's dilemma.

7.2 Linear Rank Selection

A serious objection to threshold selection models is that the function G is too
extreme. If we relax this function to a linear decay of viability with rank, we have
a class of models which will be called 'linear rank selection'. Let

G(y) = -my + b.
The constraints are 0 < m =£ b =s 1. The average population viability is

If we eliminate b, we find that V and m may be chosen independently, as long as
0 < V < 1 and m *s 2V =£ 2 - m. The selection integral is computed as follows:

f G(F(x))f(x)dx = - f G'(F(x))f\x)dx=^ f e-2dx = -^-.
J_oo J-m 2 j l J_OO 2/jt

The rate of substitution is given by

/
r =

This is plotted as a function of h in Fig. 6 with s = 0001, m = 0-2, V = 0-8, and p0

small. Note that the rate does not depend strongly upon h, as it does in hard
selection, and that substitution is most efficient when there is no dominance
(h = i). Also, in order to attain r = 2, s needs to be quite small.

For a fixed slope m, the substitution rate is maximized (selection is most
efficient) when V is minimized at V = \m. In this case, K2 = l/n. Thus, for linear
rank selection, if we think of s as being fixed, the rate of substitution cannot be
larger than

- (
)
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Fio. 6. Rate of substitution as a function of dominance in linear rank selection with m = 0-2, V = 0-8,
and J = 0 0 0 1 .

This is in contrast to the case for threshold selection where K blows up as V-»0.
Note also that this maximum for linear rank selection is exactly half the rate in
the threshold model with V = \.

For fixed viability (which is easier to measure than the slope of the supposedly
linear viability function), the rate of substitution goes like m2. This strong
dependence on the slope indicates that selection cannot be too 'gentle' if r = 2
and s = 0-01 are to be maintained. The critical value of m in order to attain r = 2
(for p0 small and h = \) is m = 7\sW. This is plotted for s = 001 and s = 0-001 in
Fig. 7.

In summary, rapid evolution is possible in linear rank selection, but realistic
rates may only be attained either by a steep slope or by taking s to be of the
order of 0001.

8. Discussion of controversial issues

8.1 Changing Population Size
A number of people have criticized Haldane's calculation on the basis that it

assumes constant population size. It is an easy matter to see how an exponentially
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Fio. 7. Slope m necessary to account for r = 2 as a function of viability in linear rank selection in
diploids with no dominance. Allowable parameter values lie below the solid lines.

growing (or decaying) population changes the substitution rate in hard selection.
If the population is growing by a factor of em each generation, BV = em, so that
the load L is log [Z?<u(0)] — m. In the case of cth-order epistasis,

_c

The only way to get rapid evolution here is to take m to be large and negative,
which implies a population collapse. Despite the arguments of Feller (1967) and
Moran (1970), we cannot escape Haldane's dilemma by including population
dynamics.

8.2 The Lag Load

The most recent paper on the substitutional genetic load is that of Kondrashov
(1984). This paper contains a (nonrigorous) proof that the variance of the number
of inferior alleles in an individual in a haploid population undergoing threshold
selection remains finite for finite r. The correct relationship is that a2 is
proportional to r2, which is the fourth part of the rank selection result above.
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Kondrashov also computes what he calls the 'lag load', but he uses such a
strange quantity to define it that it is difficult to interpret. The obvious measure of
the 'lag load' is n, the number of inferior alleles per individual when h = \. The
rank selection result above implies that fi also goes like the substitution rate
squared.

8.3 Is r Really Large?

It may be objected that the formulae for rank selection only apply in the large r
limit, while the debate is whether r is of the order of jfo or 2. However, the key
approximation is the central limit theorem, and it is quite accurate if fx is
significantly larger than a. This is the case whenever r/s is of the order of 1 or
larger. This is so in all of the above rank selection calculations.

The CLT may not be a good approximation if we really believe r < sfe and
s < 0-01, because in that case so few alleles are undergoing substitution at any
given time. However, to arrive at the conclusion that soft selection is compatible
with the 'observed' substitution rate, while hard selection is not, we only need to
use the CLT for r = 2.

8.4 Unequal Effects of the Alleles

It may be objected that the formulae in this paper depend on the assumption
that all inferior alleles have equal effect. Here (for haploids) we outline a
demonstration that this is not the case. Suppose fitness is a function of
Z — HiO/Xi, where X, is the number of inferior alleles with effect at. Let st and rt

be the selection coefficient and substitution rate, respectively, for alleles of effect
a,. Then r = £/ r,. The integral approximation for the selection coefficient s, turns
out to be a, times what it was before (see Kimura & Crow, 1978, or derive it by
our method above).

Let n, and \iz be the mean of X, and Z, respectively. The result

/i, = - log (1/po)
si

holds for all i following the method of Section 3.1.
For hard selection,

and L = e\iz as before. Then

.. _ v 8{Vz

which implies

_ ~ g(x)

exactly as in (14) above. Note that this is independent of the a,'s.
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In soft selection,

where cr| is the variance of Z. The variance a\ of X, is (following the method in
Section 3.1) found to be

for all i. Also,

These expressions imply

1-Po

which should be compared to part 2 of Theorem 1 for haploids. Again, there is a
tradeoff in that rapid substitution implies a small selection coefficient, but there is
no trouble obtaining £, rt = 2 in this model.

8.5 Nei and Competition

Many authors have equated hard selection with fitness being determined
independent of intrapopulation competition. But Nei (1971) has derived the
usual multiplicative fitnesses hard selection model while including 'competition'.

In order to sort out the role of 'competition' in hard or rank selection, it is
necessary to return to the definitions. Hard selection allows both >v(0) and B to
decrease with crowding effects, and so can be made to include a population
regulating mechanism. Crowding is certainly one form of competition, and hard
selection does not preclude it.

On the other hand, hard selection implies that, although w(n) may depend on
the quantity of the competition, it does not depend on the quality of the
competition. In order to illustrate this, consider the following thought
experiment.

Suppose that a fruit fly population consists entirely of two types of individual,
A and B, where the number of inferior alleles of a type i individual is «, and
«A< nB- Put 1000 larvae in an environment which can support only about 100
adults. Vary the proportion of type A larvae in different vials. When the flies
reach maturity, remove the (approximately) 100 survivors and compute
w(nA)/w(nB) for each vial. Hard selection demands that this quantity remains
constant, independent of the quality (fraction of type B flies) of the competition.

Thus, whether or not hard selection is compatible with 'competition' depends
on exactly what we mean by 'competition'.
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9. Does nature grade on a curve?

One of the best analogies for understanding the difference between hard and
rank selection is the difference between being graded on a fixed scale and being
graded on a curve. On a fixed scale, a student's grade is determined independ-
ently of the rest of the class. But when being graded on a curve, no score (except
for perfection) is assured of receiving a passing mark, owing to possible superior
performances by enough of the rest of the class. The question is, which scale, if
either, does nature employ?

The case against hard selection is very strong. For example, although we could
not know nA or nB in the thought experiment in Section 8 above, we certainly
could find two strains of fly, A and B, with one known to be more fit than the
other, and perform the experiment.

It would be a great surprise if the ratio turned out to be even approximately
constant. There is abundant evidence (at the phenotypic level) that survival can
depend on position in the 'peck order', so that anything approximating hard
selection is extremely implausible.

Yet, under rank selection, the entire genome interacts to determine an
individual's rank, and therefore its fitness. Surely this is unrealistic: some
components of fitness must be independent of others. This criticism of threshold
rank selection was first made by Crow (1970: p. 168). In particular, if different
parts of the genome are expressed at different stages of development, it is
impossible for genes which are expressed late in the life cycle to influence viability
at an early stage

It is fairly easy to modify the rank selection model developed here in order to
incorporate rank selection in n independent fitness components or at n sequential
stages of development. The details will be published elsewhere, but the important
point is that the substitution rate r can be made as large as we wish by decreasing
the selection coefficient s as in the rank selection models above. For a given s, the
substitution rate r turns out to be be inversely proportional to n for multi-
component linear rank selection.

A few precautionary comments about experimental input need to be made. In
order to test the rank selection model correctly, it is critical to understand that
individuals are being ranked not according to some phenotypic character, such as
size, but according to the number of inferior alleles they carry. And it is
important to note that these inferior alleles are not recent mutants waiting to be
purged from the population, but alleles which were previously fixed and are
undergoing replacement by an adaptive evolutionary process. If any experimen-
tation is possible in the laboratory, it will say much more about the mutation load
than the process of substitution. Yet even indirect information about the process
of substitution (such as the thought experiment suggested above) is undoubtedly
worth gathering.

In conclusion, hard selection as the dominant mode of natural selection in
adaptive evolution is completely untenable and must not be used to draw
conclusions about the evolutionary process. On the other hand, although simple
rank selection has unrealistic features and should not be used as the final
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resolution of Haldane's dilemma, some of its more realistic modifications, such as
n-component linear rank selection, also allow arbitrarily rapid evolution given a
small enough selection coefficient. Therefore, there is no theoretical upper bound
to the rate of gene substitution, at least not for the reasons put forth by Haldane,
and the neutral theory gains no support from load arguments.
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