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Multicomponent Rank Selection as an Alternative to Haldane's
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This paper demonstrates that multicomponent hard selection (hard selection
performed sequentially in n independent fitness components of the genome) is
incompatible with observed substitution rates. It also shows that multicomponent
rank selection permits enough differential viability to account for arbitrarily rapid
evolution. This removes a major objection to the acceptance of 'rank' or 'soft'
selection as a resolution of 'Haldane's dilemma' and provides firm grounds for
rejecting Kimura's genetic load argument for the neutral theory.
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1. Introduction

IN 1957 Haldane published a paper on the 'cost of natural selection' which
seemed to imply an extremely restrictive upper limit to the rate of gene
substitution r of about 1 substitution every 300 generations. Haldane himself was
bothered by his calculation (Hoyle & Wickramasinghe, 1984), but never
published an alternative. The problem became known as 'Haldane's dilemma'.

When protein sequence data became available, Kimura (1968) estimated that
the rate of evolution r in higher vertebrates has been of the order of 2
substitutions per generation, which contrasts sharply with Haldane's calculation.
Kimura resolved the discrepancy by proposing the neutral theory. This theory
avoids Haldane's 'cost', which Kimura called 'the substitutional genetic load', by
assuming that there is essentially no selection.

Since 1957, Haldane's calculation has been criticized by several authors. In
particular, Haldane and Kimura assumed 'multiplicative fitnesses', which means
that each locus contributes to fitness independently of the others. The most
popular and influential resolution of Haldane's dilemma (other than Kimura's
neutral theory) has been truncation selection (Sved, 1968). Recently Phelps
(1991) has generalized truncation selection to the concept of 'rank selection' and
shown that there is no theoretical bound to r under any form of rank selection.

However, under rank selection, the entire genome interacts to determine an
individual's rank and, therefore, its fitness. Surely this is unrealistic: some
components of fitness must be independent of others. This criticism of truncation
rank selection was first made by Crow (1970). In particular, if different parts of
the genome are expressed at different stages of development, it is impossible for
genes which are expressed late in the life cycle to influence viability at an early

57
© Oxford Uili»uulj Pro» 1991



5 8 F. M. PHELPS IV

stage. Another example of independent contributions to fitness must be genes
which detoxify specific poisons or confer resistance to specific diseases.

We seek a model which is intermediate between the two extremes of total
independence or total interdependence of fitness effects in the genome. The
model we derive will allow fitness to be a function of n independent components.
Practically speaking, it is impossible to determine the components or even guess
as to the size of n, but the analysis will allow us to judge how important the effect
of partial independence is in the discussion of possible rates of gene substitution.
This is the primary purpose of this paper. An additional benefit is that the
substitutional genetic load in hard selection is found to be as Haldane calculated,
with modification for the degree of epistatic interaction, even if alleles have
varying detrimental effects.

In Section 2 the definitions of hard and rank selection are reviewed and the
model equations are derived. In Section 3, the equations are analysed in the case
of multicomponent hard selection. In Section 4, rank selection in n independent
fitness components or during n sequential stages of development is discussed. In
Section 5, an up-to-date resolution of Haldane's dilemma is proposed and related
problems are discussed.

2. The model

2.1 Hard and Rank Selection

As there are differing concepts of hard and rank selection in the literature, it is
best to state our definitions clearly at the outset.

Let w denote the fitness (probability of survival to adulthood or viability) of an
individual and let x denote the number of inferior alleles it carries. If fitness is
determined (up to a constant factor) solely by x, then selection is said to be hard.

For each x, let R(x) denote the fraction of individuals in a population having
less than or equal to x inferior alleles. Then ^?(JC) is said to be the rank of an
individual with x inferior alleles. If fitness is a function of rank, that is, if there is
a function G such that w(x) = G(R(x)), then the scheme is called rank selection
and G is called the viability function.

The multicomponent generalizations of hard and rank selection are straightfor-
ward. Let x denote the vector with ith component equal to the number of inferior
alleles in the ith component of the genome. Multicomponent hard selection
means that w is determined (up to a constant factor) by x alone. Multicomponent
rank selection means that rank selection is performed in each of the components
in succession. The viability function G may depend on the component.

2.2 The Multicomponent Equations

As in essentially all other discussions of the substitutional genetic load, the
model will be deterministic. Therefore, every superior mutant will spread so that,
in a steady flux, the substitution rate r, per generation in the ith component must
equal the number of loci in the ith component at which a favourable allele
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appears each generation. To simplify the treatment, we will assume diploids with
no dominance.

Let Z be the vector, with ith component denoted ZM equal to the number of
inferior alleles in an offspring in the z'th component.

At each segregating locus, there is a favourable and an unfavourable allele. A
diploid individual can have 0, 1, or 2 copies of a certain unfavourable allele.
Assume that (in a given component) all superior alleles have the same frequency
when they first arise in the population, as well as the same effect on fitness, so
that they spread at the same rate. Then the frequency of a superior allele in the
ith component, / generations after it first appears in the population is a fixed
quantity, denoted pf\ Assuming Mendelian segregation, the probability that an
individual receives a superior allele from its mother at a locus which has been
undergoing segregation for ; generations is pf\ The same probability applies to
the allele donated paternally. For every nonnegative integer j , there are rt loci in
component i which have been segregating for j generations, giving 2r, chances to
receive an inferior allele, each with probability qf* = \ — pf>. Therefore, the
(random) number Z, of inferior alleles in component i than an offspring has
before selection is given by

*-i/=o

where Bf\ is 0 with probability pj° and 1 with probability q^°. If we assume no
linkage, the collection of random variables is independent. Note that the random
variables Bf} (k = l,...,2r,) are independent and identically distributed.

Let w(x) be the fitness (viability) of an individual for which Z=x. The set of
possible values for x is the set N", the set of vectors in R" with nonnegative
integer coordinates. By definition, the average viability of an offspring is

V= 2 w(*)P(x), (1)

where P(x) denotes the probability that the vector Z of inferior alleles is x.
To derive an equation for the selection coefficient, let V}'+) be the expected

viability given a favourable allele at the locus associated with Bfl (which means
BfX = 0), which is independent of k. Let Qf\x) be the probability that Z - Bf\e,
is x, where e, is the unit vector in the ith direction. By definition,

v}'+)= 2 "Wen*).
If N{t) is the population in generation t and B is the per capita birth rate, then

N(t)BV = N{t + 1).

The number of carriers of a superior allele which has been segregating for j
generations is N(t)Bpf> before selection and N{t)Bp)l)Vf+) or pj!>,N(t+l)
afterwards. Therefore
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With Ap}° =pf+i -pjn, these equations reduce (after conditioning on B)% to find
the relationship between P and Q}° and much simplification) to

M\ (2)
where s}° is given by

% w(x) A,Q?Xx) (3)
xefM"

and A,Glo(x) = Qf\x) - G}0(* -«/)• This is called the 'selection equation'. The
model is fully specified by equations (1), (2), and (3).

3. Approximations

Because we have sectioned the genome into n independent components, the
number of inferior alleles an offspring has in a given component is independent of
the number in any other component. Thus, we expect the distribution of Z to be
approximately multivariate normal with independent components.

We will not make a mathematically rigorous analysis of these equations, which
would include lengthy and technical proofs of the applicability of a generalized
version of the central limit theorem (CLT). Instead, we will assume that the CLT
is a good approximation if sf* is 'small' for all i and j . Also, the dependence of sj^
on / is slight and can safely be ignored in situations where the CLT applies. The
approximate selection coefficient will be denoted sw .

The application of the CLT will be to approximate the selection and viability
equations, (3) and (1), by integrals involving the density function for a normally
distributed random variable.

The assumption of slow selection also allows us to estimate the mean n, and
variance of of Z,. Because the Bf\ are independent,

| £ B$) = 2r, £ EBft = 2r, £ qj'\

If s(i) is small, then

where q(t) = 1 - p(t) satisfies

dr r

The result of changing variables from Mo p and integrating is

(4)

Similarly,

o?«^(l-pS°)- (5)

We will assume that p$ is independent of i and so will denote it by p0.
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4. MnHkomponent hard selection

The goal of this section is to compute the rate of substitution in a large class of
multicomponent hard selection models.

Let ft and a2 denote the vectors with ith component fi, and of, respectively.
Let x, denote the ith component of x. Suppose that fitness is given by

H>(X) =-w(0)e-*w

where g(x) is positive. If e is 0, there is no selection, so weak selection must
correspond to small e. Although Z is a discrete random variable, we approximate
it by a continuous multivariate normal random variable. For small e, the integral
approximation of the viability is

>v(x)/(x)dx,

where /(x) is the density function of the multivariate normal distribution

If we make the change of variables y,\i, = xh the viability integral becomes

(2*)-n/2(n A W ) f exp [-eg(niyi,..., finyn)] f\ exp [-\D%y, - if] dy,

where D, = \ijoi. For slow selection, D, is approximately

which is large for fixed r, and small s(0. As D, goes to infinity, the function

approaches b(yt — 1). Thus, the viability is given approximately by

V = w(0)e-*B(*).

The difference &,qf\x) can be approximated by the derivative (d/dxt)f(x). The
integral approximation to the selection equation is then

v ' dx,' —

If the right-hand side is integrated by parts (the boundary terms are negligible for
D, large), we have

|£(xMx)/(x)dx.
. dx,
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By the same change of variables and delta-function argument,

dx,

which simplifies to

Let L = log [^(0)/^], so that L = eg(fi). The quantity L, the log of the ratio of
the fitness of an 'optimal' individual to the population average, is known as the
'substitutional genetic load' in the literature.

Let us now consider a broad class of fitness functions. Suppose g is of the form

Here the vector a = (alt...,an) must have positive components, m is any positive
real number, and c is a positive number known as the 'order of epistatic
interaction'.

Let the number A be defined by

The formula for sw and some computation shows that

If we sum this equation over /, use (4), and rearrange, we obtain

Lc
r~21og(l/p0>'

(6)

where r = £/r, is the total substitution rate. This is a very interesting formula in
that it agrees with the single component formula (Phelps, 1991) for cth-order
epistasis independently of s(l), e, a, m, and n\ Thus, the rate of substitution in
hard selection with fitness functions of this quite general form is not affected by
the presence of components, differing effects of the alleles, or the variable m.
What is important is the order of epistatic interaction c, and r is directly
proportional to c.

As for Kimura's argument for the neutral theory, the presence of components
does not help hard selection explain a rate of substitution of the order of r = 2,
which cannot be achieved in (6) above for realistic parameter values.

5. Mnlticomponent rank selection

Suppose that selection operates by performing rank selection on each of the n
components in succession. Let G, denote the viability function for the ith
component and let /?;(/n,) denote the rank in the ith component of an individual
with m; inferior alleles in the ith component. The fitness of an individual with
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Z = m is then

w(m) =

while the viability is

V= 2

Again we note that the components of Z form an independent collection of
random variables. Therefore

mi]. (7)

This enables us to factor the equation for V as follows:

/—I m,=0

Let V, be defined by
CD

m,-0

so that V = IX"_i Vj. Because of the independence of the components, the order of
the sequential selection does not affect V. In fact, we can consider selection to
operate in all components at a single instant according to this formula.

The integral approximation to Vt is

V,= f G,(F(x))f(x)dx,
J—<x>

where F and / a re the cumulative distribution and density functions of an N(0,1)
random variable.

The equation for the /th selection coefficient is

(

If we write out AtQf\m) in terms of probabilities, and use independence to
factor those probabilities as in (7) above, we have a product summed over n
indices. If we then pull all factors independent of m, out of the sum over m,, we
find that what is left sums to V,. Continue this procedure to arrive at

s)l)V, = £ G,(/?,(/n,))(P[Z.- - Bft = m,] - P[Z, - B)'\ = mt- 1]).
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We^note that Z, is distributed approximately N(ft, of) so that Ri(mt) is nearly
F((m, - f t ) /a , ) . The difference can be approximated by a derivative:

P[Z, - Bf\ = m,] - P[Z, - B)'\ = m, - 1 ]

1 Jmt - ft + flj'h 1 /mf - fr + B),f> 1 \
o, \ a, I Oi \ a, o,/

j a,

for large ay. These approximations lead to

Because sj'^ is nearly independent of ;, it will be denoted simply by
Let

xmi = (mi-ni)lai and Ax = l/o,.

Then

The integral approximation is

f ( ) f ' ( i ) d « . (8)

The estimates for ft and O/ are as before. Let K, be the ratio of the two
integrals

f G,(F(x))f(x)iix

TTien, from (8), we have

Using (5) above and solving for r,, this becomes

K2

To find r, we sum over i:

" K2
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This is a fundamental equation for the rate of substitution in a rank selection
model with components. Recall that, in hard selection, r{ was found to be
independent of sw , but here r( is inversely proportional to sw .

Note that G, uniquely determines the value of Kt. Therefore, in order to
determine r, we must know each of the n selection coefficients sw and each of the
n viability functions Gh Of course, there is no hope of obtaining such data (or
even identifying the components) in the near future, but this entire investigation
is an attempt to determine what substitution rates are theoretically possible. In
the following subsections, we will consider plausible choices of the unknowns.

5.1 Sequential Threshold Selection

Threshold or 'truncation' selection has a long history in the literature of
population genetics and has applications to artificial selection in breeding
programmes. The viability function for truncation selection is

From the definition of Kt,

v _f(F-\V,j)

Thus, we can think of Kj as a function of the parameter Vt. Let the function H be
defined on (0,1) by

Let us assume the selection coefficients sw are all equal to s.
A question of major interest is how the n-component model compares to the

one-component model. In the one-component model,

while, in the n-component model,

r = ,,, 1.^$H(Vl).

In order to make a fair comparison, both models should have the same viability,
so that

V = f[V,

The easiest case to analyse is the one where V, = VUn for every i. In this case, let
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rn(V) be the rate of substitution in an n-component model. Then

2(1 -
H(VVn).

It is important to observe that, even in multicomponent selection, the substitution
rate is inversely proportional to the selection coefficient. This means that any rate
of substitution can be achieved if s is small enough. The quantity rn(V) with
s = 001 and p0 small is plotted for various values of n in Fig. 1. Note that, even
with n = 100, it is possible to achieve Kimura's estimated rate r = 2 with roughly
50% mortality. Multicomponent threshold selection is seen to be less efficient
than single-component threshold selection, but r = 2 is still attainable for 5 = 001
and fairly realistic viability. Furthermore, the selection coefficient may be much
less than 0-01, which makes r = 2 even less of a problem.

Let pn(V) be the ratio rjrx. For sequential threshold selection,

nH(VVn)
H(V) '

This function is plotted in Figs. 2 and 3. It is interesting to note that, for n = 100
and a wide range of viabilities, sequential threshold selection is about 5-10% as
efficient as single-component threshold selection.

It is important to know how pn(x) behaves for large n. This is partially
answered in the next two lemmas.

LEMMA 1 For all x e (0,1), lim^^, npn{x) = °°.

Proof. Let

f{F~\x))
x

n=5
n =i0
n=50
n=100

0.7 0.8
Viability, V

FIG. 1. Substitution rate in n-component sequential truncation selection with s = 0-01 and p0 small.
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FIG. 2. Efficiency of n-component sequential truncation selection relative to simple truncation
selection for small n.

Then

Now

npn(x)->°°.

n=20

n=50
n=100

0.2 0.4 0.6 0.8 1.0

Viability, V

FIG. 3. Efficiency of n-component sequential truncation selection relative to simple truncation
selection for large n.
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The second factor goes to one and so can be ignored. If we apply l'Hdpital's rule
and the properties of the functions F and /, we find that

Since logo: is negative and xUn-*l, the right-hand side goes to +°°. •

This result is useful in proving the next lemma.

LEMMA 2 / / c < 1, then, forallxe(0,1), lim,,_*» ncpn(x) = 0.

Proof. Let

Then
<*n(x)^0 O ncpn(x)->0.

Now

where /? = i( l + c) < 1. As in the previous lemma, the second factor goes to one
and so can be ignored. By l'Hdpital's rule,

F"I(x1/")
Urn an(x) = -(logx) lim o ,_„ .

fin*

Both the numerator and the denominator go to °°, so we apply l'Hdpital's rule
again:

. : _ ^ (log*)2

(logx)2 /,, J
U2L

Since /J < 1, the first limit on the right-hand side goes to zero. The second limit
goes to zero by the previous lemma. •

These lemmas show that, for large n, the substitution rate decays slightly less
rapidly than the function l/n.

5.2 Sequential Linear Rank Selection

It may be objected that truncation selection is too extreme to be put forth as a
model of natural selection. It is therefore necessary to investigate the behaviour
of linear rank selection models with n components. Consider the general linear
viability function

G() = b,- m,y.
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For a fixed viability Vlt substitution is most rapid when the absolute value of the
slope m, is maximized, which is when bt = \. (It should be intuitively clear that,
when b < 1, there is a 1 — ft, probability that a given individual will not be viable
in addition to the differential viability due to the slope —mit so that not all of the
deaths contribute to directional selection.) Therefore, for a fair comparison, let
us assume ft, = 1 which implies m, = 2(1 — V,). A simple calculation gives

r,= ( ')
~Po)si0 \ V, I '

Suppose that s(0 = s for all i. Then

r = v,
Again, let us assume that V, = VUn for all i. If rn(V) and pn(V) are defined as in
the previous section, then

and

(V\=

( 1

-

The substitution rate with s = 0-01 and p0 small is plotted in Figs. 4 and 5. In Fig.
4, we see that the existence of components greatly reduces the efficiency of the
substitution process. If n is larger, Fig. 5 indicates that the reduction is quite

3.0 r-

0.75 0.80 0.85 0.90 0.95

Viability, V
FIG. 4. Comparison of substitution rates in sequential linear rank selection with s = 0-01 and p0 small
for n = 1 and n = 5.
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5 r .
n=5

0.2 0.4 0.6 0.8

Viability, V

1.0

FIG. 5. Substitution rate in n-component sequential linear rank selection with s = 0-01 and p 0 small.

severe. If n = 100 and s = 0-01, it is quite unlikely that r = 2 because that would
require well over 90% mortality due to directional (as opposed to purifying or
balancing) selection each generation. This is the first indication that r = 2 may be
difficult to achieve in a rank selection model and suggests that the 'average value'
of s is unlikely to be as large as 001 in nature.

In Fig. 6, pn(x) is plotted. The behaviour is quite different from the truncation

1.2r

1.0

0.4

0.2

0.8

^ 0.6

- n=1
n=2
n=4
n=10

/

0.2 0.4 0.6 0.8

Viability, V

1.0

FIG. 6. Efficiency of sequential linear rank selection with n components relative to simple linear rank
selection.
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selection case. It is also true that the decay in efficiency is more rapid than in the
threshold case. This is the content of the next lemma.

LEMMA 3 For every V e (0 ,1),

Proof. As in the previous section, let an = (npn)^. Then

V /l — VUn\
lim an(y) = ——Um — lim
n—»<» 1 — V n—«° \ n I n—••»

Apply l'Hdpital's rule to obtain

which implies that

It is worth stressing the point that the behaviour of sequential linear rank
selection is quite different from sequential threshold selection. As this lemma
shows, the differences are qualitative, and not just quantitative. Thus it is
inappropriate to base a theory on even the qualitative behaviour of threshold
selection models, since tfoey are certainly too extreme to correspond to nature.

6. Haldane's dilemma and the neutral theory

'Haldane's dilemma' has a special place in the history of evolutionary theory as
it was one of the primary arguments leading to the neutral theory proposed by
Kimura (1968). Although this argument and the multiplicative fitnesses model on
which it is based have been in disfavour for quite some time, the most widely
quoted alternative, simple truncation selection, is unrealistic in two respects.
First, the notion of 'truncation' is too extreme, and, secondly, truncation
selection assumes that no two (or more) components of fitness are independent.
Recently (Phelps, 1991) has relaxed truncation to rank selection, thereby
removing the former objection. The present paper has shown that any
multicomponent rank selection model is consistent with arbitrarily rapid rates of
evolution because the rate r is inversely proportional to the selection coefficient.
Rank selection models are more realistic than hard selection models because
viability depends upon the quality of the competition in nature. Multicomponent
rank selection is more realistic than single-component rank selection because it
does not require the complete interdependence of the entire genome in
determining fitness. Since such realistic models are consistent with arbitrarily
rapid rates of substitution, Haldane's dilemma has been resolved. This is not an
argument against the neutral theory, but merely a rejection of Kimura's original
reason for proposing it.

A related issue is the intolerable segregational genetic load calculated by
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Lewontin & Hubby (1966). Although details of the problems differ, multicom-
ponent rank selection models surely will allow large amounts of heterozygosity to
be maintained by heterosis. Wills (1978) has already applied single-component
rank selection to this problem.

On the other hand, the application of multicomponent rank selection models to
the mutational genetic load is not as straightforward and must be approached
with caution. This is because rank selection may not apply to the weeding out of
harmful mutations.

There remain two areas for further research. One is rigorously establishing the
integral approximations used throughout this work. This was begun in Phelps
(1989). A more important question from the applied side is how the model
behaves if stochastic effects are included.
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