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Summary 

We present a model of aggressive communication that demonstrates the use of evolutionarily stable 
ambiguous threat displays. We use stochastic dynamic programming to solve a game in which two 
contestants of differing fighting abifity communicate using cost-free threats. These contestants use; 
communication strategies that supply information of varying reliability to the opponent. The results 
demonstrate that communication does not need to be either costly or unambiguous to be evolutionarily 
stable. 
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Introduction 

Current models of animal conflict rely heavily on the theory of games (Maynard Smith, 1982). 
The first theoretical analyses of animal contests made use of two games: the war of attrition 
(Maynard Smith and Parker, 1976; Bishop and Cannings, 1978) and the hawk--dove game 
(Maynard Smith and Price, 1973; Maynard Smith and Parker, 1976; Maynard Smith, 1982). The 
hawk-dove game demonstrated that contests may be resolved by conventional displays, while the 
war of attrition demonstrated the evolutionary instability of displaying information about intended 
actions. 

However, not all information exchange is necessarily communication of intent. There remains 
information about ability, for example visual (e.g. Robinson, 1985; Enquist and Jakobsson, 1986; 
Enquist et al., 1987) or auditory (e.g. Davies and Halliday, 1978) cues of body size, condition 
(e.g. Clutton-Brock and Albon, 1979) or status (e.g. Rohwer, 1977; Rohwer and Rohwer, 1978). 
Theoretical speculation was that unequally matched contestants should communicate their' 
resource holding potential (RHP (Parker, 1974) or ability to win an all-out fight (Maynard Smith, 
1979)). 

Current theoretical work on the communication of RHP revolves around Enquist and Leimar's 
(1983) sequential assessment game. Communication in this game is modelled as repeated 
updating of estimated relative fighting ability (the difference between the opponents' RHPs). The 
actor engages a reactor in a bout of some potentially risky nature and this interaction provides the 
actor with a sample of relative ability. This sample is combined with the actor's current estimate, 
producing a new information state (DeGroot, 1970; Enquist, 1984). The sequential assessment 
game is one example of a communication system that is not driven by the inherent costs of 
displays. There is widespread belief (Zahavi, 1975, 1977, 1993; Grafen, 1990) that evolutionary 
stability requires such costs. Enquist (1985) has demonstrated signalling of motivation using cost- 
free conventional signals; we present below a demonstration of the cost-free signalling of fighting 
ability. 
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Here we present a sequential threat game in which the uncertain element is placed in the 
reactor. An actor makes a threat prompting a response ('fear' or 'no fear') from the reactor. The 
actor processes information using a Bayesian updating procedure that calculates the probability of 
each possible opponent RHP level. The only stochastic element in the exchange lies in what type 
of reply the reactor produces when threatened. The probability of returning a 'fear' sample is a 
function of the threatened individual's perception of the RHP asymmetry. This function is the 
reactor's communication strategy. 

We demonstrate that while a non-communicating ESS does exist, so do several others which 
use information of intermediate clarity, being neither maximally informative nor non- 
communicating. 

The model 

Basic overview 

The model describes competition over a non-divisible resource by two strangers. We will refer to 
these players as A and B. The player acting at any given time is called 'ego', and the player not 
acting is called 'opponent'. The ego and opponent roles switch in the middle of each turn, so that 
both players move every turn. Much of the model is best understood in terms of ego and 
opponent, rather than players A and B. 

In each turn both players must choose one of the three behavioural options: quit, threaten or 
fight. Possible outcomes for each contestant are win, lose without sustaining an injury and lose 
with an injury. Losing with injury returns no fitness, uninjured losers collect a residual fitness, V r 
and winners receive the residual fitness plus the prize value, V~. 

In choosing to quit, a contestant ensures that it will lose without injury, while the opponent 
wins. By choosing to fight, a contestant attempts to take the resource and the probabilities of 
success and injury are determined as a function of the difference between ego and opponent RHP 
values. Both quit and fight are end-points, in that the contest is resolved in favour of one of the 
contestants when one of these behaviours is selected. 

Threat returns either a 'fear' or 'no fear' response from the opponent. The probability of a fear 
sample being returned is based on the opponent's assessment of the differences in fighting ability 
between the contestants. This assessment is crucial to the strategy because the estimated chances 
of winning a fight and the probability of injury, are derived from it. With each threat, the actor 
improves its assessment of the opponent's RHP. 

Stochastic dynamic programming (Mangel and Clark, 1988) is used to derive the set of optimal 
behaviours under all possible combinations of state. Forward iteration (Mangel and Clark, 1988) 
is then used to calculate the expected fitness of each RHP and role combination. 

Two versions of the model are presented. In the first model, all contestants use the same 
function for determining the probability of responding to a threat with fear. In the second, players 
use one of several possible functions for determining how to respond to threats. 

Model dynamics 
The solution proceeds through successive time intervals t = 1, 2, 3 . . .  T and terminates (if 
neither contestant has yet chosen to quit or fight) at T = 10. Contestants alternate in each time 
interval, with player A being ego first and player B second. 

Contestants are assigned an RHP state, which does not change during a contest. A player's 
state is also described by the number of times, n, that the opponent has responded to a threat with 
'fear' and, t, the number of turns elapsed. Since threat is the only non-end-point behavioural 
option, the number of 'no fear' samples must equal t - n. 
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Contestants know the present values of n and t as well as their own fighting ability (RHPe) and 
the population distribution of fighting abilities (YR/4p). The contestants do not know their 
opponent's fighting ability, R H P  o, nor do they know the number of fear samples, n o, collected by 
their opponent, but probabilistic estimation of these opponent state variables is possible. 

Decisions 

We let • e denote the fitness of ego as a function of RHPe, n, t and T (potentially confusing 
symbols are explained in Table 1). If ego's behaviour, Be, is tO quit ('Q') then a pay-off equal to 
residual fitness, V r (lose without injury) is returned, 

dPe(Raee,n,t,T, n e t  Be = 'O3 = Vr (1) 

The pay-off to a fight behaviour ( 'F) against an opponent of known RHP is 

¢e(RHPe,n,t ,T,a,B, I B e = 'F') = (1 - co(a))(Vr + rt(a)Vk) + o ( a ) .  0 (2) 

where, a is the asymmetry in RHPs, a = R H P  e - R H P  o, o3(a) is the probability of getting 
injured as a function of a, and x(a) is the probability of winning as a function of a. 

Parameter values are shown in Table 2. 
Since co and rc are both functions of a, a contestant must have an estimate of R H P  o to calculate 

the expected pay-off of fighting. The estimate is made by threatening the opponent and observing 
the response. The mechanism behind this estimation procedure is presented below (see Estimating 
opponent state). 

With increasing numbers of threats made, the accuracy of the estimates of the opponent's RHP 
increases. Since threat is not an end-point, the opponent will reply with a behaviour of it's own. 
It is necessary to know what the opponent's next behaviour, B o, will be to evaluate the threat pay-- 
off. Finding this reply is a matter of checking the opponent's optimal behaviour set for the 
opponent state (the combination of opponent's RHP,  t and n) under consideration. Ego must do 
this for each possible R H P  and n, to calculate a probability of each combination. 

If  the opponent's next move is to quit then the pay-off for threatening ('T) the opponent is 

dPe(RnPe,n,t,T,a,Be,B o I B e = 'T',B o = 'Q') = v~ + v r (3), 

If the opponent's next behaviour is fight, then the pay-off for threatening is 

d~e(RnPe,n,t,T,a,Be,B o I B e = 'T',B o = 'F') = (1 - co(a))(V r + ~(a)Vk) (4) 

If the opponent's next behaviour is threat, then the pay-off for threatening is 

d~e(RHee,n,t,T,a,Be,Bo I Be -- 'T',Bo = 'T') = Ws,(a)~e(RHee,n + 1,t + 1,T) (5) 

+ (1 - Ws,(a))Oe(RnPe,n,t + 1,7) 

where ~ is ego's estimated probability of the opponent responding with 'fear' to a threat, as a 
function of a. 

The f e a r  - no f e a r  mechanism 

The parameter S is used to track which • function an individual is playing. Players cannot 
change their ~P strategy, while S is treated as a state variable for computational puposes, it is not 
dynamic. ~s~ is ego's ~ and ~Pso is the opponent's. All Ws (a) functions are linear, differ in slope 
and are given by 
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Table 2. Parameter values used 

R a P  YRHP a It(a) tO(a) Wl(a) 

1 0 . 1  ~ 0.1 0.3 0.1 
2 0.2 -3 0.2 0.25 0.2 
3 0.4 ~ 0.3 0.2 0.3 
4 0.2 -1 0.4 0.2 0.4 
5 0.1 0 0.5 0.15 0.5 
- - 1 0.6 0.1 0.6 
- - 2 0.7 0.05 0.7 
- - 3 0.8 0.02 0.8 
- - 4 0 . 9  0 , 0 1  0 . 9  

Y is the population distribution of RHPs, a is RHP asymmetry 
(RHP~- RHPo), r~(a) is the probability of winning a fight, to(a) is 
the probability of injury in a fight, %(a)  is the probability that the 
opponent returns a fear sample, ~l(a)  is that used in the simple 
model. V, was 0.333 and Vk was 0.667, meaning that the maximum 
fitness was 1.0. 
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Figure 1. Strategy sets, ~,(a) functions. Pr. "Fear" is the probability that the opponent will return a 'fear' 
sample as a function of the asymmetry. The asymmetry is RHP e - R H P  o. Note that the simple model used 
~1 exclusively. 

( S_..S._. + a + RHPma ~ - 1 ) ( 0 . 1  
Ws(a) = 2Sma x 

0.](s - 
Smax 1)) (6) 

where Sma x is the number of strategies available, five. 
Functions with a low slope are less reliable indicators of  RHP (see Fig. 1). Thus, strategy 1, 

Wt (a), is the most informative and strategy 5, W 5 (a), is the least informative. The W function 
used in the simple model was (W 1 (a)). 
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Estimating opponent state 
Estimation of the pay-offs to the fight and threat options requires that the actor have an estimate 
of RHPo and n o. Pay-offs for each opponent state are weighted by the estimated probability that 
the opponent is actually of that state. The Bayesian updating function (DeGroot, 1970) gives the 
probability that the opponent has a given RHP level conditioned on t and the number of samples 
returned, 

Y(RHPo)(~)°dse(a)"(1 - Ws,(a)) t-È 
Pr(RHPo It, n) = 

RHPmax 
• t r~ 

Y(O(n)°ds,(RHPe_i) (1 - °ds,(RHPe_i) t-" 
RnP,~, (7) 

Y(RHP), the actual population distribution of RHP, serves as the prior. The probability that the 
opponent has received a given number of samples is 

Pr(n o It ,  a)=(tno)t~s,(a)no(1 _ tgs,(a))t_no 
(8) 

The dynamic programming equation 
Combining Equations 2 and 7 gives the expected pay-off of a fight against an opponent of 
uncertain RHP, 

RHPm~x 

dPe(RHPe,n,t,T,B e I Be = 'F) = E Pr(RHPo)dP~(RHPe,n,t,T,a,B~ [B e = 'F') (9) 
RHPo = t 

Similarly, the expected pay-off to threatening an opponent is 

¢~e(RHPe,n,t,T, Be I B e = 'T' = 

RHPi ?~max 

~, Pr(RHPo) ]~ Pr(no)dPe(RHPe,n,t,T, Be,Bo I Be = 'T) (10) 
RHPo = 1 no = 1 

where nma x is t if ego is 'A' and t × 1 if ego is 'B' (see Table 1). The fitness to ego is thus 

~e(RHPe,n,t,T) = max { dP e(RHPe,n,t,T, B e) ) 
B~ 

(11) 

Equation 11 provides a solution set of optimal behaviours B(n,t) for each combination of Ws~ 
and WSo, for players A and B. Implementing the equation for all s,, tPso yields a Bse(n,t, Ws,, Wso) 
for each player. Backward iterations use ego's strategy, tPs, to generate the optimal behaviour 
matrix (e.g. Fig. 2) and the forward iterations use the opponent strategy, t~So, to calculate: 
fitness. 

Initialization 

Equation 5 (and, thus, Equations 10 and 11 also) requires fitnesses at T to be specified before it 
can be used to calculate fitnesses at earlier times• These end conditions are calculated using 
modified versions of the equations above since the rules change slightly at the end of the game. 
Player B cannot threaten on the very last move of the game and player A's move at T is made: 
with the knowledge that B will not play threat next. The end conditions are given below. 

For player B, 



228 

where 

~n(RHPB,n,T,T ) = max { ~B(RHPB,n,T,T, BB) } 
Bs 

B s is one of Q or F. For player A, 

Hurd and Ydenberg 

(12) 

where 

dPA(RHPA,n,t,T ) = 

B a can be any of 

max { dPA(RI-IPA,n,T,T, BA) } 
Ba 

Q, T or F and 

(13) 

dPA(RHPA,n,T,T,B A [B  A = 'T3 = 

RHPmax T 

]~ Pr(RHPB) ]~ Pr(nB)dPe(RHPe,n,T,T, BA,BB I B e = 'T) (14) 
RHPz = 1 nz = 0 

where B 8 is one of  Q or F. 

Calculating fitness 

A weighted mean of all possible outcomes was calculated to obtain the expected fitness of each 
strategy. 

The probability of each possible outcome was calculated for each (t, n) state. As end-points 
were reached, the pay-offs were weighted by the transition densities (Mangel and Clark, 1988) of 
the states in which they were reached, 

T t 

Z Y_.2(t,n [ Uso,USo) x 
t n 

W(Us e ] R,RHPe,USo) = 

¢ 

V r if B e is Q (15) 
V r +  V k 

i f B ~ i s T a n d B  ois  Q 
Z E (1 - o)(a)V~ × rc(a)V k 

RHPo no 

if B e is T a n d B  o is F 
(1 - o3(a))V~ × x(a)V k i f  B e is F 

where the transition density, P(t, n [ Uso), is 

P(t,n ] USo) = P(t  - 1,n I USo)(1 - us o) ]Be = 'T3 ~, ]~ Pr(RHPo)Pr(no) I no = 'T' 
sue, no (16) 

+ P ( t -  1,n - 1 I Uo)(U o) I B e = 'r3 • ~,Pr(RHPo)Pr(no) [Bo = 'T' 
RHPo no 

This produces a fitness function W(Us, I R, RHP e, USo) function, where R is role, either A or 
B. 

Calculating ESSs 

Evolutionarily stable strategy (ESS) profiles (a matching pair of Us, and UsB) can be determined 
from the W(Us, ] R, RHP e, Uso) function. All RHP classes of an A or B population are assumed 
to play the same strategy. The best reply, Use, to any opponent strategy is, 

RHPmax 

U*s~ = max{ ]~ Y(i)W(Wj, [R,RHPe,WSo) } (17) 
Sj ,  i = 1  

We recursively calculated the best replies to opponent strategies, the last iteration U*s, 
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becomes U~So for the next iteration and R alternates between A and B. The iterations stop when a 
pair of  WsA and WSB are found that are best replies to each other. We calculated ten such ESSs, 
one starting from each of the possible player strategies. Many of the equilibrium points were 
common to different starting points. Since the game is asymmetrical, mixed ESSs cannot occur 
(Selton, 1980). 

Results 

Simple model 

Sample strategy sets for the basic model are shown in Fig. 2. Early in the contest, the optimal 
behaviour is threaten, until sufficient threats are made and the optimal behaviour then becomes 
quit or fight. 

The resulting fitnesses for the simple model are shown in Table 3. 

n 

t t t 

i ] 
Fight 

Quit 

~--------'--~ Threoten 

Figure 2. Sample behaviour sets. Some sample excerpts from player B's B e function from the simple 
model. 

Table 3. Expected fitnesses for the simple model 

Contestant A Contestant B 

RHP Fitness RHP Fitness 

1 0.628 (0.669) 1 0.694 (0.760) 
2 0.605 (0.718) 2 0.695 (0.763) 
3 0.644 (0.766) 3 0.725 (0.766) 
4 0.696 (0.823) 4 0.781 (0.770) 
5 0.829 (0.908) 5 0.849 (0.803) 

Expected fitnesses for each contestant and RHP~ combination. With the 
exception of A at RHP = 2 fitnesses increased with RHP. Numbers in 
brackets are expected fitness as calculated during the backward iterations. 
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Table 4. Excewt from the W(R, RHPe, Ws, ~ )  ~nction 

Vs. 

~Sa ~1 ~2 ~3 ~4 ~5 
~1 0.6949 0.7086 0.7026 0.7025 0.6514 
W2 0.7145 0.7111 0.7042 0.7052 0.6658 
~3 0.7149 0.6997 0.6508 0.6868 0.6900 
qs 4 0.6886 0.7093 0.6453 0.6490 0.6140 
~5 0.6538 0.6887 0.6960 0.7076 0.6670 

This table shows the expected fitnesses for W(B, 3, Wso, q?s,). Maximally informative 
communication occurs in the top left cell at (S A = 1, S B = 1), while no 
communication occurs in the bottom right comer (S a = 5, S B = 5). 

Hurd and Ydenberg 

Table 5. Expected fitnesses at ESS 

Strategy A at ESS Strategy B at 
(WsA) ESS (Ws,) 

Expected Expected 
fitness A fitness B 

2 2 0.6696 0.7479 
3 2 0.6983 0.7419 
4 4 0.7743 0.7437 
5 1 0.7403 0.7496 

Weighted mean expected fitness (collapsed across RHP) for populations A, and 
B at the four ESS profiles. 

Individuals with a higher RHP achieved higher fitness. The exception seen when RHP = 2 for 
contestant A is a product of  retaining opponents who have passed their behavioural end-points in 
the backward iteration algorithm. Notice that the expected fitnesses from the backward iterations 
(in brackets) all increase with RHP. First-moving players (A) scored slightly higher fitnesses than 
second-moving players (B) of the same RHP, but this may also be an artefact of the forward 
iteration effect, since it differs from the trend seen in the backward iteration results. 

Variable strategy model 

A sample of  W(R, RHPe, Wse, ~tlSo) is shown in Table 4. Maximum expected fitnesses were gained 
under conditions of partial information exchange, in this case when A plays W2 and B plays Wr 
The strategies are highly sensitive to opponent behaviour. Just because player X gains the highest 
fitness playing strategy I against player Y playing strategy J doesn't  imply anything at all about 
the wisdom of X playing I against Y playing any non-J strategy. The fitnesses in the diagonals, 
WSA = ~S: are not particularly good and fitnesses in the comer cells (maximally clear 
information versus maximally clear information and total ambiguity versus total ambiguity), are 
poor. This means that simple mutual strategies of  equal quality information exchange are not, by 
and large, communication equilibria. 

Calculating ESSs 
ESSs profiles were (2,2), (3,2) (4,4) and (5,1), where numbered pairs are (WsA, Ws,) (Table 5). 
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Conclusion 

The existence of ESS profiles of (2,2) (3,2) and (4,4) for the variable strategy model means that 
exchange of information can be evolutionarily stable. The (5,1) stable profile for the variable 
strategy game demonstrates that this is not universally the case. Those cases in which 
communication was an optimal strategy, did not use the clearest form of communication possible, 
but provided fairly ambiguous, but on average valid, information, which seemed the best 
strategy. 

Thus, the model demonstrates evolutionarily stable ambiguous communication of fighting 
ability without inherently costly or perfectly reliable signals. 
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