Inferior Olivary Neurons Innervate Multiple Zones of the Flocculus in Pigeons (Columba livia)

JANELLE M.P. PAKAN,1 KATHRYN G. TODD,1,3 ANGELA P. NGUYEN,1 IAN R. WINSHIP,1,4 PETER L. HURD,4 LAUREN L. JANTZIE,2,3 AND DOUGLAS R.W. WYLIE1,4*

1Division of Neuroscience, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
2Neurochemical Research Unit, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
3Department of Psychiatry, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
4Department of Psychology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada

ABSTRACT

Complex spike activity of floccular Purkinje cells responds to patterns of rotational optic flow about the vertical axis (rVA neurons) or a horizontal axis 45° to the midline (rH45 neurons). The pigeon flocculus is organized into four parasagittal zones: two rVA zones (zones 0 and 2) interdigitated with two rH45 zones (zones 1 and 3). Climbing fiber input to the rVA and rH45 zones arises in the caudal and rostral regions of the medial column of the inferior olive (mcIO), respectively. To determine whether the two rVA zones and the two rH45 zones receive input from different areas of the caudal and rostral mcIO and whether individual neurons project to both zones of the same rotational preference, different colors of fluorescent retrograde tracer were injected into the two rVA or two rH45 zones. For the rVA injections, retrogradely labeled cells from the two zones were intermingled in the caudal mcIO, but the distribution of cells labeled from zone 0 was slightly caudal to that from zone 2. On average, 18% of neurons were double labeled. For the rH45 injections, cells retrogradely labeled from the two zones were intermingled in the rostral mcIO, but the distribution of cells labeled from zone 1 was slightly rostral to that from zone 3. On average, 22% of neurons were double labeled. In sum, each of the two rVA zones and the two rH45 zones receives input from slightly different regions of the mcIO, and about 20% of the neurons project to both zones. J. Comp. Neurol. 486:159–168, 2005. © 2005 Wiley-Liss, Inc.

Indexing terms: optokinetic; optic flow; vestibulocerebellum; climbing fibers; cholera toxin subunit B; fluorescent tracers

The flocculus of the vestibulocerebellum is involved in the control of gaze stabilization. The complex spike activity (CSA) of floccular Purkinje cells responds best to patterns of optic flow that result from self-rotation about one of two axes in three-dimensional space: either the vertical axis or a horizontal axis oriented at 45° contralateral azimuth/135° ipsilateral azimuth (Simpson et al., 1981; Graf et al., 1988; Wylie and Frost, 1993). We refer to these two response types as rVA and rH45 neurons, respectively (Winship and Wylie, 2003; Wylie et al., 2003; Voogd and Wylie, 2004). These response types were first shown in rabbits by Simpson, Graf, and colleagues (Simpson et al., 1981, 1988a,b, 1989a,b; Graf et al., 1988; see also Leonard et al., 1988), who emphasized that the rotational optokinetic system is organized with respect to a three-axis reference frame that is common to the vestibular canals and the eye muscles (Simpson and Graf, 1981, 1985; Ezure and Graf, 1984; Graf et al., 1988; Leonard et al., 1988; Simpson et al., 1988a,b, 1989a,b;...
In several species, it has been shown that the rVA and rH45 cells are organized into interdigitated parasagittal zones. The order of the zones in the pigeon flocculus is shown in Figure 1. There are four parasagittal zones: two rVA zones and two rH45 zones. The caudomedial most zone is an rVA zone, zone 0. This is followed successively by rH45 zone 1, rVA zone 2, and finally the rostrolateral most zone 3, an rH45 zone. These correspond to zones 0–3 of the rat cerebellum (Sugihara et al., 2004; Voogd and Wylie, 2004; see Discussion). The climbing fiber (CF) input to the rVA and rH45 zones arises in the caudal and rostral regions of the medial column of the inferior olive (mcIO), respectively (Wylie et al., 1999; Winship and Wylie, 2003). In the present study, we used fluorescent retrograde tracers to investigate the CF input to the zones of the pigeon flocculus. We had three aims: 1) to determine whether the two different rVA zones receive input from different areas of the caudal mcIO; 2) to determine whether the two different rH45 zones receive input from different areas of the rostral mcIO; and 3) to assess whether individual olivary neurons project to both rVA zones or both rH45 zones.

MATERIALS AND METHODS

The methods reported herein conformed to the guidelines established by the Canadian Council on Animal Care and were approved by the Biosciences Animal Care and Policy Committee at the University of Alberta. Silver king and homing pigeons, obtained from a local supplier, were anesthetized by intramuscular injection of a ketamine (65 mg/kg)/xylazine (8 mg/kg) cocktail. Supplemental doses were administered as necessary. Animals were placed in a stereotaxic device with pigeon ear bars and a beak bar adapter so that the orientation of the skull conformed to the atlas of Karten and Hodos (1967). To access the flocculus, the bone surrounding the semicircular canals was removed, because the dorsal surface of the flocculus (folium IXcd) lies within the radius of the anterior semicircular canal. This exposure allows easy access to the two rVA zones (zones 0 and 2) and the two rH45 zones (zone 1 and 3). The dura was removed, and a glass micropipette (4–5 μm tip diameter) containing 2 M NaCl was advanced into the flocculus with a hydraulic microdrive (Fredrick

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au</td>
<td>auricle</td>
</tr>
<tr>
<td>Chl</td>
<td>lateral cerebellar nucleus</td>
</tr>
<tr>
<td>dl</td>
<td>dorsal lamella of the inferior olive</td>
</tr>
<tr>
<td>IO</td>
<td>inferior olive</td>
</tr>
<tr>
<td>mcIO</td>
<td>medial column of the inferior olive</td>
</tr>
<tr>
<td>MLP</td>
<td>medial longitudinal fasciculus</td>
</tr>
<tr>
<td>R</td>
<td>raphe</td>
</tr>
<tr>
<td>VeM</td>
<td>medial vestibular nucleus</td>
</tr>
<tr>
<td>vl</td>
<td>ventral lamella of the inferior olive</td>
</tr>
<tr>
<td>IX</td>
<td>folium IX</td>
</tr>
<tr>
<td>X</td>
<td>folium X</td>
</tr>
<tr>
<td>XII</td>
<td>hypoglossal nerve</td>
</tr>
</tbody>
</table>
OLIVARY PROJECTIONS TO THE PIGEON FLOCCULUS

Haer & Co.) in order to make extracellular recordings of Purkinje cell CSA. The optic flow preference of isolated CSA was identified by moving a large hand-held stimulus (90° x 90°) in various areas of the visual field. rVA and rH45 neurons are easily distinguished with this procedure: rVA neurons respond best to forward (temporal to nasal) motion in the ipsilateral eye and backward motion in the contralateral eye, whereas rH45 neurons prefer upward motion in the ipsilateral visual field and the anterior quadrant of the contralateral visual field and downward motion in the posterior three quarters of the contralateral visual field (Simpson et al., 1981; Graf et al., 1988; Wylie and Frost, 1993; Winship and Wylie, 2001). Several penetrations were made to map out the locations of zones. Subsequently, the recording electrode was replaced with a micropipette (20 μm tip diameter) containing 1% cholera toxin subunit-B (CTB)-AlexaFluor 488 or 594 conjugate (Molecular Probes, Eugene, OR), except for case rH45-4, in which green and red fluorescent latex microspheres (LumaFluor Corp., Naples, FL) were used as retrograde tracers. The CTB-AlexaFluor 488 conjugate appears green under the fluorescein isothiocyanate (FITC) filter and will be referred to as CTB-green. The CTB-AlexaFluor 594 conjugate appears red under the Texas red filter and will be referred to as CTB-red. The red and green latex microspheres fluoresce under rhodamine and FITC filters, respectively. In five of the cases in which the CTB conjugates were used (rVA-1–3 and rH45-1 and -2) the solution was iontophoretically injected (+4 μA, 7 seconds on/7 seconds off) for 30 minutes. Immediately prior to the injection, the CSA was recorded again with the injection pipette to verify the cell type. In cases rVA-4, rH45-3, and rH45-4, the tracers were pressure injected with a Picospritzer II (General Valve Corporation; 40 psi, 100 msec duration/puff). After injection, the electrode was undisturbed for 5–10 minutes. After surgery, the craniotomy was filled with bone wax and the wound sutured. Birds were given an intramuscular injection of buprenorphine (0.012 mg/kg) as an analgesic. After a recovery period of 2-5 days, the animals were deeply anesthetized with sodium pentobarbital (100 mg/kg) and immediately perfused with heparinized phosphate-buffered saline (PBS; 0.9% NaCl, 1 ml/100 ml heparin, 0.1 M phosphate buffer). The brains were extracted and then flash frozen in 2-methylbutane and stored at – 80°C temperature, then incubated in goat anticholeragenoid (rVA) and rabbit anticholeragenoid (rH45) serum 1:1000 and 0.4% Triton X-100 in PBS for 20 hours at 4°C temperature or ExtrAvidin (Sigma, St. Louis, MO; 1:1,000) and 0.4% Triton X-100 in PBS for 90 minutes at room temperature. Sections were then stained with metal-enhanced 3,3'-diaminobenzidine tetrahydrochloride tablets (DAB; Sigma) for 1–5 minutes.

Sections were viewed with a compound light microscope (Olympus Research Microscope BX60) equipped with the appropriate fluorescence filters (Texas red and FITC filters for the CTB-AlexaFluor, rhodamine and FITC for the latex microspheres). Images were obtained with a digital camera (Media Cybernetics CoolSnap-Pro color digital camera) and Adobe Photoshop software was used to compensate for brightness and contrast.

Nomenclature: rostral vs. caudal mcIO

The pigeon IO has been divided into ventral and dorsal lamellae which are conjoined medially by the mcIO (Arends and Voogd, 1989). Throughout the text, we refer to the olivary input to the rVA and rH45 zones as originating in the rostral and caudal mcIO, respectively. The rostrocaudal extent of the mcIO ranges from about 1.5 to 1.8 mm. In our previous work (Wylie et al., 1999), we showed that retrograde labeling from injections into the rVA zones is concentrated in the caudal 700–800 μm, whereas labeling from rH45 zones is concentrated in the rostral 700–800 μm. The border between those areas projecting to the rVA and rH45 zones could be quite sharp (see Fig. 1 of Wylie et al., 1999), but there is probably some overlap (see Table 1 of Wylie et al., 1999). Thus, our distinction of caudal and rostral mcIO should not be taken as an absolute but is comparable to the distinction between caudal and rostral dorsal cap in rabbits and rats (Alley et al., 1978; Ruigrok et al., 1992; Tan et al., 1995b).

RESULTS

Experiments were performed on eight pigeons. In cases rVA-1–3, the pigeons received iontophoretic injections of the CTB-Alexafluor conjugate, one injection in the caudomedial rVA zone (zone 0) and one injection in the rostralateral rVA zone (zone 2). In case rVA-4, pressure injections of the CTB-Alexafluor conjugates were made, CTB-green in zone 2 and CTB-red in zone 0. In cases rH45-1 and -2, iontophoretic injections of the CTB-Alexafluor conjugate were made, one injection into the caudomedial rH45 zone (zone 1) and the other injection into the rostralateral rH45 zone (zone 3). In case rH45-4, pressure injections of latex microspheres were made, green beads into zone 3 and red beads into zone 1.

Figure 2A–C shows data from case rVA-1. Figure 2B shows the injection site in the dorsal lamella of folium IXcd in zone 0. The center of the injection was 2.7 mm from the midline. From a section 1.43 mm rostral to that shown in Figure 2B, Figure 2C shows the injection site in zone 2, medially in the caudal part of the auricle (Au). The center of this injection was 3.3 mm from the midline. Figure 2A is a series of drawings of coronal sections through the IO, from the chromagen series, showing the
location of retrogradely labeled cells (gray circles) in the contralateral mcIO from these injections. Those neurons labeled from the zone 0 and zone 2 injections are indistinguishable in the chromatogen series. However, the numbers of labeled cells from zone 0 (open circles), zone 2 (solid circles), and double-labeled cells (asterisks) are listed for the adjacent (caudal) sections from the fluorescence series. The retrograde labeling was concentrated in the caudal 700–800 μm of the contralateral mcIO, consistent with our previous findings (Wylie et al., 1999). Also, there was a slight difference in the rostrocaudal distribution of cells labeled from the zone 0 and zone 2 injections (addressed in detail below; see Fig. 4).

Figure 2D–F shows data from case rH45-2. Figure 2E shows the injection site in the ventral lamella of IXcd in zone 1. The center of the injection was 3.4 mm from the midline. From a section 1.44 mm rostral to that shown in Figure 2E, Figure 2F shows the injection site in zone 3, in the rostral Au. The center of this injection was 4.4 mm from the midline. Figure 2D is a series of drawings of coronal sections through the IO at 160-μm intervals. E and F show drawings of the injections in zones 1 and 3, respectively. In D, locations of single-labeled cells from the injections in zones 1 (open circles) and 3 (solid circles) as well as double-labeled cells (asterisks) are shown. See text for details. Scale bars = 200 μm in A,D; 1 mm in B,C,E,F.
The fact that the labeling was concentrated in the caudal mcIO from the rVA injections, and the rostral mcIO from the rH45 injections, indicates that the injections were predominantly in a single zone and encroached minimally upon adjacent zones. The injection sites resulting from iontophoresis were typically small, ranging in diameter from 190–300 µm. The number of olivary cells labeled from each of the iontophoretic injections varied from 11 to 95 (mean = 52.6; see Table 1). In the cases involving pressure injections (rVA-4, rH45-3, rH45-4), the injections were larger, ranging in diameter from 300 to 500 µm. Also, the number of retrogradely labeled cells from each injection was generally larger (33–482; mean = 266.6) compared with the iontophoretic injections. In case rVA-4, the retrogradely labeled cells were confined to the caudal mcIO, again indicating that the injections encroached minimally upon the adjacent zones. In cases rH45-3 and rH45-4, although the bulk of the retrograde labeling was in the rostral mcIO, some was found in the caudal mcIO. In case rH45-3, from the zone 1 injection, 289 cells were found in the rostral mcIO, but two (<1%) were observed in the caudal mcIO. This indicates that the spread to the adjacent zones 0 and/or zone 2 was negligible. From the zone 3 injection, 314 cells were found in the rostral mcIO, and 20 (6%) were found in the caudal mcIO. Again, this indicates that the spread to the adjacent zone 2 was minimal. In case rH45-4, from the zone 1 injection, 29 cells were found in the rostral mcIO, and four (12%) were observed in the caudal mcIO. From the injection in zone 3 (also from case rH45-4), the largest of all injections, 389 cells were found in the rostral mcIO, and 93 (19%) were found in the caudal mcIO. Clearly, this injection spread into the adjacent rVA zone 2 and, possibly, as far as zone 1.

Table 1. Number of Retrogradely Labeled Cells in the Medial Column of the Inferior Olive (mcIO) from Each Injection

<table>
<thead>
<tr>
<th>Case</th>
<th>Zone 0</th>
<th>Zone 2</th>
<th>Double labeled (%)</th>
<th>Case</th>
<th>Zone 1</th>
<th>Zone 3</th>
<th>Double labeled (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rVA-1</td>
<td>17</td>
<td>28</td>
<td>6 (35%)</td>
<td>rH45-1</td>
<td>25</td>
<td>88</td>
<td>4 (16%)</td>
</tr>
<tr>
<td>rVA-2</td>
<td>81</td>
<td>56</td>
<td>9 (16%)</td>
<td>rH45-2</td>
<td>95</td>
<td>80</td>
<td>5 (6%)</td>
</tr>
<tr>
<td>rVA-3</td>
<td>45</td>
<td>11</td>
<td>1 (9)</td>
<td>rH45-3</td>
<td>289</td>
<td>314</td>
<td>6 (6%)</td>
</tr>
<tr>
<td>rVA-4</td>
<td>158</td>
<td>303</td>
<td>4 (28%)</td>
<td>rH45-4</td>
<td>29</td>
<td>389</td>
<td>7 (24%)</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td>(22)</td>
<td></td>
<td></td>
<td></td>
<td>(18)</td>
</tr>
</tbody>
</table>

1 In all rVA cases, the labeling was restricted to the caudal half of the mcIO. In cases rH45-1 and 2, the labeling was restricted to the rostral half of the mcIO. In cases rH45-3 and 4, there was some labeling in the caudal half of the mcIO. However, only the cells in the rostral mcIO were tabulated below for these cases.
by-and-large overlapping, that from zone 0 is slightly caudal to that from zone 2. From Figure 4B, there appears to be a comparatively larger rostrocaudal difference in the distributions of cells projecting to the different rH45 zones; that from zone 1 is rostral to that from zone 3. We tested for differences between the rostrocaudal distributions of the rVA zones and the rH45 zones by using two statistical tests. First, we compared distributions of cell counts between the two injection sites (i.e., either zone 0 and zone 2 for the rVA cases or zone 1 and zone 3 for the rH45 cases) by using a categorical Kolmogorov-Smirnov test of independence (Zar, 1999). [Typical tests of independence, such as the χ² test, are not appropriate, because the categories (i.e., the bins) are ordinal.] Significance levels were calculated by comparing the empirical Kolmogorov-Smirnov test statistic against a distribution of test statistics calculated from 1,000 randomizations of the same data under the null hypothesis (that the data are distributed in proportion to their expected frequencies in a test of independence). The distribution of cells labeled from the zone 1 injections was significantly different from that labeled from the zone 3 injections in all four rH45 cases, and the distribution of cells labeled from the zone 0 injections was significantly different from that labeled from the zone 2 injections in three of the four rVA cases (see Appendix A). Second, we also tested to see whether the two injection sites labeled cells in more rostral vs. caudal sections using a Welch’s t-test (see Appendix B). All four rH45 cases showed significantly more cells in the rostral most sections of the mcIO from the zone 1 injection compared with

![Fig. 3](image-url)

A–L show retrogradely labeled cells in the medial column of the inferior olive (mcIO). Data from four different sections are shown, in triplets (A–C, D–F, G–I, J–L). A, D, and G show cells labeled with CTB-green. B, E, and H show cells labeled with CTB-red. J and K show cells labeled with green and red latex microspheres, respectively. C shows the section when labeled cells are visualized with DAB. F, I, and L show the overlay of the corresponding green and red sections. Arrows indicate double-labeled cells in overlaid pictures. For details, see text. Scale bars = 100 μm in A (applies to A–C), D (applies to D–F), G (applies to G–I), J (applies to J–L).
the zone 3 injection. Two of the four rVA cases showed significantly more labeled cells in the caudalmost sections of the mcIO from the zone 0 injection compared with the zone 2 injection. In summary, from these two statistical tests, there was unambiguous support for the assertion that the distribution of cells labeled from the zone 1 injection was rostral to that from the zone 3 injection, and there was strong support for the assertion that the distribution of cells labeled from the zone 0 injection was caudal to that from the zone 2 injection.

In Figure 4A, B we also show the rostrocaudal distribution of double labeled cells from the rVA and rH45 cases. This is illustrated in the lower histograms, which indicate the number of double labeled cells in each bin totaled from all four cases. The distribution of double labeled cells in the mcIO is unremarkable insofar as the double labeled cells were not found in any particular location among the single labeled neurons.

DISCUSSION

Olivary projection to the floccular zones in mammals and birds

It has been shown in several species that the flocculus is compartmentalized such that there are multiple rVA zones interleaved with multiple rH45 zones (for review see Voogd and Wylie, 2004). Physiological and anatomical studies in rabbits have shown that there are in total four visual zones in the flocculus. Zones 1 and 3 are rH45 zones that receive input from the rostral dorsal cap (DC) and ventrolateral outgrowth (VLO), whereas zones 2 and 4 are rVA zones that receive input from the caudal DC (Alley et al., 1975; Leonard et al., 1988; De Zeeuw et al., 1994; van der Steen et al., 1994; Tan et al., 1995b; see also Yamamoto and Shimoyama, 1977; Yamamoto, 1978; Sato and Kawasaki, 1991). Insofar as they provide input to rH45 zones, the VLO and rostral DC in rabbits correspond to the rostral mcIO in pigeons. Likewise, insofar as they provide input to rVA zones, the caudal DC corresponds to the caudal mcIO in pigeons (Wylie et al., 1999, 2003; Winship and Wylie, 2001, 2003). Comparable electrophysiological studies have not been performed with rats, but neuroanatomical studies have shown that there are three zones innervated by the DC (zones 0, 2, and 4) interdigitated with two zones receiving input from the VLO (zones 1 and 3; Sugihara et al., 2004; see also Ruigrok et al., 1992; Balaban et al., 2000; Ruigrok, 2003). Although the physiological work has not been performed, we believe it likely that zones 0, 2, and 4 are rVA zones and zones 1 and 3 are rH45 zones (Voogd and Wylie, 2004). The zonal nomenclature that we used for the pigeon floccular zones in the present paper, outlined in Figure 1, was adopted to provided the most logical correspondence with the zones in the rabbit and rat. Zone 0, not present in rabbits, is the most lateral visual zone in the rat flocculus but corresponds to the most medial rVA zone in pigeons. This is because the part of the mammalian cerebellum that contains the flocculus folds back on itself and twists (Bolk, 1906) such that the order of zones becomes reversed in a
Coronal section. There is also a nonvisual zone in the rabbit flocculus, zone C2, which has been linked to head movement (De Zeeuw et al., 1994; Tan et al., 1995a; De Zeeuw and Koeckkoek, 1997).

There are also zones in the nodulus and ventral uvula of rats and rabbits that are innervated by the DC and VLO (Balaban and Henry, 1988; Katayama and Nisimaru, 1988; Voogd et al., 1996; Ruigrok, 2003). Electrophysiological studies in rabbits have confirmed that there are alternating rVA and rH45 zones (Kano et al., 1990; Barmack and Shojaku, 1992; Wylie et al., 1994). This is not the case in pigeons. In pigeons, CSA in the nodulus and ventral uvula is modulated by optic flow patterns resulting from self-translation (Wylie and Frost, 1991, 1999; Wylie et al., 1993, 1998), and the olivary input arises from regions immediately lateral to those areas projecting to the flocculus (Lau et al., 1998; Wylie et al., 1999; Crowder et al., 2000).

In the present study we found that, with respect to the projection of the caudal mcIO, there was a differential projection to zones 0 and 2. Although by-and-large overlapping, the distribution of cells retrogradely labeled from zone 0 was slightly rostral to that of cells labeled from zone 2. Similarly, with respect to the projection of the rostral mcIO, there was a differential projection to zones 1 and 3. The distribution of cells retrogradely labeled from zone 1 was slightly rostral to that from zone 3. This aspect of the olivary projection to the flocculus is illustrated in Figure 5. Although it was not reported as such, it appears that Sugihara et al. (2004) might have revealed a similar pattern with respect to the VLO projection to zones 1 and 3 in rats. They reconstructed single olivocerebellar axons labeled with the anterograde tracer biotinylated dextran. All of the axons originating from cells in the rostral VLO projected to zone 1, whereas two of the five axons originating from cells in the caudal VLO projected to zone 3. These findings suggest that there may be a rostral–caudal difference with respect to the projection from the VLO to zones 1 and 3, similar to what we found in the present study.

Climbing fibers innervating multiple zones

Generally, a CF axon will innervate a single zone or even a single microzone (Sugihara et al., 1999, 2001, 2003). However, it has been shown that some CFs in the olivovestibulocerebellar system innervate multiple zones. For example, by using electrophysiological and double retrograde techniques, Takeda and Maekawa (1989a,b) showed that some olivary neurons innervate both the flocculus and the vermal vestibulocerebellum (nodulus and uvula) in rabbits. Similarly, Ruigrok (2003) showed, based on cortical injections into the flocculus or nodulus in rats, that some olivary neurons in the DC innervate rVA zones in both the nodulus and the flocculus, and some VLO neurons innervate rH45 zones in both the nodulus and the flocculus. Sugihara et al. (2004) also reconstructed one DC neuron that innervated zone 2 of the flocculus and the lateral rVA zone in the nodulus and one VLO neuron that innervated zone 1 of the flocculus and the rH45 zone of the nodulus. They also noted that some DC and VLO neurons innervated the flocculus and the anterior vermis (see also Ruigrok, 2003). Ruigrok (2003) as well noted that some DC neurons innervated the medial and lateral rVA zones in the nodulus in rats.

Most pertinent to the present study, both Sugihara et al. (2004) and Ruigrok (2003) found that individual CFs innervate multiple floccular zones in rats. From an injection of CTB into zone 1, collateral labeling of CFs was found in zones 1 and 3 (Ruigrok, 2003). Sugihara et al. (2004) reconstructed the axons of 24 CFs originating in the DC or VLO. One CF innervated more than one floccular zone (zones 2 and 4), although some (six) of these CFs innervated a floccular zone as well as the nodulus or the anterior vermis. In the present study, we found that 20% of mcIO neurons projected to more then one zone in the pigeon flocculus, although this was quite variable among cases (6–35%). We consider 20% to be an underestimate in this regard. To obtain an accurate and complete account of the percentage of cells projecting to multiple zones, one would have to inject an entire zone to its boundaries. However, to have some assurance that the injections were confined to a single zone, small injections were desired. It is worth noting that the two largest injections (cases rVA-4, rH45-3) had a higher percentage of double-labeled neurons (average = 25%).

The phenomenon of single olivary neurons innervating multiple zones is not to be limited to the vestibulocerebellum. For example, in the vermis, the rostral compartments of zones X and CX both receive input from the b and c subnuclei of the medial accessory olive (Buisseter-Delmas et al., 1993). In the anterior lobe, zones C1, C5, and Y all receive input from rostral dorsal accessory olive (Greeneewegen et al., 1979; Trott and Apps, 1993; Garwicz et al., 1988). It has been shown that single olivary neurons innervate multiple zones in this system (Ekeroth and Larson, 1982). After injections of different colors of fluorescent tracers into the C1 and C3 zones, Apps and Garwicz (2000) found that different but overlapping regions of the rDAO were labeled. They found that on average 16.5% of the neurons were double labeled. In this respect, these findings are remarkably similar to those in the present study. Apps and Garwicz (2000) also coinjected fluorescent retrograde and anterograde tracers into the C1 and C3 regions and found that the there was a tight correspondence between the overlap of the corticonuclear projec-
tions and the amount of overlap and double labeling in the inferior olive. These results emphasize that the functional unit of the olivocerebellar system is the module consisting of multiple cortical zones (or microzones), its divergent olivary input, and its convergent corticocerebellar output (Voogd and Bigare, 1980; Apps and Garwicz, 2000; Bukowska et al., 2002). Further elucidation of the details of the underlying connectivity of the cerebellar modules is critical to our understanding of how the cerebellum is involved in motor control and other processes (Ito, 1984; Garwicz et al., 1998).

LITERATURE CITED

Voogd J, Wylie DR. 2004. Functional and anatomical organization of flocculus...

APPENDIX A. Tests of Independence of Distributions of Cells between Injection Sites

| Case |
|-------|-------|
| rVA-1 | $d_{max(10,45)}$ = 11 | 0.088 |
| rVA-2 | $d_{max(13,137)}$ = 36 | <0.001|
| rVA-3 | $d_{max(13,56)}$ = 34 | <0.001|
| rVA-4 | $d_{max(13,46)}$ = 145 | <0.001|
| rH45-1| $d_{max(13,113)}$ = 63 | <0.001|
| rH45-2| $d_{max(13,175)}$ = 32 | <0.001|
| rH45-3| $d_{max(13,642)}$ = 79 | <0.001|
| rH45-4| $d_{max(13,653)}$ = 397 | <0.001|

1Empirical Kolmogorov-Smirnov values, $d_{max(k,n)}$, for comparisons of cell distributions across the 10 sections of the mcIO between injection zones, where there are k sections and n cells. P-values were determined by comparing the empirical values with K-S test statistics from 1,000 randomizations of the data under the null hypothesis (which was that the two injection sites had the same distribution across the sections following the same formula as a standard test of independence).

APPENDIX B. Effect of Injection Site on Average Location of Labeled Cells

| Case |
|-------|-------|
| Zone 2 injection | Zone 0 injection |
| rVA-1 | 3.43 | 2.59 | 2.4 | 35.027 | 0.02 |
| rVA-2 | 4.36 | 4.98 | −1.12 | 17.537 | 0.28 |
| rVA-4 | 3.52 | 3.31 | 1.22 | 303.427 | 0.22 |

Zone 3 injection	Zone 1 injection				
rH45-1	7.49	8.2	−2.27	48.894	0.03
rH45-2	5.23	7.14	−7.76	171.951	<0.0001
rH45-3	4.81	5.63	−4.43	607.036	<0.0001
rH45-4	1.42	1.98	5.46	251.132	<0.0005

1Mean location in the series of sections between the two injection zones. Higher numbers represent more rostral locations in the mcIO. Welch’s t-tests were used because of their greater robustness with regard to violations of assumptions than the nonparametric Mann-Whitney U tests.