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The Fallacy of the Null-Hypothesis
Significance Test

The theory of probability and statistical inference is various things to various people. To the
mathematician, it is an intricate formal calculus, to be explored and developed with little pro-
fessional concern for any empirical significance that mightattach to the terms and propositions
involved. To the philosopher, it is an embarrassing mysterywhose justification and conceptual
clarification have remained stubbornly refractory to philosophical insight. (A famous philo-
sophical epigram has it that induction [a special case of statistical inference] is the glory of
science and the scandal of philosophy.) To the experimentalscientist, however, statistical in-
ference is a research instrument, a processing device by which unwieldy masses of raw data
may be refined into a product more suitable for assimilation into the corpus of science, and in
this lies both strength and weakness. It is strength in that,as an ultimateconsumerof statistical
methods, the experimentalist is in position to demand that the techniques made available to him
confirm to his actual needs. But it is also weakness in that, in his need for the tools constructed
by a highly technical formal discipline, the experimentalist, who has specialized along other
lines, seldom feels competent to extend criticisms or even comments; he is much more likely
to make unquestioning application of procedures learned more or less by rote from persons as-
sumed to be more knowledgeable of statistics than he. There is, of course, nothing surprising or
reprehensible about this—one need not understand the principles of a complicated tool in order
to make effective use of it, and the research scientist can no more be expected to have sophisti-
cation in the theory of statistical inference than he can be held responsible for the principles of
the computers, signal generators, timers, and other complex modern instruments to which he
may have recourse during an experiment. Nonetheless, this leaves him particularly vulnerable
to misinterpretation of his aims by those who build his instruments, not to mention the ever
present dangers of selecting an inappropriate or outmoded tool for the job at hand, misusing
the proper tool, or improvising a tool of unknown adequacy tomeet a problem not conforming
to the simple theoretical situations in terms of which existent instruments have been analyzed.
Further, since behaviors once exercised tend to crystallize into habits and eventually traditions,
it should come as no surprise to find that the tribal rituals for data-processing passed along
in graduate courses in experimental method should contain elements justified more by custom
than by reason.

In this paper, I wish to examine a dogma of inferential procedure which, for psychologists
at least, has attained the status of a religious conviction.The dogma to be scrutinized is the
“null-hypothesis significance test” orthodoxy that passing statistical judgment on a scientific
hypothesis by means of experimental observation is a decision procedure wherein one rejects
or accepts a null hypothesis according to whether or not the value of a sample statistic yielded
by an experiment falls within a certain predetermined “rejection region” of its possible values.
The thesis to be advanced is that despite the awesome pre-eminence this method has attained
in our experimental journals and textbooks of applied statistics, it is based upon a fundamental
misunderstanding of the nature of rational inference, and is seldom if ever appropriate to the
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aims of scientific research. This is not a particularly original view—traditional null-hypothesis
procedure has already been superceded in modern statistical theory by a variety of more sat-
isfactory inferential techniques. But the perceptual defenses of psychologists are particularly
efficient when dealing with matters of methodology, and so the statistical folkways of a more
primitive past continue to dominate the local scene.

To examine the method in question in greater detail, and expose some of the discomfitures to
which it gives rise, let us begin with a hypothetical case study.

A Case Study in Null-Hypothesis Procedure, or, A Quorum of Embarassments

Suppose that according to the theory of behavior,T0, held by most right-minded, respectable
behaviorists, the extent to which a certain behavioral manipulationM facilitates learning in a
certain complex learning situationC should be null. That is, if “φ” designates the degree to
which manipulationM facilitates the acquisition of habitH under circumstancesC, it follows
from the orthodox theoryT0 thatφ = 0. Also suppose, however, that a few radicals have persis-
tently advocated an alternative theoryT1 which entails, among other things, that the facilitation
of H by M in circumstancesC should be appreciably greater than zero, the precise extentbe-
ing dependent upon the values of certain parameters inC. Finally, suppose that Igor Hopewell,
graduate student in psychology, has staked his dissertation hopes on an experimental test ofT0

againstT1 on the basis of their differential predictions about the value ofφ.
Now, if Hopewell is to carry out his assessment of the comparative merits ofT0 andT1 in

this way, there is nothing for him to do but submit a number ofS’s to manipulationM under
circumstancesC and compare their efficiency at acquiring habitH with that of comparable
S’s who, under circumstancesC, have not been exposed to manipulationM. The difference,d,
between experimental and controlS’s in average learning efficiency may then be taken as an
operational measure of the degree,φ, to whichM influences acquisition ofH in circumstances
C. Unfortunately, however, as any experienced researcher knows to his sorrow, the interpreta-
tion of such an observed statistic is not quite so simple as that. For the observed dependent
variabled, which is actually a performance measure, is a function not only of the extent to
which M influences acquisition ofH, but of many additional major and minor factors as well.
Some of these, such as deprivations, species, age, laboratory conditions, etc., can be removed
from consideration by holding them essentially constant. Others, however, are not so easily
controlled, especially those customarily subsumed under the headings of “individual differ-
ences” and “errors of measurement.” To curtail a long mathematical story, it turns out that with
suitable (possibly justified) assumptions about the distributions of values for these uncontrolled
variables, the manner in which they influence the dependent variable, and the way in which ex-
perimental and controlS’s were selected and manipulated, the observed sample statistic d may
be regarded as the value of a normally distributed random variate whose average value isφ and
whose variance, which is independent ofφ, is unbiasedly estimated by the square of another
sample statistic,s, computed from the data of the experiment.1

The import of these statistical considerations for Hopewell’s dissertation, of course, is that he
will not be permitted to reason in any simple way from the observedd to a conclusion about the
comparative merits ofT0 andT1. To conclude thatT0, rather thanT1, is correct, he must argue
thatφ = 0, rather thanφ > 0. But the observedd, whatever its value, is logically compatible
both with the hypothesis thatφ = 0 and the hypothesis thatφ > 0. How then, can Hopewell use

1s is here the estimate of the standard error of the difference in means, not the estimate of the individualSD.
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his data to make a comparison ofT0 andT1? As a well-trained student, what he does, of course,
is to divided by s to obtain what, underH0, is at statistic, consult a table of thet distributions
under the appropriate degrees-of-freedom, and announce his experiment as disconfirming or
supportingT0, respectively, according to whether or not the discrepancybetweend and the
zero value expected underT0 is “statistically significant”—i.e., whether or not the observed
value ofd/s falls outside of the interval between two extreme percentiles (usually the 2.5th and
97.5th) of thet distribution with thatdf. If asked by his dissertation committee to justify this
behavior, Hopewell would rationalize something like the following (the more honest reply, that
this is what he has been taught to do, not being considered appropriate to such occasions):

In deciding whether or notT0 is correct, I can make two types of mistakes: I can rejectT0 when it is
in fact correct [Type I error], or I can acceptT0 when in fact it is false [Type II error]. As a scientist, I
have a professional obligation to be cautious, but a 5% chance of erroris not unduly risky. Now if all
my statistical background assumptions are correct, then, if it is really true that φ = 0 asT0 says, there is
only one chance in 20 that my observed statisticd/s will be smaller thant.025 or larger thant.975, where
by the latter I mean, respectively, the 2.5th and 97.5th percentiles of thet distribution with the same
degrees-of-freedom as in my experiment. Therefore, if I rejectT0 whend/s is smaller thant.025 or larger
thant.975, and acceptT0 otherwise, there is only a 5% chance that I will rejectT0 incorrectly.

If asked about his Type II error, and why he did not choose someother rejection region, say
betweent.475 andt.525, which would yield the same probability of Type I error, Hopewell should
reply that although he has no way to compute his probability of Type II error under the as-
sumptions traditionally authorized by null-hypothesis procedure, it is presumably minimized
by taking the rejection region at the extremes of thet distribution.

Let us suppose that for Hopewell’s data,d=8.50,s=5.00, anddf=20. Thent.975 = 2.09 and
the acceptance region for the null hypothesisφ = 0 is −2.09 < d/s < 2.09, or−10.45 <
d < 10.45. Sinced does fall within this region, standard null-hypothesis decision procedure,
which I shall henceforth abbreviate “NHD,” dictates that the experiment is to be reported as
supporting theoryT0. (Although many persons would like to conceive NHD testing to authorize
only rejection of the hypothesis, not, in addition, its acceptance when the test statistic fails to
fall in the rejection region, if failure to reject were not taken as grounds for acceptance, then
NHD procedure would involve no Type II error, and no justification would be given for taking
the rejection region at the extremes of the distribution, rather than in its middle.) But even as
Hopewell reaffirmsT0 in his dissertation, he begins to feel uneasy. In fact, several disquieting
thoughts occur to him:

1. Although his test statistic falls within the orthodox acceptance region, a value this divergent
from the expected zero should nonetheless be encountered less than once in 10. To argue in
favor of a hypothesis on the basis of data ascribed ap value no greater than .10 (i.e., 10%) by
that hypothesis certainly does not seem to be one of the more impressive displays of scientific
caution.

2. After some belated reflection on the details of theoryT1, Hopewell observes thatT1 not
only predicts thatφ > 0, but with a few simplifying assumptions no more questionable than
is par for this sort of course, the value thatφ should have can actually be computed. Suppose
the value derived fromT1 in this way isφ = 10.0. Then, rather than takingφ = 0 as the null
hypothesis, one might just as well takeφ = 10.0; for under the latter, (d − 10.0)/s is a 20df t
statistic, giving a two-tailed, 95% significance, acceptance region for (d−10.0)/sbetween -.209
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and 2.09. That is, if one letsT1 provide the null hypothesis, it is accepted or rejected according
to whether or not−.45 < d < 20.45, and by this latter test, therefore, Hopewell’s data mustbe
taken to supportT1—in fact, the likelihood underT1 of obtaining a test statistic this divergent
from the expected 10.0 is a most satisfactory three chances in four. Thus it occurs to Hopewell
that had he chosen to cast his professional lot with theT1-ists by selectingφ = 10.0 as his null
hypothesis, he could have made a strong argument in favor ofT1 by precisely the same line of
statistical reasoning he has used to supportT0 underφ = 0 as the null hypothesis. That is, he
could have made an argument that persons partial toT1 would regard as strong. For behaviorists
who are already convinced thatT0 is correct would howl that sinceT0 is the dominant theory,
only φ = 0 is a legitimate null hypothesis. (And is it not strange thatwhat constitutes a valid
statistical argument should be dependent upon the majorityopinion about behavior theory?)

3. According to the NHD test of a hypothesis, only two possible final outcomes of the ex-
periment are recognized—either the hypothesis is rejectedor it is accepted. In Hopewell’s
experiment, all possible values ofd/s between -2.09 and 2.09 have the same interpretive sig-
nificance, namely, indicating thatφ = 0, while conversely, all possible values ofd/s greater
than 2.09 are equally taken to signify thatφ , 0. But Hopewell finds this disturbing, for of the
various possible values thatd/smight have had, the significance ofd/s= 1.70 for the compar-
ative merits ofT0 andT1 should surely be more similar to that of, say,d/s = 2.10 than to that
of, say,d/s= −1.70.

4. In somewhat similar vein, it also occurs to Hopewell that had he opted for a somewhat
riskier confidence level, say a Type I error of 10% rather than5%, d/s would have fallen
outside the region of acceptance andT0 would have been rejected. Now surely the degree to
which a datum corroborates or impugns a proposition should be independent of the datum-
assessor’s personal temerity. Yet according to orthodox significance-test procedure, whether or
not a given experimental outcome supports or disconfirms thehypothesis in question depends
crucially upon the assessor’s tolerance for Type I risk.

Despite his inexperience, Igor Hopewell is a sound experimentalist at heart, and the more he
reflects on these statistics, the more dissatisfied with his conclusions he becomes. So while the
exigencies of graduate circumstances and publication requirements urge that his dissertation
be written as a confirmation ofT0, he nonetheless resolves to keep an open mind on the issue,
even carrying out further research if opportunity permits.And reading his experimental report,
so of course would we—has any responsible scientist ever made up his mind about such a
matter on the basis of a single experiment? Yet in this obvious way we reveal how little our
actual inferential behavior corresponds to the statistical procedure to which we pay lip-service.
For if we did, in fact, accept or reject the null hypothesis according to whether the sample
statistic falls in the acceptance or in the rejection region, then there would be no replications of
experimental designs, no multiplicity of experimental approaches to an important hypothesis—
a single experiment would, by definition of the method, make up our mind about the hypothesis
in question. And the fact that in actual practice, a single finding seldom even tempts us to such
closure of judgment reveals how little the conventional model of hypothesis testing fits our
actual evaluative behavior.

Decision vs. Degrees of Belief

By now, is should be obvious that something is radically amisswith the traditional NHD as-
sessment of an experiment’s theoretical import. Actually,one does not have to look far in
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order to find the trouble—it is simply a basic misconception about the purpose of a scientific
experiment. The null-hypothesis significance test treats acceptance or rejection of a hypothesis
as though these were decisions one makes on the basis of the experimental data—i.e., that we
elect to adopt one belief, rather than another, as a result ofan experimental outcome.But the
primary aim of a scientific experiment is not to precipitate decisions, but to make an appropri-
ate adjustment in the degree to which one accepts, or believes, the hypothesis or hypotheses
being tested. And even if the purpose of the experiment were to reach a decision, it could
not be a decision to accept or reject the hypothesis, for decisions are voluntary commitments
to action—i.e., aremotorsets—whereas acceptance or rejection of a hypothesis is acognitive
state which may provide the basis for rational decisions, but is not itself arrived at by such a
decision (except perhaps indirectly in that a decision may initiate further experiences which
influence the belief).

The situation, in other words, is as follows: As scientists,it is our professional obligation to
reason from available data to explanations and generalities—i.e., beliefs—which are supported
by these data. But belief in (i.e., acceptance of) a proposition is not an all-or-none affair; rather,
it is a matter of degree, and the extent to which a person believes or accepts a proposition trans-
lates pragmatically into the extent to which he is willing tocommit himself to the behavioral
adjustments prescribed for him by the meaning of that proposition. For example, if that invet-
erate gambler, Unfortunate Q. Smith, has complete confidence that War Biscuit will win the
fifth race at Belmont, he will be willing to accept any odds to place a bet on War Biscuit to win;
for if he is absolutelycertain that War Biscuit will win, then odds are irrelevant—it is simply
a matter of arranging to collect some winnings after the race. On the other hand, the more that
Smith has doubts about War Biscuit’s prospects, the higher the odds he will demand before
betting. That is, theextentto which Smith accepts or rejects the hypothesis that War Biscuit
will win the fifth at Belmont is an important determinant of hisbetting decisions for that race.

Now, although a scientist’s data supplyevidencefor the conclusions he draws from them, only
in the unlikely case where the conclusions are logically deducible from or logically incompat-
ible with the data do the data warrant that the conclusions beentirely accepted or rejected.
Thus, e.g., the fact that War Biscuit has won all 16 of his previous starts is strong evidence in
favor of his winning the fifth at Belmont, but by no means warrants the unreserved acceptance
of this hypothesis. More generally, the data available confer upon the conclusions a certain
appropriate degree of belief, and it is the inferential task of the scientist to pass from the data
of his experiment to whateverextentof belief these and other available information justify in
the hypothesis under investigation. In particular, the proper inferential procedure is not (except
in the deductive case) a matter of deciding to accept (without qualification) or reject (without
qualification) the hypothesis: even if adoption of a belief were a matter of voluntary action—
which it is not—neither such extremes of belief or disbeliefare appropriate to the data at hand.
As an example of the disastrous consequences of an inferential procedure which yields only
two judgment values, acceptance and rejection, consider how sad the plight of Smith would
be if, whenever weighing the prospects for a given race, he always worked himself into either
supreme confidence or utter disbelief that a certain horse will win. Smith would rapidly impov-
erish himself by accepting excessively low odds on horses heis certain will win, and failing to
accept highly favorable odds on horses he is sure will lose. In fact, Smith’s two judgment values
need not beextremeacceptance and rejection in order for his inferential procedure to be mal-
adaptive. All that is required is that the degree of belief arrived at be in general inappropriate
to the likelihood conferred on the hypothesis by the data.
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Now, the notion of “degree of belief appropriate to the data at hand” has an unpleasantly
vague, subjective feel about it which makes it unpalatable for inclusion in a formalized theory
of inference. Fortunately, a little reflection about this phrase reveals it to be intimately con-
nected with another concept relating conclusion to evidence which, though likewise in serious
need of conceptual clarification, has the virtues both of intellectual respectability and statistical
familiarity. I refer, of course, to thelikelihood, or probability, conferred upon a hypothesis
by available evidence. Why should not Smithfeel certain, in view of the data available, that
War Biscuit will win the fifth at Belmont? Because itis not certain that War Biscuit will win.
More generally, what determines how strongly we should accept or reject a proposition is the
probability given to this hypothesis by the information at hand. For while our voluntary actions
(i.e., decisions) are determined by our intensities of belief in the relevant propositions, not by
their actual probabilities, expected utility is maximizedwhen the cognitive weights given to
potential but not yet known-for-certain pay-off events are represented in the decision procedure
by the probabilities of these events. We may thus relinquishthe concept of “appropriate degree
of belief” in favor of “probability of the hypothesis,” and our earlier contention about the nature
of data-processing may be rephrased to say that the proper inferential task of the experimental
scientist is not a simple acceptance or rejection of the tested hypothesis, but determination of
the probability conferred upon it by the experimental outcome. This likelihood of the hypoth-
esis relative to whatever data are available at the moment will be an important determinant for
decisions which must currently be made, but is not itself such a decision and is entirely subject
to revision in the light of additional information.

In brief, what is being argued is that the scientist, whose task is not to prescribe actions but to
establish rational beliefs upon which to base them, is fundamentally and inescapably commit-
ted to an explicit concern with the problem of inverse probability. What he wants to know is
how plausible are his hypotheses, and he is interested in theprobability ascribed by a hypoth-
esis to an observed experimental outcome only to the extent he is able to reason backwards to
the likelihood of the hypothesis, given this outcome. Put crudely, no matter how improbable
an observation may be under the hypothesis (and when there are an infinite number of possi-
ble outcomes, the probability of any particular one of theseis, usually, infinitely small—the
familiar p value for an observed statistic under a hypothesisH is not actually the probability of
that outcome underH, but a partial integral of the probability-density function of possible out-
comes underH), it is still confirmatory (or at least nondisconfirmatory, if one argues from the
data to rejection of the background assumptions) so long as the likelihood of the observation is
even smaller under the alternative hypotheses. To be sure, the theory of hypothesis-likelihood
and inverse probability is as yet far from the level of development at which it can furnish the
research scientist with inferential tools he can apply mechanically to obtain a definite likeli-
hood estimate. But to the extent a statistical method does notat least move in thedirectionof
computing the probability of the hypothesis, given the observation, that method is not truly a
method ofinference, and is unsuited for the scientist’s cognitive ends.

The Methodological Status of the Null-Hypothesis Significance Test

The preceding arguments have, in one form or another, raisedseveral doubts about the appro-
priateness of conventional significance-test decision procedure for the aims it is supposed to
achieve. It is now time to bring these changes together in an explicit bill of indictment.

1. The null-hypothesis significance test treats “acceptance” or “rejection” of a hypothesis as
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though these were decisions one makes. But a hypothesis is notsomething, like a piece of pie
offered for dessert, which can be accepted or rejected by a voluntary physical action. Accep-
tance or rejection of a hypothesis is a cognitive process, adegreeof believing or disbelieving
which, if rational, is not a matter of choice but determined solely by how likely it is, given the
evidence, that the hypothesis is true.

2. It might be argued that the NHD test may nonetheless be regarded as a legitimate deci-
sion procedure if we translate “acceptance (rejection) of the hypothesis” as meaning “acting as
though the hypothesis were true (false).” And to be sure, there are many occasions on which
one must base a course of action on the credibility of a scientific hypothesis. (Should these data
be published? Should I devote my research resources to and become identified professionally
with this theory? Can we test this new Z bomb without exterminating all life on earth?) But
such a move to salvage the traditional procedure only raisestwo further objections. (a) While
the scientist—i.e., the person—must indeed make decisions, hisscienceis a systematized body
of (probable)knowledge, not an accumulation of decisions. The end product of a scientific in-
vestigation is a degree of confidence in some set of propositions, which then constitutes abasis
for decisions. (b) Decision theory shows the NHD test to be woefully inadequate as a decision
procedure. In order to decide most effectively when or when not to act as though a hypothesis
is correct, one must know both the probability of the hypothesis under the data available and
the utilities of the various decision outcomes (i.e., the values of accepting the hypothesis when
it is true, of accepting it when it is false, of rejecting it when it is true, and of rejecting it when
it is false). But traditional NHD procedure pays no attentionto utilities at all, and considers
the probability of the hypothesis, given the data – i.e., theinverse probability – only in the
most rudimentary way (by taking the rejection region at the extremes of the distribution rather
than in its middle). Failure of the traditional significancetest to deal with inverse probabilities
invalidates it not only as a method of rational inference, but alsoas a useful decision procedure.

3. The traditional NHD test unrealistically limits the significance of an experimental outcome
to a mere two alternatives, confirmation or disconfirmation of the null hypothesis. Moreover,
the transition from confirmation to disconfirmation as a function of the data is discontinuous –
an arbitrarily small difference in the value of the test statistic can change its significance from
confirmatory to disconfirmatory. Finally, the point at whichthis transition occurs is entirely
gratuitous. There is absolutely no reason (at least provided by the method) why the point of
statistical “significance” should be set at the 95% level, rather than, say the 94% or 96% level.
Nor does the fact that we sometimes select a 99% level of significance, rather than the usual
95% level mitigate this objection—one is as arbitrary as theother. 4. The null-hypothesis sig-
nificance test introduces a strong bias in favor of one out of what may be a large number of
reasonable alternatives. When sampling a distribution of unknown meanµ, different assump-
tions about the value ofµ furnish an infinite number of alternate null hypotheses by which
we might assess the sample mean, and whichever hypothesis isselected is thereby given an
enormous, in some cases almost insurmountable, advantage over its competitors. That is, NHD
procedure involves an inferential double standard—the favored hypothesis is held innocent un-
less proved guilty, while any alternative is held guilty until no choice remains but to judge it
innocent. What is objectionable here is not that some hypotheses are held more resistant to
experimental extinction than others, but that the differential weighing is an all-or-none side
effect of a personal choice, and especially, that the methodnecessitatesone hypothesis being
favored over all the others. In the classical theory of inverse probability, on the other hand, all
hypotheses are treated on a par, each receiving a weight (i.e., its “a priori” probability) which
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reflects the credibility of that hypothesis on grounds otherthan the data being assessed.
5. Finally, if anything can reveal the practical irrelevance of the conventional significance

test, it should be its failure to see genuine application to the inferential behavior of the research
scientist. Who has ever given up a hypothesis just because oneexperiment yielded a test statis-
tic in the rejection region? And what scientist in his right mind would ever feel there to be an
appreciable difference between the interpretive significance of data, say, for which one-tailed
p = .04 and that of data for whichp = .06, even though the point of “significance” has been
set atp = .05? In fact, the reader may well feel undisturbed by the charges raised here against
traditional NHD procedure precisely because, without perhaps realizing it, he has never taken
the method seriously anyway. Paradoxically, it is often themost firmly institutionalized tenet
of faith that is most susceptible to untroubled disregard – in our culture, one must early learn
to live with sacrosanct verbal formulas whose import for practical behavior is seldom heeded.
I suspect that the primary reasons why null-hypothesis significance testing has attained its cur-
rent ritualistic status are (a) the surcease of methodological insecurity afforded by having an
inferential algorithm on the books, and (b) the fact that a by-product of the algorithm is so use-
ful, and its end product so obviously inappropriate, that the latter can be ignored without even
noticing that this has, in fact, been done. What has given the traditional method its spurious
feel of usefulness is that thefirst, and by far most laborious, step in the procedure, namely,
estimating the probability of the experimental outcome under the assumption that a certain hy-
pothesis is correct, is also a crucial first step toward what one is genuinely concerned with,
namely, an idea of the likelihood of that hypothesis, given this experimental outcome. Having
obtained this most valuable statistical information underpretext of carrying through a conven-
tional significance test, it is then tempting, though of course quite inappropriate, to heap honor
and gratitude upon the method while overlooking that its actual result, namely, a decision to
accept or reject, is not used at all.

Toward a More realistic Appraisal of Experimental Data

So far, my arguments have tended to be aggressively critical—one can hardly avoid polemics
when butchering sacred cows. But my purpose is not just to be contentious, but to help clear
the way for more realistic techniques of data assessment, and the time has now arrived for some
constructive suggestions. Little of what follows pretendsto any originality; I merely urge that
ongoing developments along these lines should receive maximal encouragement.

For the statistical theoretician, the following problems would seem to be eminently worthy
of research:

1. Of supreme importance for the theory of probability is analysis of what we mean by
a proposition’s “probability,” relative to the evidence provided. Most serious students of the
philosophical foundations of probability and statistics agree (cf. Braithwaite, pp. 119f.) that
the probability of a proposition (e.g., the probability that the General Theory of Relativity
is correct) does not, prima facie, seem to be the same sort of thing as the probability of an
event-class (e.g., the probability of getting a head when this coin is tossed). Do the statistical
concepts and formulas which have been developed for probabilities of the latter kind also apply
to hypothesis likelihoods? In particular, are the probabilities of hypotheses quantifiable at
all, and for the theory of inverse probability, do Bayes’ theorem and its probability-density
refinements apply to hypothesis probabilities? These and similar questions are urgently in need
of clarification.
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2. If we are willing to assume that Bayes’ theorem, or something like it, holds for hypothesis
probabilities, there is much that can be done to develop the classical theory of inverse proba-
bility. While computation of inverse probabilities turns essentially upon the parametric a priori
probability function, which states the probability of eachalternative hypothesis in the set under
consideration prior to the outcome of the experiment, it should be possible to develop theorems
which are invariant over important subclasses of a priori probability functions. In particular, the
difference between the a priori probability function and the “a posteriori” probability function
(i.e., the probabilities of the alternative hypotheses after the experiment), perhaps analyzed as
a difference in “information,” should be a potentially fruitful source of concepts with which
to explore such matters as the “power” or “efficiency” of various statistics, the acquisition of
inductive knowledge through repeated experimentation, etc. Another problem which seems to
me to have considerable import, though not one about which I am sanguine, is whether inverse-
probability theory can significantly be extended to hypothesis-probabilities, given knowledge
which is only probabilistic. That is, can a theory of sentences of form “The probability of hy-
pothesisH, given thatE is the case, isp,” be generalized to a theory of sentences of form “The
probability of hypothesisH, given that the probability ofE is q, is p”? Such a theory would
seem to be necessary, e.g., if we are to cope adequately with the uncertainty attached to the
background assumptions which always accompany a statistical analysis.

My suggestions for applied statistical analysis turn on thefact that while what is desired is the
a posteriori probabilities of the various alternative hypotheses under consideration, computation
of these by classical theory necessitates the corresponding a priori probability distribution, and
in the more immediate future, at least, information about this will exist only as a subjective
feel, differing from one person to the next, about the credibilities ofthe various hypotheses.

3. Whenever possible, the basic statistical report should bein the form of aconfidence inter-
val. Briefly, a confidence interval is a subset of the alternative hypotheses computed from the
experimental data in such a way that for a selected confidencelevelα, the probability that the
true hypothesis is included in a set so obtained isα. Typically, anα-level confidence interval
consists of those hypotheses under which the p value for the experimental outcome is larger
than 1-α (a feature of confidence intervals which is sometimes confused with their defini-
tion), in which case the confidence-interval report is similar to a simultaneous null-hypothesis
significance test of each hypothesis in the total set of alternatives. Confidence intervals are
the closest we can at present come to quantitative assessment of hypothesis-probabilities (see
technical note, below), and are currently our most effective way to eliminate hypotheses from
practical consideration—if we choose to act as though none of the hypotheses not included
in a 95% confidence interval are correct, we stand only a 5% chance of error. (Note, more-
over, that this probability of error pertains to the incorrect simultaneous “rejection” of a major
part of the total set of alternative hypotheses, not just to the incorrect rejection of one as in
the NHD method, and is atotal likelihood of error, not just of Type I error.) The confidence
interval is also a simple and effective way to convey that all-important statistical datum,the
conditional probability (or probability density) function—i.e., the probability (probability den-
sity) of the observed outcome under each alternative hypothesis—since for a given kind of
observed statistic and method of confidence-interval determination, there will be a fixed rela-
tion between the parameters of the confidence interval and those of the conditional probability
(probability density) function, with the end-points of theconfidence interval typically marking
the points at which the conditional probability (probability density) function sinks below a cer-
tain small value related to the parameterα. The confidence-interval report is not biased toward
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some favored hypothesis, as is the null-hypothesis significance test, but makes an impartial
simultaneous evaluation of all the alternatives under consideration. Nor does the confidence
interval involve an arbitrary decision as does the NHD test.Although one person may prefer
to report, say, 95% confidence intervals while another favors 99% confidence intervals, there
is no conflict here, for these are simply two ways to convey thesame information. An experi-
mental report can, with complete consistency and some benefit, simultaneously present several
confidence intervals for the parameter being estimated. On the other hand, different choices
of significance level in the NHD method is a clash of incompatible decisions, as attested by
the fact that an NHD analysis which simultaneously presented two different significance levels
would yield a logically inconsistent conclusion when the observed statistic has a value in the
acceptance region of one significance level and in the rejection region of the other.

Technical note: One of the more important problems now confronting theoretical statistics is explo-
ration and clarification of the relationships among inverse probabilities derived from confidence-interval
theory, fiducial-probability theory (a special case of the former in which the estimator is a sufficient
statistic), and classical (i.e., Bayes’) inverse-probability theory. While theinterpretation of confidence
intervals is tricky, it would be a mistake to conclude, as the cautionary remarksusually accompanying
discussions of confidence intervals sometimes seem to imply, that the confidence-levelα of a given
confidence interval I should not really be construed as a probability thatthe true hypothesis, H, belongs
to the set I. Nonetheless, if I is anα-level confidence interval, the probability that H belongs to I as
computed by Bayes’ theorem given an a priori probability distribution will, in general, not be equal to
α, nor is the difference necessarily a small one – it is easy to construct examples where thea posteriori
probability that H belongs to I is either 0 or 1. Obviously, when different techniques for computing
the probability that H belongs to I yield such different answers, a reconciliation is demanded. In this
instance, however, the apparent disagreement is largely if not entirely spurious, resulting from differ-
ences in the evidence relative to which the probability that H belongs to I is computed. And if this is,
in fact, the correct explanation, then fiducial probability furnishes a partial solution to an outstanding
difficulty in the Bayes’ approach. A major weakness of the latter has always been the problem of what
to assume for the a priori distribution when no pre-experimental information isavailable other than that
supporting the background assumptions which delimit the set of hypothesesunder consideration. The
traditional assumption (made hesitantly by Bayes, less hesitantly by his successors) has been the “prin-
ciple of insufficient reason,” namely, that given no knowledge at all, all alternatives are equally likely.
But not only is it difficult to give a convincing argument for this assumption, it does not even yield a
unique a priori probability distribution over a continuum of alternative hypotheses, since there are many
ways to express such a continuous set, and what is an equilikelihood a priori distribution under one of
these does not necessarily transform into the same under another. Now,a fiducial probability distribution
determined over a set of alternative hypotheses by an experimental observation is a measure of the like-
lihoods of these hypotheses relative to all the information contained in the experimental data, but based
on no pre-experimental information beyond the background assumptions restricting the possibilities of
this particular set of hypotheses. Therefore, it seems reasonable to postulate that the no-knowledge a
priori distribution in classical inverse probability theory should be that distribution which, when experi-
mental data capable of yielding a fiducial argument are now given, resultsin an a posteriori distribution
identical with the corresponding fiducial distribution.

4. While a confidence-interval analysis treats all the alternative hypotheses with glacial im-
partiality, it nonetheless frequently occurs that our interest is focused on a certain selection
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from the set of possibilities. In such case, the statisticalanalysis should also report, when com-
putable, the precisep value of the experimental outcome, or better, though less familiarly, the
probability density at that outcome, under each of the majorhypotheses; for these figures will
permit an immediate judgment as to which of the hypotheses ismost favored by the data. In
fact, an even more interesting assessment of the postexperimental credibilities of the hypotheses
is then possible through use of “likelihood ratios” if one iswilling to put his pre-experimental
feelings about their relative likelihoods into a quantitative estimate. For letPr(H,d), Pr(d,H),
andPr(H) be, respectively, the probability of a hypothesisH in light of the experimental data
d (added to the information already available), the probability of datad under hypothesisH,
and the pre-experimental (i.e., a priori) probability ofH. Then for two alternative hypotheses
H0 andH1, it follows by classical theory that

Pr(H0,d)
Pr(H1,d)

=
Pr(H0)
Pr(H1)

×

Pr(d,H0)
Pr(d,H1)

(12)

Therefore, if the experimental report includes the probability (or probability density) of the data
underH0 andH1, respectively, and its reader can quantify his feelings about the relative pre-
experimental merits ofH0 andH1 (i.e., Pr(H0)/Pr(H1)), he can then determine the judgment he
should make about the relative merits of Ho and H1 in light of these new data.

5. Finally, experimental journals should allow the researcher much more latitude in publish-
ing his statistics in whichever form seems most insightful,especially those forms developed by
the modern theory of estimates. In particular, the stranglehold that conventional null-hypothesis
significance testing has clamped on publication standards must be broken. Currently justifiable
inferential algorithm carries us only through computationof conditional probabilities; from
there, it is for everyman’s clinical judgment and methodological conscience to see him through
to a final appraisal. Insistence that published data must have the biases of the NHD method
built into the report, thus seducing the unwary reader into aperhaps highly inappropriate inter-
pretation of the data, is a professional disservice of the first magnitude.

Summary

The traditional null-hypothesis significance-test method, more appropriately called “null-
hypothesis decision (NHD) procedure,” of statistical analysis is here vigorously excoriated for
its inappropriateness as a method ofinference. While a number of serious objections to the
method are raised, its most basic error lies in mistaking theaim of a scientific investigation
to be adecision, rather than acognitiveevaluation of propositions. It is further argued that
the proper application of statistics to scientific inference is irrevocably committed to extensive
consideration of inverse probabilities, and to further this end, certain suggestions are offered,
both for the development of statistical theory and for more illuminating application of statistical
analysis to empirical data.
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