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Scaling Theory and the Nature of Measurement

Among the foundational issues of scientific methodology, the theory of measure-
ment enjoys a notable distinction—namely, attention. For while most conceptual
procedures in technical science still remain appallingly underexamined by serious
metascience, a voluminous literature has formed around the topics of measurement
and scaling, especially in the behavioral sciences of the past two decades. Moreover,
the swelling chorus of these contributions has achieved a harmony which increas-
ingly approaches unison, its composition being Campbell’s (1920) classic theme
embellished by modern set-theoretical notions of a formal representation system
(e.g., Suppes & Zinnes, 1963), together with secondary motifs from Stevens’ (1951)
theory of scale types and a still unfinished coda on ‘conjoint measurement’ (Luce
& Tukey, 1964).

It is no intent of mine to suggest that anything is basically amiss with this
development. Quite the opposite: What has happened in measurement theory is
convincing evidence that powerful advances in scientific metatheory are possible
when rigorous thinkers are willing to put some intellectual muscle into the enter-
prise. Even so, the tonal balance of current measurement theory does not ring
true to my ear. Importantly distinct melodic lines have become fused where they
should be played at counterpoint. The theory of scale types has effected a strange
inversion of the ‘meaningfulness’ air which I find teeth-grittingly discordant. And
certain fundamental tones which I would score forte are at present scarcely audi-
ble. What I shall here attempt, therefore, is a new orchestration of this material.
At no one place will my version differ radically from standard doctrine on these
matters; but through an accretion of differences in emphasis and phrasing I hope to
convey a perspective on measurement theory which has greater breadth, solidity,
and extrapolative thrust than has been attained previously.

Actually, my primary concern will be with scaling, not measurement. For I shall
argue that ‘measurement’ in the tough sense of the word must be distinguished
from scaling, and that very little of the literature on ‘measurement theory’ has
had anything to say about genuine measurement at all. Even so, scaling and
measurement are so intimately connected that any account of the one remains
seriously incomplete until it examines the other as well. Also closely linked to
these, but nonetheless importantly distinct from them despite the confounding
which has burgeoned in the recent measurement-theory literature, are factorial
decomposition methods of data analysis.

The organization of this essay, then, will be as follows: First we shall formulate
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in considerable generality the definitions of ‘scale’, ‘scale type’, and ‘scale interpre-
tation’, the last being the pivotal concept of scaling theory. Next, we undertake an
abstract characterization of factorial decomposition, which differs formally from
scaling only in a few small technical details which, however, reflect a vital method-
ological distinction. And finally, measurement proper will emerge as but a species
under the genus of scale interpretation, albeit by far and away the most important
one. That the discussion will become increasingly programmatic and speculative
in its latter stages is an unfortunate necessity for which I ask the reader’s for-
bearance. The methodological vistas encountered there are so new that I am able
to chart but a few rough compass bearings in terrain which still awaits its pioneers.

1 Scales

Scaling theory is remarkable for the fact that its cognitive content consists almost
entirely of stipulative definitions—no postulates are required, and its major the-
orems are deductively trivial. To grasp the full significance of these abstractions,
however, is apparently no small thing. For the aura of mysterious profundity which
has come to invest so much of the scaling literature is sustained largely by a dearth
of clear thinking about the matters at issue.

The essential technical concepts upon which scaling theory rests are ‘property’,
‘relation’, ‘function’, and ‘(scientific) variable’. Though all but the last of these are
familiar notions in logic and mathematics, their review will make an appropriate
beginning if only to introduce present terminology and notation.

Background Concepts

With considerable reluctance, I shall here provisionally adopt an extensional def-
inition of ‘property’ (or, what is essentially the same, ‘attribute’), namely, that
properties (attributes) are classes of the entities whose properties they are. That
is, we shall suppose a property P over a domain d to be a subset p of d such that a
member d of d has property P iff1 d belongs to p. For example, human ‘baldness’
(or ‘being bald’) is to be identified with the class of all bald humans, while over
the domain comprising all chunks of minerals, the property ‘crystalline’ is the class
of all crystalline rocks. What is objectionable about this usage, of course, is that
‘properties’ are really distinguishing features of the entities which possess them, so
that in principle, properties can be coextensive even though non-identical.2 (Thus

1As the reader is doubtlessly aware, ‘iff’ is a standard abbreviation for ‘if and only if’.
2The difference between properties and classes is often characterized as the difference between

a predicate’s intension and extension, the latter being the class of things which satisfy it while
the former is held to be the predicate’s meaning. However, I have argued elsewhere (Rozeboom,
1962a) that properties are what predicates designate, and must hence be distinguished from both
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if all crystalline rocks were translucent and conversely, we should still deny that
crystallinity and translucency are the same property of rocks even though the
class of crystalline rocks would be identical with the class of translucent rocks.)
However, equating properties with classes has become standard practice in contem-
porary set-theoretical approaches to scaling, while in this context any technically
explicit attempt to preserve the distinction uselessly complicates the analysis at
most points, especially since our intuitive ability to discriminate between coexten-
sive properties fails altogether for abstract domains. (E.g., are ‘being even’ and
‘being one greater than an odd number’ the same or different attributes of posi-
tive integers?) Hence an extensional introduction to scaling theory can be justified
pragmatically, especially insomuch as once the extensional version is well under-
stood, the modifications required to do justice to the class/property distinction are
minor and obvious. Even so, since the most challenging problems of scaling and
measurement cannot be expressed at all in extensional terms, I shall differentiate
notationally between (a) sets (classes) which are here truly sets and (b) properties
whose present set-characterization is only provisional by using boldface symbols
for the former and italics for the latter. Similarly, as much as possible I shall write
predications in logistical rather than class-membership notation.

A relational property, or simply ‘relation’, is a property over a domain of ordered
k -tuples of entities, where k is some integer appropriate to the relation in question
and the latter is said, more specifically, to be a ‘k -adic’ or ‘k -ary’ relation. That is,
if e1, . . . , ek are k not-necessarily-distinct sets of entities, then any property over
the product set e1 × e2 × · · · × ek is a k -adic relation.3

For example, the binary relation ‘x is the husband of y ’, construed exten-
sionally, is the set of all ordered pairs of persons such that the first person is a
man, the second is a woman, and the first is married to the second; while the
ternary numerical relation ‘lies between’ is the set of all triples of numbers such
that the first is larger than one of the latter two and is smaller than the other.
In logistical notation, the formula ‘Rk(e1, . . . , ek)’ asserts that entities e1, . . . , ek
stand in relation Rk; whereas in set-theoretical notation this same idea is expressed
‘〈e1, . . . , ek〉 ∈ r(k)’, where r(k) is some subset of a k -fold product domain. When
all the k -tuples which belong to relation r(k) are members of the k -fold product
of a set e with itself—i.e., if r(k) ⊂ ek—we shall say simply that r(k) is a k -ary
relation over e.

A function over a set a into a set v may now be defined as any subset φ of
product set a×v which has the special feature that for each element a in a, there

the predicate’s extension and its meaning.
3The reader whose knowledge of set-theoretical terminology is scanty may like to be reminded

that a ‘product set’ e1 × e2 × · · · × ek is the set of all ordered k -tuples such that a k -tuple
〈e1, . . . , ek〉 belongs to e1 × · · · × ek iff e1 ∈ e1, . . . , ek ∈ ek. When e1, . . . , ek are all the same set
e, product set e1 × · · · × ek may be written more compactly as ek.
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exists one and only one element v of v such that 〈a, v〉 ∈ φ. The elements of a are
known as the arguments of function φ, while if a is an argument of φ, the element
v of v for which 〈a, v〉 ∈ φ is the value of φ for a. Correspondingly, we may call
sets a and v the argument domain and value domain, respectively, of function φ,
while the set v′ of those elements of v which are actually a value of φ for some
argument is the range of φ.

We shall adopt the compound symbol ‘φa’, in which the function symbol is pre-
fixed to an argument term ‘a’ without parentheses around the latter, to designate
the value of φ for a.

A function φ from argument domain a into value domain v also defines a
mapping of properties, relations, and other constructions on a into corresponding
properties, etc., on v. This idea may be made notationally explicit as follows: If
ak is a k -tuple of a-elements (i.e., ak ∈ ak), then ‘φ∗ak’ designates the k -tuple in
vk whose components are the values of φ for the corresponding components of ak,
i.e.,

Def. 1. φ∗〈a1, . . . , ak〉 =def 〈φa1, . . . , φak〉;

while if r(k) is a k -ary relation over a (i.e., r(k) ⊂ ak), then φ∗r(k) is the set of
k -tuples in vk into which φ maps the k -tuples in r(k)—i.e.,

Def. 2. φ∗r(k) =def The set which contains a given k -tuple vk iff vk is the value
of φ∗ for some k -tuple in r(k),

or expressed logistically,

Def. 2a. φ∗Rk(xk) =def (∃a
k)[Rk(ak) · xk = φ∗ak]

where Rk and φ∗Rk are k -adic relations over the argument and value domain,
respectively, of φ. The symbol ‘φ∗’ in itself may be construed to designate the
function whose argument domain a∗ is the set of all subsets of all product sets
of φ’s argument domain a, whose range v′∗ is the set of all subsets of all product
sets of φ’s range v′, and whose value for a given argument in a∗ is defined by
Def. 2.4 We may call extended domains a∗, v∗, and function φ∗ the ‘first-level
developments’ of a, v, and φ, respectively.

4This implies that when I write ‘vk = φ∗ak ’ (cf. Def. 1) for k -tuples vk in v∗ and ak in
ak what I really meant is that φ∗ maps the unit class of ak into the unit class of vk. However,
no harm will be done, and much notational simplification achieved, if the same symbol is used
ambiguously to designate both an entity and its unit class. Also for simplicity, I shall write ‘φ∗R’
for the set of relations into which φ∗ maps the elements in a set R of relations over φ’s arguments.
(Strictly speaking, the proper notation would be ‘φ∗∗R’.)
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The v-relation φ∗r(k) into which a function φ from a into v maps a k -ary
relation r(k) over a may be referred to as the image in v of r(k) under φ, or ‘the
φ-image of r(k)’ for short. Conversely, if q(k) is a relation over φ’s range, the set of
all k -tuples in ak whose φ-images are in q(k) may be called the contraimage in a

of q(k) under φ (for short, ‘the φ-contraimage of q(k)’) and symbolized ‘φIq(k)’).
That is, expressed logistically,

Def. 3 φIQk(xk) =def Q
k(φ∗xk).

The symbol ‘φI ’ itself may be thought to name the function—call it φ’s ‘first-
level contra-development’—whose argument domain is the first-level development
of φ’s range, whose value domain is the first-level development of φ’s argument
domain, and whose value for any given argument is the latter’s φ-contraimage. An
immediate consequence of φI ’s definition is that

Theorem 1. For any relation q(k) over the range of a function φ, and any k -tuple
ak of φ’s arguments, the φ-image of ak belongs to q(k) iff ak belongs to the
φ-contraimage of q(k).

A function is said to be one-one if it has a different value for every different
argument, and is many-one otherwise. If φ is a one-one function from a into v,
there exists a function from the range v′ of φ into a, designated ‘φ−1’ called the
inverse of φ, such that the value of φ−1 for an argument v in v′ is the element of a
whose value of φ is v. It is easily seen that whenever φ−1 exists, an argument a of
φ is the value of φ−1 for an element v of φ’s range iff a is the φ-contraimage of v,
and hence, more generally, that φ−1∗ = φI . Moreover, since v = φa and a′ = φ−1v
jointly entail a′ = a,

Theorem 2. If φ is a one-one function, then any relation r(k) over φ’s argument
domain is the φ-contraimage of its φ-image—i.e., for any relations r(k) and q(k),
r(k) = φ−1q(k) iff q(k) = φ∗r(k). Corollary : If φ is a one-one function, then for
any relation r(k) and any k -tuple ak of φ’s arguments, ak belongs to r(k) iff the
φ-image of ak belongs to the φ-image of r(k).

If φ is not one-one, however, the biconditionals in Theorem 2 and its corollary are
weakened to conditionals.

Finally, we note that if φ2 is a function from set m into set v while φ1 is a
function from set a into a subset of m, then there exists a function from a into v,
designated ‘φ2φ1’ and known as the product or composition of φ2 with φ1, whose
value for an argument a is the element of v which is the value of φ2 for the element
of m which is the value of φ1 for a. That is, φ2φ1a is the value of φ2 for element
φ1a of m.
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Scientific Variables

We are now ready to formalize the all-important notion of ‘variable’ in the scientific
sense of this distressingly ambiguous word. The role of this concept in technical
science is complex and needful of much more reconstructive analysis than it has
received to date. I have elsewhere (Rozeboom, 1961) explored the formal properties
of scientific variables at some length (though still far from exhaustively) and will
here repeat only so much of the analysis as present purposes require.

In brief, the scientific conception of ‘variable’ brings technical efficiency to
study of the properties of things. A field of scientific inquiry is delimited (albeit
seldom very precisely) by a class of objects or events which may be called the
science’s ‘subject domain’, together with a more or less restricted set of properties
and relations over this domain whose incidence and intercorrelations constitute
the science’s concern and which may be called its ‘scope’. Although a large pro-
portion of a science’s most advanced technical labor is given to development of
precise, reliable criteria for the properties included in its scope, practical problems
of definition and detection are not now at issue. What is germane here is that
the properties in a science’s scope always come in clusters such that the proper-
ties within each cluster are mutually exclusive and jointly exhaustive over their
subject domain. For example, each of the property sets indicated by the following
predicate schemata is such that for each member of the domain of time-slices of
organisms, one and only one property in the set is true of that organism at that
time:

belongs to species [variously fill the blank with names of all different
species];

weighs lbs. [variously fill the blank with nonnegative real numbers];

exposed to a 40 db white noise [variously fill the blank with ‘is’ or ‘is
not’].

Such property clusters are basically what scientists mean by the term ‘variable’,
except that while this is the meat of the concept, its more advanced employments
require a formalization slightly more sophisticated than this.

Accordingly, I shall distinguish between natural, or unscaled, variables on the
one hand, and formal, or scaled, variables on the other. ‘Natural’ variables are
what arise most directly out of a science’s scope, namely, the property clusters
just cited. Specifically,

Def. 4. If α is a set of properties over a subject domain d such that for each
member d of d there is one and only one α in α such that α(d), then α is a
natural, or unscaled, variable over d.
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If α is a natural variable over domain d, then obviously there also exists a function
from d into the set of all subsets of d whose value for a member d of d is the
property in α which is possessed by d. Although for most purposes we need not
distinguish between this function and natural variable α itself, the former will be
symbolized by ‘α̇’ when technical precision is desired. I shall consistently use the
phrase ‘the value of (natural variable) α for (its argument) d ’ to designate the
value of function α̇ for d, namely, the property α in α such that α(d).

In contrast to natural variables, which are sets of properties over a science’s
subject domain, ‘formal’ variables are functions over the latter. Specifically,

Def. 5. If φ is a function from domain d into a set n of abstract entities, then φ
is a formal, or n-scaled, variable over d.

I have obscurely characterized the values of a formal variable as ‘abstract entities’
in order to avoid premature restrictions as to their admissible nature. In practice,
n is usually a set of real numbers, and for this reason I shall henceforth refer to
the values of a formal variable as nums when their more specific nature is left
open. That is, ‘num’ will be a systematically ambiguous term, like an unspecified
parameter in an algebraic equation, which is to be heuristically understood as
‘number’, but which at times will receive interpretations other than this.

To appreciate the distinction between a natural (unscaled) variable and a for-
mal (num-scaled) counterpart thereof, consider the predicate schema

weighs lbs.

By alternatively filling the blank with the names of all positive real numbers, we
generate a set of predicates which collectively designate a set of weight properties
which are mutually exclusive and exhaustive over any subject domain of time-slices
of things. This set of weights is the natural variable Weight, and if John Smith,
today, weighs 163 lbs., the value of the unscaled Weight variable for Smith, today,
is weighs 163 lbs. To describe the variable’s value in this case we must employ the
full predicate ‘weighs 163 lbs.’ or its logical equivalent (e.g., ‘weighs 2,608 oz.’),
not just the numeral ‘163’ nor even ‘163 lbs.’. On the other hand, the predicate
schema ‘weighs lbs.’ may also be taken to define a formal variable, Weight-

in-lbs., whose value for an individual weighing n lbs. is the number n. The value
of the formal Weight-in-lbs. variable for John Smith today is the number 163, not
the property of weighing 163 lbs. nor even the ‘denominate number’ 163 lbs.

In the preceding example, the nums which are the formal variable’s values are,
in fact, numbers. That this is not necessarily the case is illustrated by the predicate
schema
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has -colored hair.

When this is variously completed with alternative color descriptions it generates
a natural variable over hirsute creatures whose value for an organism whose hair
color is C is the attribute ‘having C -colored hair’. But it may also be taken to
define a function from hirsute creatures into colors such that the value of this
function for any given argument is the color of the latter’s hair. So construed,
Hair-color becomes a num-scaled formal variable whose ‘nums’ are colors.

It should be noted that for any num-valued formal variable φ over domain d,
there exists a corresponding natural variable αφ over d whose value for any d such
that φd = n is the property of having a φ-scale value equal to n. When ‘properties’
are interpreted extensionally, the difference between φ and αφ is that the value of
φ for any d in d is an element of num domain n (i.e., paradigmatically a number),
whereas the value of αφ for d is a subset of d, namely, those d′ such that φd′ = φd.

Semantic Scales vs Formal Scales

Just as every formal variable has an unscaled (natural) counterpart, so is it the case
that to every natural variable there corresponds not merely one but a multitude of
num-valued formal variables, and conceptually replacing a natural variable with
one of its formal equivalents is basically what is meant by ‘scaling’. In relatively
unsophisticated contexts, however, scaling is often a half step which presents the
verbal trappings of a formal scale without actually adopting its substance. In
such instances, symbols which ordinarily name nums are adapted to serve as code
abbreviations for the predicates describing the values of a natural variable.

Suppose, for example, the administration of Brainsweat University classifies
each resident student according to his major subject—e.g., Chemistry major, Psy-
chology major, French major, etc., together with one or two wastebasket categories
like ‘unknown’ or ‘other’ to deal with otherwise unclassifiable cases. This defines a
natural College-major variable over the domain of Brainsweat U. students whose
value for any student whose major subject is X is the property ‘majoring in X ’.
However, insomuch as the predicate schema ‘is majoring in ’ is hopelessly un-
wieldy for efficient processing of student records, the administration has assigned
to each College-major alternative a code numeral—say ‘4’ for Chemistry, ‘8’ for
Psychology, ‘13’ for French, etc.—for recording college-major statuses in its files.
Persons familiar with this code can then with perfect propriety make statements
such as ‘John Smith’s major is 4’, ‘Mary Jones’s major is 8’, etc., without the
slightest intimation that the college majors of these students involve numbers in
any way; for these verbal expressions, when understood as intended, are merely
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shorthand for ‘John Smith’s major is Chemistry’, ‘Mary Jones’s major is Psychol-
ogy’, etc. By the same token, it would be literally senseless to say ‘Mary Jones’s
major is twice as large as John Smith’s’, or ‘The average major at Brainsweat U.
is 11.36’, for these claims, upon translation, respectively contend that being a Psy-
chology major is twice as large as being a Chemistry major, and that the sum of
all the college-major statuses of Brainsweat U. students, divided by their number,
is equal to a college-major attribute whose code numeral is ‘11.36’—which, cogni-
tively, is complete gibberish, the former in that the linguistic expression ‘Majoring
in subject X is twice as large as majoring in subject Y ’ has no meaning, and
the latter in that addition and division are not operations which are defined on
college-majoring attributes, nor has any college major been assigned code numeral
‘11.36’.5

On the other hand, once a numerical code has been stipulated for the natural
College-major variable, we can also derive from this a corresponding number-
valued formal variable—call it College-major score—by defining the College-major
score of a Brainsweat U. student to be that number which is normally designated
by the numeral which, in the University’s coding system, abbreviates that student’s
College-major category. Under this construction, the College-major scores of John
Smith and Mary Jones are the numbers 4 and 8, respectively; and it is not only
meaningful but impeccably correct to say that Mary Jones’s College-major score is
twice as large as John Smith’s because the number 8 is, in fact, twice as large as the
number 4. Similarly, asserting that the average College-major score at Brainsweat
U. is 11.36 is perfectly sensible, albeit not necessarily accurate, because the average
number into which the College-major-score function maps Brainsweat U. students
may indeed be 11.36 even though there is no College-major attribute to which this
number corresponds.

The two kinds of scaling just illustrated may be described generically as se-

mantic scaling on the one hand, and formal scaling on the other.

Def. 6. A scale-name A and set a of symbols compose a semantic scale for natural
variable α in a given language community iff, for every property α in α, there
exists a unique element a of a such that within this language community the
symbol sequence

’s value of A is a

(or some paraphrase thereof) means ‘ has property α.’

Since in paradigm instances of semantic scaling the set a consists of numerals—

5Strictly speaking, this charge of meaninglessness must be qualified somewhat in that when
properties are construed to be classes, size comparisons and arithmetic operations are, in fact,
well defined for them by set theory.
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i.e., the symbols normally used to name numbers—we may generically refer to the
elements of a as ‘numes’, and presume that in their primary linguistic contexts,
numes designate nums. To an outsider or novice at scaling practices, semantic
scales thus appear to find something numish about the data so scaled, and tempt
inferences from these scalings which would be perfectly legitimate were the numes
in this context actually referring to nums, but which, precisely because these numes
do not here refer to their accustomed nums, are bereft of any cognitive content.

However, given a semantic scale 〈A,a〉 for natural variable α over domain d,
we can always derive from this a formal scale φ of α by letting φ be that function
over d whose value for each argument d is the num ordinarily designated by the
nume which is the A-code abbreviation for d ’s value of α. More generally, without
concern for the formal scale’s conceptual origin,

Def. 7. A function φ from domain d into a num domain n is a formal scale for a
natural variable α over d iff αφ = α—i.e., if to each α in α there corresponds
a num n in n such that for any d in d, φd = n iff α(d).

It follows immediately that φ is a formal scale for α if and only if φ has the same
argument domain as α and there exists a function f from α into the range of φ
such that for any argument d, φd is the num into which f maps a property α iff
α is the value of α for d. Such an f will be called a scaling transformation of α
into φ. A scaling transformation of α into a formal scale φ for α must obviously
be one-one, since otherwise, contrary to definition, the value of φ for an argument
d would not suffice to determine d ’s value of α. Hence a function f is a scaling
transformation of α into φ iff α̇ = f−1φ.

It is evident that if a function φ whose range is included in num domain n is a
formal scale for natural variable α, while g is some one-one function from n into
another num domain n′ not necessarily distinct from n, then the product function
gφ, whose range is included in n′, is also a formal scale for α. Conversely, if φ1
and φ2 are both formal scales for α, there exists a one-one function g (namely,
g = f2f

−1
1 , where f1 and f2 scale α as φ1 and φ2, respectively) from the range

of φ1 into the range of φ2 such that φ2 = gφ1. Hence if φ1 is a formal scale for
natural variable α, another formal variable φ2 is also a scale for α iff there exists
a one-one mapping of φ1-values into φ2-values. Such a function, which converts
one formal scale for α into another, may be called a rescaling transformation of
the first into the second, while one formal scale is a ‘rescaling’ of another iff there
exists a rescaling transformation of the one into the other.

It is of some technical interest to note that so long as we place no restrictions
on the kinds of entities which can serve as the ‘num’ values of a formal variable, the
function α̇ which maps the arguments of natural variable α into their α-values is
itself a formal scale for α. While this is a special case highly remote from what is
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normally envisioned in scaling practice, it serves to underscore the unusual breadth
of the concept of ‘scale’.

Scale ‘Types’ and Scale ‘Interpretations’

Since every formal variable is a formal scale and conversely, the only difference
between these two notions is that ‘formal variables’ are numvalued functions at-
tended to for their own sake, whereas ‘formal scales’ are these same functions
considered in their relation to the natural variables which they scale. More specif-
ically, insomuch as ‘scaling’ is simply a methodology for expeditious processing of
natural variables, our primary interest in formal scales lies in what we can infer
from the properties of scaled data about the natural features of these data. That
is, we want to know what a proposition about formal scales signifies in terms of
the natural variables to which these scales correspond. Translation of propositions
about scaled variables into propositions about their natural counterparts may be
described as interpreting the scales in question. Thus the pragmatics of scaling
has three major divisions: (1) What formal scales can be effectively defined for
a given natural variable α? (2) What interpretations can be made of the formal
scales available for α? And finally, (3) given a choice among formal scales for α,
which ones are interpretively most acceptable? Scaling theory can say little about
the first of these without examining the detailed definitions of α’s values, but with
a little care it can easily set aright the confusions and false doctrines which still
abundantly hold forth on matters (2) and (3).

Any proposition about a given variable, scaled or unscaled, makes reference
to (a) one or more specific values of the variable, and/or (b) the variable as a
whole. While a theory of scale interpretation which includes the latter case is
awkward to develop in abstract generality, the only instances of (b) which appear
to have any scientific importance are statistical assertions which can be reduced
to or arbitrarily well approximated by propositions of type (a). Consequently, we
may consider the primary concern of scaling theory to be assertions about specific
values of variables—i.e., propositions which can be expressed logistically in the
form ‘Rk(x1, . . . , xk)’, where ‘Rk( )’ is a k -place sentence schema and each xi is a
particular value of a natural or formal scientific variable. For example,

On the average, organisms are longer lived than organisms . [A
dyadic schema whose blanks are to be filled with predicates of form ‘be-
longing to species S ’.]

John Smith . [A monadic schema whose blank can be filled with any
monadic predicate such as ‘is 71 inches tall’, ‘has brown hair’, etc.]

Any object is twice as heavy as any two combined objects and
, respectively. [A triadic schema whose blanks are to be filled with
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predicates of form ‘weighing w lbs.’.]

is equal to or greater than . [A dyadic schema whose blanks are
to be filled with numerals.]

The first three of these generate statements about the values of certain natural
variables, whereas the last is about numbers and hence about the values of any
number-scaled formal variable.

If ‘Rk( )’ is a k -place sentence schema which becomes a true or false assertion
when completed by any k -tuple of terms respectively designating values of a natural
variable α, it may be construed to name a k -adic relation Rk over the domain of
α-values. Similarly, a k -place sentence schema ‘Qk( )’ which makes a true or false
statement when completed by any k -tuple of numes designating nums in domain n

defines a k -adic relation Qk over n. If n is the range of values for some formal scale
φ of α, the possibility thus arises that α-relation Rk may be so coordinated with
num relation Qk that information concerning Qk for a k -tuple of φ-scale values
reveals how the corresponding k -tuple of α-values stand in respect Rk.

More specifically, suppose that φ is a num-valued formal scale for natural vari-
able α derived from the latter by scaling transformation f—i.e., φ = fα̇. Then
every k -tuple αk of properties in α and k -adic relation Rk over property-domain
α is mapped by f into its f -image fαk and fRk, respectively, in the range of φ;
while conversely, to every num k -tuple nk and k -adic num relation Qk over the
range of φ (i.e., over the range of f) there corresponds a k -tuple f Ink of α-values
and k -adic α-relation f IQk which is the f -contraimage of nk and Qk, respectively.
The notions of ‘representing’ a relation over the values of a natural variable and
‘interpreting’ a relation over the values of a formal variable may thus be explicated
as

Def. 8. A relation Rk over values of a natural variable α is represented on a
num-valued formal scale φ for α by num relation Qk over the range of φ iff Qk

is the image of Rk under the scaling transformation of α into φ.

Def. 9. A relation Rk over values of natural variable α is an interpretation of
num relation Qk over the range of formal scale φ for α iff Rk is the contraimage
of Qk under the scaling transformation of α into φ.

More generally, given any mapping f of one domain into another, we can think
of relations over f ’s argument domain as ‘represented’ by their f -images, and
relations over f ’s range as ‘interpreted’ by their f -contraimages. In our present
case, since any scaling transformation f is necessarily one-one, we know from
Theorem 2 that the f -contraimage of the f -image of any relation Rk over α is
simply Rk itself. Hence,
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Theorem 3. Num relation Qk represents α-value relation Rk on scale φ of α iff
Rk is an interpretation of Qk on φ.

In Part II, however, we shall encounter a situation which is formally identical
with scaling in all respects except that the mapping function is not one-one, with
the crucial consequence that representation and interpretation do not generally
coincide.

The significance of ‘interpretation’ for scaling practice is, of course, that if in
our study of a natural variable α we have identified a property Rk over k -tuples of
α-values which happens to interest us, and Rk is an interpretation of num-relation
Qk over the values of some formal scale φ for α, then whenever we observe that a
given k -tuple nk of nums does or does not have property Qk we know immediately
that the k -tuple of α-values represented on scale φ by nk correspondingly does or
does not have property Rk. That is,

Theorem 4. If φ is a formal scale for natural variable α on which num relation
Qk is interpreted by α-value relation Rk, then for any k -tuple αk of α-values
whose representation on φ is num k -tuple nk, Qk(nk) iff Rk(αk).

This is actually but a corollary of the following more general representation theo-
rem:

Theorem 5. If α-value relations Rk and Sk are respectively interpretations of
num relations P k and Qk over the values of a formal scale for α, then P k entails
(i.e., is a subset of) Qk iff Rk entails Sk.

Theorems 4 and 5 show that if we have been able to find a scale φ for α whose
representation of α-value relation Rk is sufficiently docile formally—if, e.g., Rk’s
representation is a well-behaved mathematical property about which many cheerful
facts are known—then study of this representation may reveal things about Rk

which are much less discernible in terms of the unscaled data, such as whether or
not a particular k -tuple of α-attributes with known scale values satisfies Rk.

There are many directions in which the concepts of scale representation and in-
terpretation can be generalized. Most of these, which are immediate consequences
of the general theory of isomorphisms, go far beyond any need which scientific re-
search or applied technology will have for years to come. But three have sufficient
immediate importance to warrant their inclusion in basic scaling theory, namely,
boundary restrictions, simultaneous interpretation of multiple num relations, and
conjoint interpretation of formal scales for several natural variables. The point
about boundary restrictions is that some interesting relations Rk over α may not
be well-defined for all k -tuples in αk, or Rk may coincide with the contraimage of
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num relation Qk under an otherwise desirable scaling of α only within a restricted
subset of αk. For example, if α is a natural hair-color variable over mammals
whose values are defined by the predicate schema ‘having -colored hair’ plus a
wastebasket alternative of hairlessness, relations among hair-colors (darker-than,
equally-saturated-as, etc.) which might otherwise be represented by simple arith-
metic relations over a suitable numerical scale for hair-color would undoubtedly
fail to extend to hair-color k -tuples including the hairlessness value. Secondly,
most formal scales in practice have recognized interpretations for more than just a
single relation over the scale’s values. For example, ‘ratio’ scales are traditionally
understood to be number-valued scales on which numerical ratios have an interpre-
tation. But ‘ratio’ denotes not just one binary numerical relation but a transfinite
class of these, one for each different value of parameter c in ‘ divided by
equals c’. These additions—boundary restrictions and multiple interpretations—
are united with a concept of ‘scale interpretation’ more abstractly substantival
than that of Def. 9 in the following definition styled after Suppes and Zinnes
(1963):

Def. 10. An interpretation of formal scale φ for natural variable α is a triplet
〈B,R,Q〉 of indexically ordered sets of relations (where for each i in index set
i, ‘Bk

i ’, ‘R
k
i ’, and ‘Qk

i ’ designate a ki-adic relation in B, R, and Q, respectively)
such that B and R comprise relations over α, Q comprises relations over values
of φ, and for each Qk

i in Q, the corresponding Bk
i in B and Rk

i in R are such
that within Bk

i , R
k
i coincides with the contraimage in α of Qk

i under the scaling
transformation of α into φ—i.e., if φ = fα̇,

(∀αk)[Bk
i (α

k) ⊃ [Rk
i (α

k) ≡ Qk
i (f

∗αk)]]

Def. 11. If 〈B,R,Q〉 is an interpretation of scale φ for natural variable α, then
the sets B and R are the interpretation’s boundary restrictions and content,
respectively, while the setQ of relations over φ-scale values is the interpretation’s
type. We may also say that Q and R are respectively the ‘type’ and ‘content’
of scale φ, relative to each other, under boundary restrictions B.

Finally, although traditional scaling theory has thought to interpret only rela-
tions over a single scale, recent developments require a concept of ‘conjoint’ scaling
in which num representations are found for relations over values of two or more
natural variables. The easiest way to formalize this notion is by means of ‘vectorial’
variables:

Def. 12. A natural variable A (or formal variable Φ) over domain d is an m-
dimensional vectorial variable iff there exist m natural variables α1, . . . ,αm

(formal variables φ1, . . . , φm) over d such that the value of A(Φ) for each argu-
ment d is the property m-tuple 〈α̇1d, . . . , α̇md〉 (num m-tuple 〈φ1d, . . . , φmd〉).
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A vectorial variable whose value for each argument d is them-tuple 〈φ1d, . . . , φmd〉
may be designated ‘〈φ1, . . . , φm〉’, while variable φi(i = 1, . . . ,m) is said to be the
ith component or ith dimension of vectorial variable 〈φ1, . . . , φm〉. It is not as-
sumed that all components of a vectorial variable have the same range of values.

Def. 13. Vectorial variable 〈φ1, . . . , φm〉 is a formal scale for natural variable
〈α1, . . . ,αm〉 iff for each i = 1, . . . ,m, φi is a formal scale for αi. A formal scale
of a natural vectorial variable may also be said to be a ‘conjoint scaling’ of the
latter’s components.

Def. 14.6 If 〈B,R,Q〉 is an interpretation of formal scale 〈φ1, . . . , φm〉 for natu-
ral vectorial variable α1, . . . ,αm, then 〈B,R,Q〉 is a conjoint interpretation of
scales 〈φ1, . . . , φm〉, the type, content, and boundary restrictions of which are
Q, R, and B, respectively.

The foregoing explication of ‘scale interpretation’ can be stretched to cover
the statistical analysis of scaled data as follows:7 A ‘statistical property’ of nat-
ural variable α or formal variable φ may be defined as any abstraction from a
‘distribution’ of α or φ, the latter being something which, for variables with a
finite number of values, is identified by a function δ which maps the variable’s
values into nonnegative real numbers whose sum over δ’s range is unity. Though
not essential here, it should be added that the distribution of α or φ is relative
to some further condition C (notably, C specifies a particular ‘population’ within
which the variable is distributed, together with the kind of measure—frequency vs.
probability—δ is), and that if δ is the distribution function for a natural variable
α under condition C, then the distribution function under C for any formal scale
φ = fα̇ for α is δf−1. Now, any distribution function δ whose argument domain
is the range v of some natural or formal variable is either identical with or can be
approximated as closely as we please by a distribution function δ′ over v whose val-
ues are rational numbers with a common denominator k (where the larger is k, the
closer is the approximation), while any such δ′ can be represented by a k -tuple vkδ ,
of its arguments such that for each argument vi of δ

′, the number of components in
vkδ which are vi equals k times d′vi. Every rational-valued distribution function for
a finite-valued variable is thus equivalent to some k -tuple of the variable’s values;
so if every distribution function possible for a finite valued variable is replaced
with a suitably close rational approximation thereto with common denominator k,

6An improved version of Def. 14 would exclude from what is said to be ‘jointly interpreted’
any component of the vectorial scale which contributes to the interpretation only vacuously.
(Component scale φi is vacuous in interpretation 〈B,R,Q〉 of 〈φ1, . . . , φm〉 iff 〈B,R,Q〉 is also
an interpretation of 〈φ1, . . . , φi−1, fφi, φi+1, . . . , φm〉 for any rescaling transformation f whose
range is the same as φi.)

7A similar though somewhat more restricted approach has previously been exploited by Adams,
Fagot, and Robinson (1965)
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every statistical property S abstractable from the variable’s distribution becomes
equivalent to some k -adic relation over the variable’s values. Hence as a rational
approximation, if φ is a formal variable derived from natural variable α by scal-
ing transformation f, a statistical property S of α’s distribution under condition
C is an interpretation of statistical property T over the condition-C distribution
of scale φ iff the f-contraimage of the relation over φ-values corresponding to T

coincides with the α-value relation corresponding to S. To extend this treatment
to variables with a transfinite number of values, we need only note that from a
variable α (or φ) of the latter sort a finite-valued variable α′ (or φ′) can be derived
by grouping values of α(φ) in such a fashion that for virtually all statistics which
interest us, the statistical properties of α′(φ′) approximate as closely as we please
the corresponding statistical properties of α(φ).

Admissible Transformations and the Theory of Scale Types

I now propose to discredit certain prevalent if obscure dogmas, emanating largely
from the views of S. S. Stevens, concerning what can and what cannot legitimately
be done with a num-scaled variable. The proportions in which my summary of
these strictures reflects, respectively, Stevens’ own beliefs, exegeses by his follow-
ers, and my own distorted perception of these, are of no great moment; for the
destruction even of straw men, if sufficiently fearsome, can present a sobering
warning to those who have become enamored of strawish ways.

Basic to the dogmas now at issue are the notions of scale type and admissible

transformation. A scale’s ‘type’ in the Stevens’ tradition is basically the same as
defined here, namely, a relation or set of relations over the scale’s values which
represents an empirical relation or set of empirical relations over the data scaled;
while an ‘admissible’ transformation is a rescaling transformation under which
this interpretation is preserved—i.e., if φ is a numerical scale of type Q with
respect to content R, then transforming φ into another scale φ′ is admissible if
and only if number relations Q still represent empirical relations R on scale φ′. It
is then alleged that a rescaling φ′ of φ is a methodologically legitimate alternative
to scale φ if and only (with emphasis upon the ‘only’) if φ′ is related to φ by
an admissible transformation, and that a statistic or other relational property
over scale values is ‘meaningful’ if and only if that property is invariant under all
admissible transformations of the scale. We shall now see that both of these claims
are complete nonsense.

To begin, it is important to be clear about a serious defect in the Stevens-
tradition (hereafter abbreviated ‘ST’) conception of ‘scale type’. Whereas we have
here defined a scale’s type as relative to a particular interpretation, ST doctrine
construes this as an absolute property of the scale—i.e., scale φ either is or is not
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of type Q, simpliciter. In particular, ST proponents are especially industrious at
proscribing scales as not being of such-and-such a type, notably when scale-type
labels are applied in the exclusive sense by which, e.g., a scale identified as ‘ordinal’
is thereby also stigmatized as not having an ‘interval’ or ‘ratio’ interpretation. In
general, whenever a set Q of num relations is said to be the type of num-valued
scale φ, it is implied that no interpretation exists on φ for num relations which are
not entailed by the set Q. The fallacy in this, however, is simply that

Theorem 6. If φ is any arbitrary formal scale for natural variable α, every relation
over values of α is represented by some relation over values of φ, while conversely,
every relation over φ-values is interpreted by some α-value relation. Corollary :
For any arbitrary set Q of relations over values of an arbitrary formal scale φ,
there exists a scale interpretation with respect to which φ is of type Q.

For if f is any scaling transformation with range n such that φ=fα̇ while Rk and
Qk are arbitrary relations over α and n, respectively, then Rk is represented on
scale φ by its f -image in n while the interpretation of Qk in α is Qk’s contraimage.
In particular, Qk holds for num k -tuple 〈n1, . . . , nk〉 iff the α-values represented by
n1, . . . , nk respectively, satisfy the relation ‘are respectively represented on scale
φ by nums standing in relation Qk’. (Similarly, any statistical property S of φ’s
distribution under condition C has at least the interpretation described by ‘The
distribution of α under condition C is such as to give its φ-scale representation
property S ’.) Thus, Brainsweat U.’s numerical scale for the natural College-major
variable is an ordinal scale when numerical inequalities are interpreted as ‘majoring
in has a larger College-major-score scale value than does majoring in ’, an
interval scale when numerical difference comparisons are interpreted as ‘majoring
in has a C.m.s. scale value which is closer to that of majoring in than to
that of majoring in ’, and a ratio scale when numerical ratios are interpreted
as ‘majoring in has a C.m.s. scale value c times as large as the C.m.s. scale
value of majoring in ’.

Admittedly, that Psychology majoring has a larger C.m.s. scale value than
Chemistry majoring does not seem to be a very significant fact about these two
college majors, since this inequality derives from nothing more than an arbitrary
choice of labels by the Brainsweat U. administration. But crucial as this intuitive
sense of ‘significance’ is for the methodology of scale interpretation, its analysis lies
forever beyond the grasp of set-theoretical approaches to scaling; for in extensional
logic no one relation on a given domain differs in ontological kind from any other.
For example, there is no inherent extensional inequity of significance between ‘is
female’ on the one hand and ‘was born on an even-numbered calendar date’ on
the other, since both are subsets, roughly equal in size, of the domain of living
organisms, and differ only in not being coextensive. Similarly, if John Smith holds
ACME Life Ins. policy No. 12345678 and is also the only person ever to have

17



regrown his head after it was severed in an accident, holding-ACME-policy-No.-
12 345 678 and having-regrown-an-accidently-severed-head must have exactly the
same set-theoretical significance, for extensionally they are the very same property,
namely the unit-class of John Smith. Considerations such as these lead implacably
to the conclusion that any serious attempt to determine which num relations over
the values of formal scale have ‘significant’ interpretations must explore in technical
depth many profound problems in epistemology, semantics and the philosophy of
science about which scaling theory to date has not dared even to whisper. As for
myself, I am sceptical that there exists any useful dichotomous distinction between
properties which are ‘significant’ and those which are not8; instead, I suspect that
each property or relation which we are able to conceive has its own particular
degree of significance or ‘meaningfulness’ imparted by its nomological implications
and/or the personal satisfactions we receive from it. If so, then the problem of
interpretation for scaling theory is not to say whether a given scale’s content is
significant but what its significance is. To keep Theorem 6 from scuttling the ST
theses about scale types out of hand, however, let us suppose that we have somehow
managed to define a sense in which some but not all the relations over values of a
natural variable are ‘significant’. Then we could introduce a non-vacuous absolute
concept of scale ‘type’ as follows:

Def. 15. A scale φ for natural variable α is (absolutely) of S -type Q iff Q is a
set of relations over φ-values such that the contraimage in a of every relation
in Q under the scaling transformation f of α into φ is ‘significant’. Scale φ is
exhaustively of S -type Q iff φ is of S -type Q and there is no ‘significant’ relation
over α-values whose φ-image is not included in (or at least entailed by) the set
of num relations Q.

(The prefix in ‘S -type’ may be read either as abbreviation for ‘Stevens’ or as a
parameter which takes different values for different senses of ‘significant’. In what
follows, I shall not consistently make this prefix explicit.)

Actually, the ST concept of scale ‘type’ has within recent years become even
more tenuous than is suggested by the difficulty in giving Def. 15 cash value, for
ST adherents increasingly characterize scale type by admissible transformations
rather than interpreted num relations. In terms of Def. 15, the notion of an
admissible transformation may be made precise as follows:

Def. 16. If φ is a scale of S -type Q, then a rescaling transformation g of φ into

8At one time I thought that a concept of ‘naturally significant’ relations over values of a
natural variable could be developed by excluding those which derive from a semantic scaling of
the variable. Further exploration of this possibility, however, has pretty well convinced me that
the task is hopeless.
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scale φ′= gφ is admissible iff, for every relation Qk in Q, g∗Qk = Qk. 9

Then to each S -type Q there corresponds a set gQ of functions such that a
rescaling transformation g belongs to gQ iff g is an admissible transformation of
scales of S -type Q, and it is easy to slip over into thinking of gQ, rather than
Q, as definitive of scale ‘type’. But it is precisely in its views on admissible
transformations that ST doctrine becomes most questionable. Observe to begin
with that a class of admissible transformations is defined in terms of a scale φ
and its class Q of significantly interpretable num relations. Hence the admissible-
transformation concept says nothing about what initial scale φ to adopt for a
natural variable α—it only says that once we have scaled α as φ, then we are
allowed to rescale only by transformations which preserve its type. But the set
of significant α-value relations is represented by some set of num relations on any

num-valued formal scale for α (cf. Theorem 6), so if φ′ and φ are two alternative
scales for α related by an inadmissible transformation, a person who first chose to
scale α as φ′ would be prohibited by ST doctrine from subsequently replacing φ′

by scale φ even while φ′ is proscribed for use by anyone who first scaled α as φ.

If α-value relations R are represented on scale φ by num relations Q, and φ is
rescaled as φ′ by transformation g′ = gφ, then g mapsQ into set g∗Q, each relation
g∗Qk

i in which represents on scale φ′ the very same α-value relation as does relation
Qk

i on scale φ. If g is not an admissible transformation, then in general g∗Qk
i 6= Qk

i ,
but this does not imply any sacrifice in going from φ to φ′, not even necessarily
of pragmatic convenience; it only means that rote habits for interpreting scores
on φ cannot be transferred without modification to scores on φ′. We neither gain
nor lose ‘meaningfulness’ by inadmissible scale transformations; we merely make
an adjustment in which features of our scaled data carry its natural significance.
Any two scales for the same natural variable have the same content even when
their types differ.

I strongly suspect that admissible-transformation strictures are grounded upon

9The concept of admissible transformation is seldom put quite this strongly. In most of the
ST literature, the number relations composing a scale’s ‘type’ are conceived as subsets of k -tuples
of all numbers, not just of the scale’s range as stipulated by Def. 15; whence if ‘admissible
transformations’ are defined to be those which leave scale type invariant, φ′ can be derived from
φ by an admissible transformation even when φ and φ′ have different ranges, namely, when
the f -image and f ′-image of each content relation Rk (where f and f ′ are the transformations
which scale the natural variable in question as φ and φ′, respectively) are both subsets of the
same more inclusive relation Qk over the full number domain. But the ‘type’ of scale φ with
respect to content Rk is then hopelessly nonunique, with the class of ‘admissible’ transformations
correspondingly ill-defined; for Rk’s f -image f∗Rk is a subset of every relation f∗Rk ∪ T k, and
φ correspondingly of ‘type’ f∗Rk ∪ T k, such that T k is any arbitrary set of k -tuples comprising
only numbers not included in φ’s range. Even so, none of the criticisms brought here against
admissible-transformations doctrine depend upon scale ‘type’ being defined so restrictively as in
Def. 15.
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an unconscious belief that a given natural relation can be represented by at most
one numerical scale relation. As we have seen, this is wildly untrue; but it does,
nonetheless, point to a legitimate scaling concern known as the ‘representation
problem’. While every α-value relation has some num representation on every
given formal scale for α, it is not, conversely, the case that for any α-value relation
Rk and num relation Qk there exists a formal scale for α on which Qk represents
Rk. Further, given a set R of α-value relations and a correspondingly ordered set
Q of num relations, there may exist for each Rk

i in R separately a class of scales
for α on which Rk

i is represented by the corresponding Qk
i in Q even while there is

no single scale for α on which all relations in R are simultaneously represented by
the corresponding relations in Q. (To cite an example which frequently arises in
practice, we may have a choice between a scale which represents equal α-differences
by equal number differences and one which represents α’s distribution by a normal
curve, but have no scale which does both.) The ‘representation problem’, then,
is to devise effective means for judging whether the α-value relations in a given
set R can be simultaneously represented by the num relations in a given set Q,
and if so, how to compute a scale on which this representation holds. Although
advanced scaling theory has devoted considerable study of this sort to certain
specific sets of num relations, admissible-transformations doctrine has been an
impediment to this movement’s most powerful development. For it is possible to
simultaneously represent the natural relations in a set R by the num relations in
a set Q if and only if it is also possible to represent R by the transformed set
g∗Q, where g is any rescaling transformation applicable to the scale on which Q

represents R. Let the representation group of a scale type Q be defined as the
set of all scale types into which Q can be mapped by rescaling transformations.
Then to solve the representation problem for one scale type is also to solve it for
all others in the same representation group, and the most penetrating question to
ask when considering prospective scales on which to represent α-value relations
R is not whether content R can be represented by scale type Q, but to what
representation group with respect to content R must a scale—any scale—for α

belong.

I urge, therefore, that both scaling theory and scaling practice stand to profit
immensely more from study of representation groups than from continued concern
for type-preserving transformation groups. For theory, determining the abstract
structure common to all scale types in a given interpretation group concomitantly
reveals what structure a set of natural relations must have to be representable on
any scale by a set of num relations in this group. And for practice, it is desirable not
merely that we remain uninhibited by admissible-transformation taboos, but also
that we become aware of specific alternatives for practical representation. For while
the overwhelming majority of scale types in any given representation group are
hopelessly chaotic analytically, the group is bound to contain one or more types just
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as manageable, or nearly so, as the one which is our first choice. For example, on
the Mohs scale of mineral hardness, content R = 〈is-softer-than, is-just-as-hard-as,
is-harder-than〉 is represented by the ordered set of number relations Q = 〈is-less-
than, equals, is-greater-than〉. But this content could just as well be represented by
set Q′ = 〈is-greater-than, equals, is-less-than〉, which is in the same representation
group as Q even though the transformation of the Mohs scale needed to represent
R by Q′, namely an inversion of the scale order, is not ‘admissible’ insomuch as
Q′ 6= Q. (The fact that the relations in Q′ are a permutation of the relations in Q

does not change the fact that neither is-less-than nor is-greater-than is invariant
under order inversion.) Being alert to workable scale-type alternatives is especially
important when we have several natural relations for which simultaneous docile
representation is desired. For example, if the values of natural variable α sustain
a quadratic relation R4 describable as ‘the superiority of αh over αi is less than
the superiority of αj over αk’ and representable on scale φ for α by numerical
relation nh/ni < nj/nk, while the variable’s distribution is skewed on scale φ
but can be normalized by a logarithmic transformation, then we will have both a
normal scale distribution and a tractable representation of R4 by numerical relation
nh − ni < nj − nk if ratio scale φ is ‘inadmissibly’ converted into an interval scale
by the log transform. (That ratio scales and positive-valued interval scales are
of types belonging to the same representation group has become reasonably well
recognized today, but ST adherents have apparently not as yet appreciated the
devastation this wreaks upon the concept of ‘admissible transformation’.)

Its preoccupation with the mathematics of invariance has also led admissible
transformations doctrine to prescribe which statistical properties of an admissibly
scaled distribution are legitimate and which are not. Specifically, if φ is a numer-
ical scale of type Q, a statistic S abstracted from φ’s distribution is considered
meaningful if and only if it is invariant under all admissible transformations of
φ. Since statistical properties are essentially a class of relations over the scale’s
values (see above), this coupling of statistical ‘meaningfulness’ with invariance un-
der admissible transformations is tantamount to the thesis that a relation P k over
values of a scale of type Q represents a significant content relation if and only if
every rescaling transformation which maps each relation in Q into itself does the
same for P k. But the only support which, to my knowledge, this thesis has ever
received is the suggestion by Adams, Fagot and Robinson (1965) that if φ is a scale
for natural variable α on which the num relations in set Q respectively represent
the α-value relations in set R, then a num relation P k is mapped into itself by
all admissible transformations of scale type Q iff P k represents on φ an α-value
relation which is definable in terms of the relations in R. Now it can indeed be
proved that if there exists a rescaling transformation g such that g∗Q = Q while
g∗P k 6= P k, then a predicate designating the α-value relation represented on φ by
P k cannot be constructed within the first-level predicate calculus from predicates
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designating the relations in R. But this is entirely compatible with the possibility
that the α-value relation represented on φ by P k is ‘significant’ even though it
cannot be defined in terms of relations R. The proper direction of argument here
is not “Statistic S is not meaningful for a scale of type Q because it is not invariant
under all admissible transformations for type-Q scales”, but rather, “This scale
cannot be exhaustively of type Q because statistic S has a meaningful interpre-
tation on it even though S is not invariant under admissible transformations of
type-Q scales”. Moreover, even if φ-scale relation P k is mapped into itself by all
admissible transformations for scales of type Q, it does not follow that the con-
tent of φ represented by P k can be meaningfully defined in terms of the contents
represented by Q in any intuitively acceptable sense of ‘meaningful’; for otherwise
it would follow that if scale φ for natural variable α is of a type Q which has
no admissible transformations other than the Identity transform (which can easily
occur even when Q comprises merely a singly binary relation)10, then every arbi-
trary set of k -tuples of α-values is ‘meaningfully’ definable in terms of the α-value
relations represented on φ by Q.

ST scale-type and admissible-transformations dogma is not merely otiose, it
is pernicious as well. It is pernicious because it systematically confuses number
relations with natural ones and suppresses any attempt to learn what significant
relations in fact hold for the values of particular natural variables under study.
Whatever Stevens himself may think of this, the pattern of scale-interpretive rea-
soning that ST adherents habitually employ is to argue that number relation P k

is or is not ‘meaningful’ on scale φ because scale φ is of type Q, while it is P k

itself which is correspondingly thought to be meaningful rather than its natural
contraimage under the scaling transformation. For example, the claim is often
made that an IQ of 150 cannot be said to be twice as great as an IQ of 75 be-
cause the IQ scale has no fixed zero (i.e., because shifts in the scale’s origin are
admissible and hence that the scale is not of the ratio type). But the reason why

the IQ scale has no fixed—or rather, meaningfully fixable—zero point is that in-
telligence has no known feature which can be represented by a numerical scale
property whose transformational invariance requires a fixed zero.11 That is, if we
knew how to interpret ‘IQ score x is twice as large as IQ score y ’, this would give

10Though to mention it is rather like kicking a cripple, it should not go unnoted that ST doctrine
implies that any scale type Q which includes a ‘nominal’ interpretation of scale values has no
admissible transformations other than Identity. For if R1

i is the monadic num relation ‘is equal to
ni’ and this is interpreted on scale φ of natural variable α as ‘is the property αi, then any rescaling
transformation which maps R1

i into itself must leave the scale representation of αi unchanged.
(Obviously ST adherents have always intended to allow as ‘permissible’ all one-one rescalings of
nominal scales, but how this can be made consistent with the body of admissible-transformation
beliefs still remains to be shown.)

11That is, excluding the ‘nominal’ interpretation of scale values, which prohibits any rescalings
at all under the ‘admissible transformations’ egis (cf. fn. 10).
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the IQ scale a fixed zero point. On the other hand, if we were to believe that IQ
is a ratio scale and inferred from this that ‘IQ score x is twice as large as IQ score
y ’ is meaningful, then, insomuch as the latter is but a relation between numbers
which represent different degrees of intelligence it would still remain to identify
the binary intelligence relation which holds for any two intelligence levels when the
corresponding IQ numbers stand in ratio 2 : 1. In this way, the ST perspective dis-
astrously inverts the proper order of inquiry by seeking to answer questions about
scale-property meaningfulness in terms of the scale’s type rather than by judging
a scale’s type in terms of what on it is meaningful, and stultifies concern for scale
content by confusing the question of whether relation P k over values of scale φ is
meaningful with the question of what it means. To add final insult, when scale
type is identified in terms of an admissible-transformation group g, rather than by
a particular set of scale relations whose admissible transformations constitute g,
merely stating scale type does not specify even what numerical scale relations have
significant interpretations (since two different sets of scale relations can define the
same admissible transformations), much less what these interpretations may be.

In summary, then, I submit—loudly—that there is no such thing as an illicit
scaling procedure. One scale for a given scientific variable can be at worst merely
less convenient than another. If we know of some content relation which can be rep-
resented by an especially well-behaved numerical relation, then, other desiderata
equal, it would be silly not to capitalize on this by selecting our scale accordingly;
but this is strictly a matter of personal taste, not of what ought to be, and if we
choose to sacrifice one scaling convenience to achieve another, no one choice is any
more ‘correct’ than any effectively definable alternative to it. Neither are there
any illegitimate statistics or other numerical properties of scaled data, no matter
how arbitrarily a particular scale may have been defined. At all times, the proper
question to ask about a given scale property is not whether it means anything, but
what. If we can but find some interpretive significance in a statistic proscribed for
scales of the type to which the scale in question has been deemed to belong, then
that scale’s ‘type’ therewith broadens12 to accommodate this newfound content;
whereas so long as we know not what a given statistic signifies about the unscaled
data, no anticipatory glee over how that statistic is guaranteed significance by the
scale’s type will do a thing to ameliorate its present de facto meaninglessness for
us.

In short, the alpha and omega of scaling is significant content. If we have

12Should we say that scale types in a series such as ‘nominal’, ‘ordinal’, ‘interval’ are increasingly
broad or increasingly narrow? The question is not as trivial as it first seems, for in view of
the inverse relation between the number of relations in a scale type Q and the number of Q’s
admissible transformations, a person’s answer to it reveals whether he thinks of interpretable
scale properties in terms of admissible transformations, or admissible transformations in terms of
interpretable scale properties.
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it, then we can formally process it in whatever fashion suits our whim. And if
we do not, no incantations about scale types and admissible transformations will
provide it for us. But what sorts of contents are there for a scale to have? Is it
possible to develop any systematic ideas about general kinds of significant relations
which the values of a natural variable may make available for scale representation?
Does there conceivably exist a taxonomy for natural variables in which a variable’s
content category reveals something about the character and prevalence of laws in
which this variable is likely to participate? Can we devise any useful systems of
definitional schemata which algorithmically generate significant scale content for
all the num relations in a certain set Q as soon as significant content has been
found for a suitable subset of Q? Scaling theory has so far scarcely even thought
about such questions, let alone provided any hints of an answer. The final sections
of this paper attempt to move in this direction, but they are little more than a
hasty scouting of the terrain.

2. Pattern Analysis and Factorial Decomposition

One reason why the theory of scale content has remained so underdeveloped is
measurement theory’s failure to examine any substantive examples of this. For
scarcely any of the data-system representations studied so profusely in recent years
are instances of scaling at all; instead, these illustrate a very different methodolog-
ical procedure which I shall call ‘factorial decomposition’. That the distinction
between scaling and factorial decomposition has not heretofore been properly ap-
preciated is perhaps understandable, for their formal theories differ only in one or
two subtle technicalities and in some applications essentially coalesce. Yet whereas
scaling methodology rests upon nothing more profound than human convenience,
factorial decomposition lies at the most advanced frontiers of scientific inference.

The Concept of ‘Data Pattern’

The locus of factorial decomposition in substantive research is at the point of
convergence between data models and data patterns. A ‘model’ in this context is a
hypothesis about nomic regularities and source variables tentatively entertained as
a more-or-less idealized explanation for some configuration of observed data. For
example, if the matrix of empirical correlations among various tests of intellectual
functioning can be fairly well approximated in all its off-diagonal entries by a
matrix of unit rank, we might adopt as a model of these intercorrelations the
Spearman ‘two-factor’ hypothesis that each test variable derives from a single
source variable common to all, plus a specific factor unique to that particular test.
A pattern, on the other hand, is some configural property which the data actually
have—i.e., which can be analytically abstracted from the data as given. Thus if
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the off-diagonal entries in an empirical correlation matrix are well approximated
by a matrix of unit rank, this is itself a higher-order datum independent of any
conjectures we may or may not be willing to countenance about the source of
this observed structure. In short, ‘pattern’ is something which the data manifest,
whereas a ‘model’ proposes why the data have a particular pattern.

While this is no occasion for a general review of pattern analysis, I shall work
my way to the concept of factorial decomposition through a series of definitions
which suggest directions for the thrust of a more comprehensive account. We
begin with the generic concept of ‘data pattern’, which may be taken to denote
any property of data. To explicate this extensionally, let a set p of mutually
consistent propositions be called a possible data configuration when each element
pi in p describes a state of affairs which has been, may be, or might have been
discovered to be an empirical fact, while data space is the set of all possible data
configurations. Two possible data configurations p and p′ are alternatives if they
are jointly inconsistent while every consequence of the propositions in p is either
entailed by or is incompatible with the propositions in p′ and conversely. Then
in extensional terms, a data pattern is some subset of data space, while a pattern

variable is any natural or formal variable whose argument domain is data space
or some subset thereof such that a given possible data configuration p is in the
pattern variable’s argument domain iff this domain also includes all alternatives
to p.

The abstract notions of ‘data pattern’ and ‘pattern variable’ subsume a great
many data properties of the utmost triviality, and disclosure of what differentiates
scientifically instructive from inferentially empty data patterns (or, more pene-
tratingly, classification of data patterns according to the types of inferences they
support) is one of the more important tasks ahead for the theory of data analysis.
On the other hand, not only do statistical properties of the more familiar sort count
as ‘data patterns’ in the present sense, but anything which can be said about data
configuration p vis-à-vis a set H of alternative explanatory hypotheses or models
from a hypothesis-testing perspective can also be rephrased in pattern-analytic
terms. Thus the ‘likelihood function’ for p in H—i.e., the function over H whose
value for a given argument Hi—is the probability (or probability density) of p

given Hi—is the value for p of a certain ‘functional’ (i.e., a function-valued func-
tion) determined by model-set H whose argument domain is some subset of data
space including p and all its alternatives; while the functional which maps p and
its alternatives into a distribution of posterior probabilities over the hypotheses in
H is likewise a ‘pattern variable’ in the present sense.

Conditional probabilities of data configurations given alternative models, or
posterior probabilities of models given the data, are one way in which data patterns
are defined by data models, but considerably more fundamental is the sort of
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pattern which is at issue when we speak of a model as ‘fitting’, or failing to fit,
a given data configuration. We may say (a) that a model M fits a possible data
configuration p iff p is logically consistent with M ; (b) that the content of p

accounted for by a model M which fits p is the set of all propositions entailed
both by p and by M ; and (c) that a model M ‘projects’ data pattern P iff, for
every possible data configuration p, M fits p only if P (p). Further, to recognize
the custom of building flexibility into models by means of adjustable parameters,
we may call a model M open when there corresponds to M a set m of models such
that (i) M fits a possible data configuration p iff there exists an m in m which
fits p, and (ii) there are at least two models in m such that not every possible
data configuration which fits the one also fits the other. (Clause (ii) is to prevent
the definition from applying trivially to every model.) If m and M are two models
such that M is open, m is not open, and every possible data configuration which
fits m also fits M, then m is a closure of M ; while to find a solution of model M
for data configuration p is to identify a closure of M which fits p.

Excluding stochastic models, it is seldom that we are able to find exact so-
lutions of scientifically interesting models for real data. In practice, therefore, it
becomes important to be able to judge not merely whether or not model M fits
data configuration p, but how well. Two distinct styles for accomplishing this
have emerged to date. The approximation-error approach devises a measure of
how closely each closed (i.e., not open) model m approximately fits a data con-
figuration p, usually in terms of the difference between p and the possible data
configuration most similar to p which is fitted exactly by m, and then consid-
ers the best approximational solution of open model M for p to be that closure
of M which maximizes this measure. In contrast, the stochastic-error approach
begins with core models which could be fitted to data by an approximation er-
ror method but instead augments these with open stochastic components (i.e., an
addendum of hypothesized ‘error’ or ‘unique’ variables) in virtue of which the aug-
mented model has an exact solution for every possible data configuration. How
well such a model fits data configuration p is then assessed by the likelihood of
its stochastic solution for p. The essential difference between approximation-error
and stochastic-error models thus lies in their treatment of the disparity between
extant data and ideal patterns which the data manifest only roughly, the former
viewing this as error of the model while the latter puts the ‘error’ in the model
as an additional hypothesized ingredient of reality. These two approaches develop
the same nonstochastic core into rather different data-processing algorithms, and
which one brings the data’s structure into sharper focus is still another of research
methodology’s many unexplored questions. Here, however, we shall ignore the
further complexities of less-than-ideal data patterning by presupposing an exact
fit of model to data regardless of how this is accomplished.
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Factorial Decomposition Patterns

Virtually all models of the ‘explanatory’ sort postulate certain hypothetical vari-
ables to underlie the data variables in such fashion that values on the former can
be found for the latter’s arguments which, by virtue of the assumed nomic reg-
ularities, imply some or all of the data to which the model is fitted. Further, in
applications of factorial decomposition models, each datum proposition asserts or
denies that certain objects are related in a certain way, where these ‘objects’ need
not all be of the same ontological kind. For example, the data configuration might
consist of propositions of form ‘Person j has score c on test t ’ and ‘Person j judges
stimulus s1 to resemble stimulus s2 more than [the same as, less than] it does
stimulus s3’, in which the ‘objects’ are of three kinds—persons, tests, and stim-
uli. A factorial decomposition model of these data would then hypothesize that
these persons, tests, and stimuli are all positioned in an underlying ‘genotypic’ or
‘source-variable’ space such that which score person j gets on test t, and which
similarity-judgment person j makes of stimulus triad 〈s1, s2, s3〉, is determined in
a specified way by the genotypic coordinates of objects j, t, s1, s2, and s3.

To express this notion more precisely, suppose that each proposition in data
configuration p ascribes some relation Rk

i in set R to some k -tuple ok of objects
from domain o. Then successful fitting of a factorial decomposition model to p

consists in finding a mapping ψ of o into a num domain n in such fashion that to
each Rk

i in R there corresponds a num relation Qk
i of a certain specified kind such

that for every k -tuple ok of data objects whose status on Rk is determined by p,
Qk

i (ψ
∗ok) iff Rk

i (o
k). To formalize this situation with explicit reference to models

and data propositions (which are semantical structures), however, is unnecessarily
cumbersome for present needs. The fact that a certain factorial decomposition
model can be fitted to a given data configuration p reveals that the relations cited
in p conform to the data pattern projected by the model, at least over the restricted
domain of objects to which they are ascribed in p. Factorial decomposition can
hence be defined at the object-language level as follows:

Def. 17. A factorial decomposition of a set R of empirical relations over object
domain o is a triplet 〈ψ,B,Q〉 in which ψ is a function from o into a num
domain n, B is a set of relations over o, Q is a set of relations over n, and R,
B, and Q are correspondingly ordered by an index set i in such fashion that for
every i ∈ i

(∀ok)[Bk
i (o

k) ⊃ [Rk
i (o

k) ≡ Qk
i (ψ

∗ok)]]

i.e., each Rk
i in R is so represented by its corresponding Qk

i in Q that for
every k -tuple ok of empirical objects qualifying under boundary conditions Bk

i ,
whether or not ok satisfies empirical relation Rk

i is determined by whether or
not the k -tuple of nums into which ψ maps ok satisfies num relation Qk

i .
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Def. 18. If 〈ψ,B,Q〉 is a factorial decomposition of empirical relations R, then
the sets Q, R, and B are the decomposition’s type, content, and boundary re-

strictions, respectively, while ψ is its factorization function.

That is, within its boundary restrictions, the content of a factorial decomposition
coincides with the contraimage of its image under the factorization function. Since
the latter is not stipulated to be one-one, this within-B congruence of ψIψ∗R with
R reveals a pattern in the data which is not generally a mathematical consequence
of Theorem 2.

A closed factorial decomposition model of type Q, content R, and boundary
restrictions B is a hypothesis about the nomic sources of relations R which im-
plies the existence of a factorization function ψ such that 〈ψ,B,Q〉 is a factorial
decomposition of relations R. An open factorial decomposition model of type Ω

and boundary restrictions Γ for R is correspondingly a hypothesis which implies
the existence of a function ψ, natural relations B, and num relations Q such that
〈ψ,B,Q〉 is a factorial decomposition of R in which B and Q satisfy restrictive
conditions Γ and Ω , respectively. On the other hand, ‘is compatible with the
existence of a factorial decomposition of type Ω for relations R’ is a predicate over
possible data configurations which asserts nothing that cannot be confirmed or de-
nied of an argument p by analytic abstraction from p, and which hence describes
a data pattern which holds (if it does) for p irrespective of the plausibility of any
particular model for R of this type.

Def. 17 may be applied to a system R of relations holding only between
‘objects’ of different kinds by letting o comprise all objects, irrespective of kind,
which are arguments of the to-be-decomposed relations, but allowing only k -tuples
of the proper object-kind mixture to qualify under the boundary restrictions.

Examples

To clarify the foregoing abstractions and illustrate their scope, I shall briefly cite
several instances of factorial decomposition which have already received consider-
able investigation in substantive science. It will be noted that in most of these, the
‘nums’ into which the empirical objects are mapped are not just single numbers
but are more complex numerical constructions.

Linear factor analysis. Suppose that t is a battery of tests, upon each of which
every person in a population j has a known numerical score. Then it may be
possible to assign an m-component vector of real numbers to each person j in j

and to each test t in t in such fashion that the inner product of the vectors assigned
to person j and test t, respectively, equals j ’s score on t. The empirical relational
system in this instance is the set R = {The score of person on test is c},
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in which parameter c is also the ordering index, while for each person or test k in
combined object domain j ∪ t there exists a vector 〈x1k, . . . , xmk〉 of real numbers
such that for any person j in j and test t in t, 〈j, t〉 satisfies R2

c (i.e., j ’s score on t

is c) iff
m
∑

i=1
xijxit = c. Hence in this case if ψ is the function over j∪ t which maps

each k ∈ j ∪ t into its vector 〈x1k, . . . , xmk〉 while P 2
c is the relation comprising

all pairs of m-component real-number vectors whose inner product equals c and
relation B2

c over j ∪ t is satisfied by object-pair 〈j, t〉 iff j ∈ j and t ∈ t, then
〈ψ, {B2

c}, {P
2
c }〉 is a factorial decomposition of { ’s score on is c}.

A simpler though more superficial way to describe the data-analytic character
of linear factor analysis is to treat it as decomposition of the covariances among
the tests in battery t. In this case the object domain is the homogeneous set t,
the empirical relational system is {Cov( , ) = c}, and the num relations
which represent the latter are the vectorial inner products {P 2

c } defined above. The
difference between descriptive factoring and inductive factoring (i.e., factoring with
observed variances in the diagonals of the empirical covariance matrix vs. factoring
with communality-reduced diagonals) may be viewed as a contrast between no
boundary restrictions (i.e., each B2

c is the universal property over t2) and the
boundary restriction that the decomposition applies only to pairs of different tests.

Coombsian models. One of the most vigorous movements in recent psychome-
tric research, inspired in large measure by the work of Clyde Coombs (1964), has
been development of nonmetric models for analysis of empirical order comparisons.
All of these are factorial decomposition models in which the observed ordering in
an array of data objects (usually persons and/or stimuli) is hypothesized to cor-
respond to the order of the distances separating these objects in an underlying
m-dimensional genotypic space. For example, suppose that for each person j in
population j and each pair of stimuli 〈sh, si〉 from a stimulus array s, we know em-
pirically whether person j prefers sh to si. Coombsian model for these comparisons
maps each j in j and s in s into an m-component real-number vector, regarded as
the genotypic coordinates of this object, such that j does or does not prefer sh to
st according to whether j ’s genotypic distance from sh is or is not greater than j ’s
genotypic distance from si; while ‘distance’ is determined by a function ∆ which
maps pairs of m-component number vectors into nonnegative reals. In the simplest

models, ∆ is euclidian—i.e., ∆(〈x1a, . . . , xma〉, 〈x1b, . . . , xmb〉) =

√

m
∑

i=1
(xia − xib)2

—but ∆ can also assume a noneuclidian form or be parametrically open.

Gravitational attraction. Given an array o of physical objects (chunks of min-
erals, etc.), it is possible to determine the force of attraction between any two of
these objects as a function of the difference separating them. It is found that this
force is inversely proportional to the square of the separation distance, but that
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the coefficient of proportionality is in general different for each pair of objects. The
alternative possibilities for this attraction coefficient thus define a system of em-
pirical relations over pairs of different objects from o, the factorial decomposition
of which is especially simple in that each oi in o can be assigned a positive real
number xi such that for any two different objects oi and oj in o, their attraction
coefficient has value c iff c = xi · xj .

Probabilistic dominance models. Suppose that for every two objects oi and oj
in domain o there is a certain probability Pr(oi ≻ oj) that oi ‘dominates’ over oj in
some sense. For example, o might be a league of baseball teams while Pr(oi ≻ oj)
is the probability that team oi will beat team oj if they play; or o might be
a set of auditory stimuli while Pr(oi ≻ oj) is the probability that a randomly
selected listener judges oi to be louder than oj . Then a mapping ψ of o into
the real number domain and a function f over number pairs may exist such that
for any two different objects oi and oj in o, Pr(oi ≻ oj) = f(ψoi, ψoj); while a
hypothesis which implies that this possibility is, in fact, the case is a one-factor
decomposition model for these dominance data. Several species of this generic
model have appeared in the psychometric literature, notably Thurstone’s ‘law of
comparative judgment’ in which f is derived from the normal probability integral
and the Bradley-Terry-Luce model in which f(x, y) = x/(x+y) (see Luce, 1959a).

Models of risky choice. A large body of research on choice behavior has sought
to analyze preference rankings among risky options as an outcome of cognitive
and evaluative determinants. For example, let an agreement that person X will
receive either payoff si or payof sj according to whether or not uncertain event e
turns out to occur to be called a ‘dichotomous gamble’ for X. Then if e is a set
of uncertain events while s is a set of payoff states, each element of e × s2 is a
possible dichotomous gamble for person X, and for every pair of such gambles it
can be determined empirically which of the two X would prefer. A function ψ from
e ∪ s into the real number domain such that person X prefers gamble 〈e, si, sj〉 to
gamble 〈e′, s′i, s

′

j〉 iff [ψe · ψsi + (1 − ψe) · ψsj ] > [ψe′ · ψs′i + (1 − ψe′) · ψs′j ] gives
a factorial decomposition of X ’s preferences over this gamble domain. In a model
of this sort (a ‘subjective expected utility’ model—see, e.g., Edwards, 1962), the
values of ψ for events in e are thought of as the ‘subjective probabilities’ of these
events, while ψ’s values for payoffs in s are the ‘utilities’ which X attaches to these.

Genetic linkages. An especially interesting example of factorial decomposition
is afforded by observable co-occurrences among inheritable traits, though in view of
this pattern’s complexity, I shall speak of it only with greatly oversimplified brevity.
Suppose that t is an array of overt traits—barred eyes, vestigial wings, etc.—
found in species S (historically, the fruit fly Drosophila). It is generally possible
to determine for each pair of traits ti and tj in t an empirical ‘linkage strength’
index of how strongly ti and tj tend to co-occur in the interbred decendants of a
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cross between a member of S who displays both and one who shows neither. It
is found that t can be partitioned into several groups such that any two traits in
different groups have zero linkages, while the linkages within each group have a one-
dimensional decomposition. That is, a mapping ψ of t into 2-component number
vectors and a number-valued function f over pairs of the latter exist such that for
any two traits ti and tj in t, f(ψti, ψtj) equals the linkage strength between ti and tj
while the value of f for any two arguments is a decreasing function of the difference
between their second components so long as they have the same first component,
and is zero otherwise. Modern genetics interprets the two components of ψt as,
respectively, the chromosome-on-which-located and within-chromosome position
of a gene governing trait t, while discovery and analysis of such empirical linkage
patterns was historically one of the primary grounds for identifying ‘genes’ (which
were initially but theoretical entities postulated to account for genetic inheritance)
with physical substances at specific loci on microscopically observable structures
within cell nuclei (Sturtevant, 1965)).

Simultaneous normalization of distributions. Research practice often desires
its variables to be so scaled that their distributions in various populations have a
common shape, usually normal; and if the data as originally scaled do not have this
feature we may try to induce it by monotonic transformations. For example, given
the joint distribution of number-valued variables φ and ψ in base population P,
we might hope to find a monotonic rescaling φ′ = fφ of φ such that the contingent
distribution of φ′ at each value of ψ in P is normal. Since the existence of such
an f is not mathematically guaranteed except in degenerate cases, data where si-
multaneous normalization is, in fact, possible generally show an empirical pattern
which is inferentially provocative. Such patterning can be subsumed under facto-
rial decomposition as follows: Let P be a set of populations within each of which
is distributed a numerically scaled variable φ with range v, while Φ is the function
whose value for a numerical argument x is the cumulative proportion of a normal
distribution at a score x standard deviations above the distribution’s mean. Then
there exists a monotonic rescaling of φ whose distribution is normal within each
population in P iff there is a function over v ∪P which maps each vi in v into a
real number xi and each Pj in P into a pair 〈µj , σj〉 of real numbers such that φ’s
cumulative proportion at value vi in population Pj is equal to Φ[(xi − µj)/σj ].

Factorial Decomposition of Relational Variables The empirical relations de-
composed in most of the preceding examples can be described most conveniently
as the alternative values of a natural variable over a product-set domain. A variant
of Def. 17 which applies more succinctly to such cases is:

Def. 19. (a) A triple 〈ψ, {Bk
i }, {f

k
i }〉, is a factorial decomposition of a set {φki }

of formal relational variables iff ψ is a function from an object domain o into
some num-domain n while for each i in index set i and some k ≥ 1, φki is a
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formal variable whose argument domain is a subset of product-domain ok, Bk
i

is a k -adic relation over o, and fki is a function over nk such that

(∀ok)[Bk
i (o

k) ⊃ φki o
k = fki ψ

∗ok].

(b) A quadruple 〈ψ, {φki }, {B
k
i }, {f

k
i }〉 is a factorial decomposition of a set

{α
(k)
i } of natural relational variables iff, for each i in i, φki is a formal scale for

natural variable α
(k)
i while 〈ψ, {bki }, {f

k
i }〉 is a factorial decomposition of {φki }.

That is, factorially decomposing a system {φki } of scaled relational variables
consists in finding a mapping ψ of their arguments into nums, and a representation
of each relational variable φki by a function fki over k -tuples of nums, such that
under boundary conditions Bk

i , φ
k
i analyzes as the product (i.e., composition) of

fki with ψ∗.

Factorial Decomposition vs Scaling

Comparison of Def. 17 with Def. 10 shows that scale interpretation is to factorial
decomposition as species is to genus. For if 〈B,R,Q〉 is an interpretation of
formal scale φ = fα̇ for natural variable α, scaling transformation f is also the
factorization function in decomposition 〈f,B,Q〉 of relations R. Conversely, if a
decomposition 〈ψ,B,Q〉 can be found for a system of α-value relations in which
the factorization function is one-one, then ψα̇ is a scale for α of which 〈B,R,Q〉
is an interpretation.13 (Still another relation between scale interpretation and
factorial decomposition is that if φ is a scale for α with range n, while [n] is the
set of unit classes of elements in n and B0 is the null set of boundary restrictions,
then 〈φ,B0, [n]〉 is a factorial decomposition of monadic relations α.) Yet it is
precisely those cases of factorial decomposition which are not scale interpretations
which hold the most challenging potential for scientific discovery. I shall attempt
to bring out the nature of this difference by drawing it as starkly as I can. Then,
when the inferential significance of nonscaling decompositions is clear, we shall
reexamine the scale-interpretation case to see whether it, too, may not at times
share these inferential prospects in ways so far unrecognized by scaling theory.

To begin, whereas the ‘objects’ whose relations form the content of a facto-
rial decomposition may in principle be values of a scientific variable, the objects in
paradigmatic decompositions are part of the science’s subject domain—i.e., are the

13Strictly speaking, descent from Def. 17 to Def. 10 also requires the further restriction that
each Rk

i in Q is a relation only over the range of ψ. However, Def. 10’s implication that a scale
interpretation interprets only relations over the scale’s range is a minor detail which has some
technical importance (see, e.g., fn. 9) when relations are defined extensionally, but would be
omitted from a nonextensional concept of scale interpretation.
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arguments of the science’s variables. Thus while scaling is a mapping into nums
of certain properties (i.e., values of a natural variable) over a scientific subject do-
main, what are so mapped in a typical decomposition are members of the subject
domain itself. Moreover, this mapping is many-one in the latter case whereas scal-
ing is by definition one-one. The crucial distinction between these two is that while
a one-one scaling function merely stipulates a correspondence between elements
of a num array and the previously identified values of a certain scientific variable,
the many-one mapping of a factorial decomposition discloses equivalence classes
within the science’s subject domain with respect to the decomposition’s empirical
content, and in so doing implicates a heretofore unrecognized nonrelational vari-
able (or, when the factorization function is vector-valued, a set of nonrelational
variables) in which the decomposed relations have their origin. Whereas to in-
terpret a scale is merely to recognize that a previously known system of natural
relations is isomorphic to a certain system of num relations, paradigmatic facto-
rial decomposition analyzes natural relations to reveal that their patterning can
be explained by certain hypothetical source variables whose num-scaled values for
particular data objects are latent in the latter’s relational properties. That is, once
we discover that empirical relations R have factorial decomposition 〈ψ,B,Q〉 we
find ourselves strongly inclined to infer from this the existence of a natural variable
α whose value is the same for two of its arguments iff the latter are mapped by ψ
into the same num, while which relations in R hold for any k given data objects
are determined by the latter’s α-values (under boundary restrictions B) in the
fashion described by Q. But while in paradigmatic decompositions our inference
to the existence and nomic behavior of this variable is a genuine inductive leap,
the α ‘inferred’ in the special case of scale interpretation is simply the variable
whose scale is being interpreted, the existence and R-determinations of which were
known at the outset.

For example, suppose that W (oi, Oj) is the relation ‘oi can usually beat oj at
Indian wrestling’ over a domain of persons, that µ is a natural muscle-strength
variable which lawfully determines which of two persons can usually beat the
other at Indian wrestling, and that this effect is represented on a numerical scale
φµ for µ by the relation ‘is a larger number than’ in such fashion that for any two
different persons oi and oj , oi can usually beat oj at Indian wrestling iff φµoi > φµoj .
Knowing these facts about µ, we can define the relation Sw (‘is superior for Indian
wrestling than’) over values of µ as

Sw(µi, µj) =def (∀oh, ok)[µi(oh) · µj(ok) ⊃W (oh, ok)]

and have 〈6=, Sw,>〉 (where 6= is the boundary restriction ‘is not the same person
as’) as an interpretation of scale φµ in which is-a-larger-number-than represents
the is-superior-for-Indian-wrestling-than relation over muscle-strengths. However,
the corresponding factorial decomposition of Sw, namely 〈f, 6=, >〉 where f is the
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scaling function φµ = f µ̇ simply gives us what we started with, i.e., a scaling of
variable µ and its nomic implications for Indian-wrestling superiority. On the other
hand, suppose that we have no idea there is any such thing as muscle-strength,
but have collected enough data from Indian-wrestling contests to conclude that
relation W has a factorial decomposition 〈ψ, 6=, >〉. Then we have discovered the
muscle-strength variable, scaled as ψ, within our W -data even though, insomuch
as all we have thereby learned about ψ is its functional relevance for W, we will
not yet be able to identify it as muscle-strength.

In short, the end product of a successful factorial decomposition is generally—
excluding scale interpretations—a hypothesis about the theoretical origins of rela-
tional data and the laws by which the postulated source variables generate their
observable consequences.14 Since this inference follows with psychological immedi-
acy albeit not deductive necessity from the observed data patterning, it is a form of
reasoning which, together with others of its kind, may be described as ontological
induction (Rozeboom, 1961).

There is a rather obscure philosophical thesis about the structure of reality,
known as the ‘doctrine of internal relations’, which has importance for the overall
reasonableness of factorial decomposition as a method of scientific inference. Since
previous statements of this doctrine have not been altogether clear, I will forestall
quibbling over my formulation of it by giving it a new title:

The Thesis of Relational Composition: Whenever a descriptive k -adic relation
Rk holds for a k -tuple 〈e1, . . . , ek〉 of entities, there exist nonrelational proper-
ties P1, . . . , Pk possessed by e1, . . . , ek, respectively, such that for any k -tuple
〈x1, . . . , xk〉, P1(x1) and ... and Pk(xk) jointly entail Rk(x1, . . . , xk).

That is, entities stand in relations to one another only as a consequence of their
nonrelational attributes. While the Thesis obviously needs considerable sharpen-
ing and perhaps qualification, I believe it to be basically correct.15 (Actually, the
Thesis is trivially true under an extensional reading of its terms, and perhaps un-
der certain nonextensional interpretations as well. When I say that I think it is
basically correct, I mean correct in some significant sense.) If so, any relational

14That these variables must generally be theoretical, rather than definitional constructs out of
the data variables, derives from the fact that in the less-than ideal decompositions of real data,
the values of the factorization function computed for the data objects by, e.g., a least-squares
or maximum-likelihood method, can be regarded only as an approximation to the true values of
these objects on the source variables implicated by the decomposition.

15The only serious counterexamples I can think of, excluding such relations as Exemplification
and Identity which are logical rather than descriptive, are spatiotemporal relationships. But while
‘absolute’ conceptions of space and time have long been held in low repute, I suggest that they
would surely deserve reconsideration were spatio-temporal relations otherwise to be the Thesis’s
only exceptions.
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data we may have are a resultant of the data objects’ nonrelational attributes,
and if we are not already cognizant of the latter, their disclosure should be the
first target of our research in this area. If the Thesis is sound, therefore, facto-
rial decomposition models are the methodologically preferred tools for analysis of
relational data. On the other hand, it does not follow that every factorial de-
composition furnishes inductive insight into underlying sources, for any system of
relations has innumerably many trivial decompositions. Specifically,

Theorem 7. If R is a set of relations over domain o while ψ is any one-one
function with arguments in o and B0 is the null set of boundary restrictions,
then 〈ψ,B0, ψ

∗R〉 is a factorial decomposition of R.

For by Theorem 2, if we map object domain o into a num domain n by a one-one
function ψ, any relation Rk

i over o is not only represented in n by its ψ-image
ψ∗Rk

i but is the interpretation of the latter in o as well.

The significance of Theorem 7 is not just that a factorial decomposition exists
for every system of empirical relations—for the Thesis of Relational Composition
says this should be so—but that the Theorem describes a kind of decomposition
which always holds trivially irrespective of whatever genuinely interesting pat-
terning the data may display. Two important facets of factorial decomposition are
attested by this. The first is that a given relational system may sustain a plurality
of decompositions which are independent in that one does not entail another. And
secondly, it would be most imprudent to assume that every factorization function
scales a variable which underlies the factored relationships in any scientifically
meaningful sense. Each specific instance of factorial decomposition needs be ex-
amined in the fullness of its own detail before we can feel even modestly sure of
what particular inference we should wish to draw from it; and how the differences
among decomposition patterns modulate our intuitions about their scientific sig-
nificance is still another important question awaiting study by the theory of data
analysis. Most aspects of this problem lie far beyond our present scope, but two
have immediate relevance for the shape of our thinking about scale interpretation.

If a factorial decomposition 〈ψ,B,Q〉 of empirical relations R over domain o

is to disclose any new variables over o, it is first and foremost necessary (with
one partial exception noted later) that ψ be a many-one function, or at least that
there be nothing about the decomposition which prohibits ψ’s mapping different
objects into the same num. For if ψ necessarily has a different value for each of its
arguments, then these serve merely as num representations for the o’s themselves,
rather than for properties over o. That is, unless the decomposition generates
equivalence classes within the system’s object domain, it merely states in isomor-
phic num terms what we knew to begin with, namely, which objects satisfy what
R-relations. Yet to be scientifically significant, the decomposition must also man-
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age to do more than merely identify specific objects which are alike in respect ψ.
For not only does the pursuit of scientific generality urge that the conclusions we
draw be free of reference to particular objects, the number of admissible values
for ψ may also be so large in comparison to the size of o (e.g., when o is finite
while the theoretical variable manifested by ψ is continuous) that virtually all ob-
jects in o have unique ψ-values in fact even though there is no need for this in
principle. But if factorial decomposition 〈ψ,B,Q〉 of R is to show more than the
bare existence of underlying determinants, this something more must be conveyed,
somehow, by the decomposition’s type—i.e., by the nature of R’s representation
Q. (To the extent that boundary restrictions B are nontrivial, they serve only to
attenuate Q’s import.)

But what hidden realities can a decomposition’s type expose, anyway? On this
point, unfortunately, my present insight offers little beyond one or two speculative
possibilities and conviction that the problem is well worth sustained inquiry. My
first speculation is that whatever it is in a decomposition’s type which provokes
substantive inferences, it is largely what governs our intuitive judgments about
the ‘strength’ and ‘simplicity’ of data patterns. ‘Strength’ is what is at issue when
we think of one decomposition as more demanding, more stringent, more tightly
structured than another. Thus among decompositional mappings of data objects
into m-component vectors, other things equal, the smaller is m the stronger is
the pattern. (Somewhat more generally, I suspect that the intuitive ‘strength’ of
a decomposition of relations R is closely related to how many units of R-data
are needed to determine the factorization function’s value for a given object, or
how rapidly an increasing number of such data converge upon this value.) As for
‘simplicity’, this is a concept which is still notoriously elusive, though paradigmat-
ically, if the type Q of a factorial decomposition comprises polynomic functions,
we feel that, other things equal, the lower the degrees of these polynomials the
simpler is the pattern so represented. Even so, however decompositional ‘strength’
and ‘simplicity’ are to be explicated, we must not equate them too simply with
the psychological convenience of the decomposition’s type; for many different de-
composition types, varying greatly in their mathematical tidiness, are entirely
equivalent with respect to whatever inferences can be drawn from them:

Theorem 8. If 〈ψ,B,Q〉 is a factorial decomposition of relational system R while
f is a one-one function whose arguments include the domain of relations Q, then
〈fψ,B, f∗Q〉 is likewise a factorial decomposition of R. Corollary : Relational
system R has a factorial decomposition of type Q iff it also has a decomposition
of type f∗Q, where f is any one-one function over the domain of relations R.

Let two factorial-decomposition types Q and Q′ be said to belong to the same
‘representation group’ if there exists a one-one function f over the domain of Q
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such that Q′ = f∗Q. Then Theorem 8 points out that a type-Q decomposition
can always be transformed without cognitive loss into any other type in Q’s rep-
resentation group. It follows that whatever is scientifically significant about a
factorial decomposition of types Q is not special to Q as such, but is common
to all decomposition types in Q’s representation group. In particular, either the
factorial dimensionality or the polynomic complexity of a decomposition can to
a large extent be selected at will (though not both at once) by an appropriate
choice of the factorization function. The most insightful way for decomposition
theory to proceed, therefore, should be through development of concepts which
differentiate the structure of one representation group from another without spe-
cial reference to any one particular member of the group, and then to ground our
ideas of ‘strength’, ‘simplicity’, and whatever else in a factorial decomposition may
be inductively significant upon these representation-group characteristics.

Of course, making clear the inferentially critical feature of decompositional
structure will not in itself disclose what inferences these are critical for. One pos-
sibility for the latter will eventually surface in Part III, below. Meanwhile, it may
be asked whether the general prospects for inductive revelation in factorial decom-
positions have any application at all to the special case of scale representation.
We have already seen why the latter cannot generally be expected to tell anything
about the variables scaled that was not known to begin with. Just the same,
there are at least two ways in which a scale interpretation might be informative.
One is that if we can find a particularly tidy num representation for content R

of a scale φ = fα̇ for natural variable α by allowing the values of φ to be m-
component vectors even though α was not defined vectorially to begin with, then
we should suspect that α may be the cartesian product of m distinct natural vari-
ables not heretofore recognized individually. (Note that if scaling transformation
f is vector-valued, then f determines equivalence classes among the values of α
with respect to each component of f even though no two values of α agree in all
their f -components. The plausibility that α is really a vector would be further
enhanced were scale content R to include one or more relations Rk

i whose num
representation Qk

i is a cylinder set in some of its argument’s components even
though these components are not irrelevant for other relations in R.) Secondly,
to the extent that the structural properties of a factorial decomposition’s type
convey information about source variables over and above their bare existence,
similar significance may well invest the types of scale interpretations as well. If so,
study of what, substantively, is responsible for a natural variable’s having scales
of types belonging to one representation group rather than to another may fur-
nish clues about the general significance of decompositional types. And insomuch
as a scale’s type is determined by its content, we are confronted once again with
the question of whether anything methodologically useful can be said about what
kinds of relations hold for the values of natural variables.
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3. Scale Content and the Nature of Measurement

Consider the totality of k -adic relations over values of a natural variable α. What
possible differences in kind are there among these? The question makes little sense
if we construe them all to be nothing but subsets of αk, but interesting distinctions
appear when we lay aside this extensional pretense. Two, in particular, which I
find instructive are an analytic/empirical contrast in the truth of an assertion
‘Rk(αk)’ and a superordinate/coordinate distinction in its meaning.

RelationRk is analytic in its arguments if the truth or falsity of ‘Rk(α1, . . . , αk)’
for k values of α is inherent in their nature, and is empirical otherwise. For ex-
ample, if α1 and α2 are the values ‘wearing scarlet lipstick’ and ‘wearing pink lip-
stick’, respectively, of the natural Lipstickcolor variable over a domain of women,
the truth of ‘α1 is to wear a more intense color of lipstick than is α2’ follows ana-
lytically from the inherent saturation difference between scarlet and pink; whereas
the truth of ‘Jane Smith prefers α1 to α2’ can only be determined empirically. The
superordinate/coordinate distinction, on the other hand, concerns whether or not
α-values are truly logical objects of the assertion ‘Rk(α1, . . . , αk)’. Specifically, R

k

is coordinate with its arguments if each predicate ‘αi’ in ‘Rk(α1, . . . , αk)’ occurs as
a predicate, i.e., with its argument place occupied by a logical constant or bound
variable and its integration into ‘Rk(α1, . . . , αk)’ accomplished through a propo-
sitional operator (conjunction, negation, etc.); whereas if ‘Rk(α1, . . . , αk)’ is, or
contains as component, a logically atomic proposition in which one or more of the
‘αi’ occurs as a subject term, then Rk is superordinate to its arguments. For ex-
ample, if α is the Wearing-C-colored-lipstick variable, the dyadic statistic ‘Women
are kissed more often when αi than when αj ’ is coordinate with its α-value argu-
ments, as is likewise the monadic relation ‘Jane Smith is αi’. In contrast, ‘Most
women prefer αi to αj is superordinate to the values of α, for while it, too, asserts
a statistical relationship, it employs α-concepts irreducibly as subject terms rather
than as predicates.

Given these two distinctions (whose tendency to blur under close scrutiny does
not impair the use to be made of them here), we may say that the content of an
interpretation 〈B,R,Q〉 of scale φ for natural variable α is analytic or empiri-
cal, and superordinate or coordinate, according to how the α-value relations in R

stand in these respects. The analytic/empirical and superordinate/coordinate di-
chotomies thus generate a 2× 2 classificational schema for possible scale contents,
and I shall now offer a crude inventory of what more determinate kinds of content
are to be found in these four categories.

The analytic-coordinate category can be reviewed quickly, for the simple reason
that it appears to be empty. For if Rk is coordinate with its arguments, then the
truth of ‘Rk(α1, . . . , αk)’ depends upon what objects instantiate α1, . . . , αk, and
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this is always (?) an empirical matter. The varieties of empirical-coordinate scale
contents, on the other hand, are more abundant; in fact, I have been able to
spot three distinct sorts of these. The first consists of instantiation citations in
which the properties which formally are the relation’s arguments are attributed to
specific objects—e.g.,

(a1) John Smith has value of variable α. [A monadic relation over values
of α.]

(a2) Mary Jones has been alternating between and this year. [A
dyadic relation over values of the Wearing-C -colored lipstick variable.]

Assertions generated by sentence schemata such as these are altogether lacking
in scientific generality, and I can think of no reason for scaling theory to heed
them. Not so with the other two content varieties in this category, however. Both
of the latter, which I shall call ‘incidence rates’ and ‘nomic imports’, respectively,
comprise statistical attributes of a variable’s values but differ markedly in their sci-
entific significance. Incidence rates describe or compare the occurrence-frequencies
of the properties to which they are ascribed, e.g.,

(b1) p% of population P have value of variable α. [A monadic relation
over values of α.]

(b2) The proportion of population P having either value , , or
of variable α totals c. [A triadic relation over α-values.]

(b3) More members of population P have value of α than have value
. [A dyadic relation over α-values.]

(b4) The proportion of population P having both the first component of value
of vectorial variable 〈α,β〉 and the second component of value

of 〈α,β〉 is c. [A dyadic relation over values of vectorial variable 〈α,β〉.
This example is clumsy in words, but shows how the joint distributions
of natural variables can be treated as scale content.]

In contrast, nomic imports describe how their arguments lawfully make a difference
for what other properties are also possessed by objects which instantiate these
arguments—e.g.,

(c1) βi is the most frequent value of natural variable β among members of
population P who have value of variable α. [A monadic relation
over α-values.]

(c2) The arithmetic mean of number-valued formal variable φ is greater among
members of P who have value of variable α than among those who
have value . [A dyadic relation over α-values. Formal variable φ is
here assumed to scale some natural variable other than α.]
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(c3) Any solid object whose density is will float on any liquid whose
density is . [A dyadic relation over densities.]

(c4) δ is the contingent distribution of variable φ among members of P who
have the first, second, and third components, respectively, of values
, , and of vectorial variable 〈α,β, γ〉. [A triadic relation over
values of a vectorial variable. This relation—or more precisely the func-
tional derived from it by letting parameter δ vary appropriately for each
argument triple—describes how variable φ is jointly dependent upon vari-
ables α, β and γ in population P.]

Incidence rates can often be given simultaneous scale representation by num re-
lations with precisely the same degree of psychological simplicity as the relations
represented. For if each different value of natural variable α has a different fre-
quency of occurrence in population P, we can scale α by the function which maps
each α-value into its occurrence-frequency; whence any given numerical compar-
ison holds for a given k -tuple of scale values iff this same comparison holds for
the relative frequencies of the corresponding k -tuples of α-values. However, I can
think of no practical utility for scale representations of incidence rates. Very much
in contrast to this is the interest which attaches to the scaling of nomic imports.
It is by no means the case that lawful interdependencies among scientific vari-
ables can always be given mathematically powerful number representations; but
when this can be done, a great many important advantages accrue to it, only
one of which is the increased potency with which this facilitates generalization
from the relational patterning of limited data. Although scaling theory is only
now awakening to the full potential of nomic imports as scale content—for this is
what ‘conjoint measurement’ is all about—scaling practice by research scientists
has long chosen its scales with an eye to the mathematical simplicity these confer
upon the representations of natural laws. Still entirely unexplored by either scaling
theory or scaling practice, however, is the tantalizing metatheoretical question of
why some but not all variables have nomic imports amenable to simple numerical
representation. It is altogether possible that the representation group of conjoint
scales whose content includes lawful dependencies among the variables scaled may
be significantly determined by what sorts of variables these are. If so, then if we
can discover these principles we will also be in position to infer things about a
variable’s nature from the representation group of its nomic imports. In particu-
lar, this is one way—perhaps the only one—in which a factorial decomposition’s
type may be able to reveal more about underlying source variables than their bare
existence. But to find such principles, we must first identify aspects of a variable’s
nature which might be relevant. And since to analyze a natural variable’s ‘nature’
is primarily to say what its values are like, what might be learned about a variable
from the character of its nomic imports is how it stands in such respects as appear
in the analytic-superordinate cell of our present classification.
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Before considering scale contents which are inherent in their arguments, how-
ever, let us first dispose of the empirical-superordinate category. The only entries
I can find for this are cases where a variable’s values are appraised, designated, or
otherwise cognitively related to by sentient beings—e.g.,

(d1) Most persons prefer to ,

(d2) John Smith thinks that is more similar to than to ,

(d3) The phrase used most commonly in English to speak of contains
more letters than does the most common English phrase for ,

all of which will take the values of any natural variable α as arguments. Relations
such as these derive from relations of higher polyadicity over α-values and persons,
and data of the latter kind are best processed by factorial decomposition. If the
resultant factorial mapping ofα-values is many-one, then the factorization function
determines equivalence classes among the αi which may correspond to significant
features of these; whereas if the mapping is one-one and hence merely a scaling
of α, a possibility still remains that something further will be revealed about α’s
nature by the decomposition’s type. But either way, the inferential conclusions we
draw from analysis of appraisal data depend upon, rather than lay a basis for, our
theory of decompositional significance.

Finally, then, we come to scale-content resources in the analytic-superordinate
category. A relation of this sort may be described as an ‘intrinsic’ or ‘inherent’
character of the arguments for which it holds insomuch as it depends only on the
latter’s nature. For example,

(e1) is darker than ,

(e2) is more saturated than ,

(e3) has the same hue as ,

are intrinsic dyadic relations over values of a natural Coloration variable over
uniformly colored objects. While I can see no reason why there should not exist
vast multitudes of inherent characteristics available for possession by the values
of natural variables, I have been able to identify extremely few which are not of
one special variety, and none at all outside this variety which have any generality
beyond one or a few closely related variables. (E.g., what variables have values
standing in saturation, brightness, or hue relations other than ones describable by
predicate schemata of form ‘having a P of color ,’ where P is some part or
possession of the variable’s argument?) Variables whose values have features of
this special kind may appropriately be described as quantitative, and just what is
meant by this is our last target for analysis.
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Measurement: The Assessment of Quantity

Although this essay has throughout addressed matters commonly aired under the
heading of ‘measurement’ theory, I have so far scrupulously avoided use of this
term. It is now time to consider what measurement proper may be, and what it
has to do with number assignment and scale content. While I have no desire to
itemize all twists of meaning this word has sustained in its manifold applications
(cf. the 40 variants cited by Lorge, 1951), I shall begin by noting distinguishable
themes within the intuitive notion of ‘measurement’ in virtue of which this term
is often extended beyond what, I shall argue, is its core sense.

The everyday grammar of ‘measurement’ employs this concept both as a verb
and a common noun. The verb is transitive, occurring primarily in the linguistic
context ‘x measures Y ’, wherein x is a person and Y, the object of measurement,
will be examined shortly. The noun’s primary context, on the other hand, is ‘X is
a measure of Y ’, which still construes measurement as a dyadic relation but whose
subject, X, is something other than a person.16 In both its verb and noun forms,
the concept’s focus qua relationship is upon assessment: When person x measures
Y, x learns (or attempts to learn) something about Y ; while if X is a measure of
Y, X makes available the sort of information which a person measuring Y seeks
to acquire.17 Clearly not every act of ascertainment counts as ‘measurement’,
however, so the heft of this concept must lie in what sorts of entities are measured
and what it is about them that measurement determines.

If such statements as

(i) The Wechsler-Bellevue is a measure of intelligence,

(ii) The Kuder Preference Record measures vocational interests.

(iii) The Standard Deviation and Probable Error are both measures of varia-
tion,

(iv) I’ll have to measure that window’s size before ordering a new pane for it.

(v) The first thing that cardiologist Jones does with a new patient is to
measure his blood pressure and heart rate,

16’X is a measure of Y ’ is also sometimes paraphrased transitively as ‘X measures Y ’. The
latter derives from the former, however, and must not be confused with the primary verb form
‘(person) x measures Y ’ whose intransitive rephrasing (‘person x is a measure of Y ’) yields only
nonsense.

17With the notable exception of Leonard (1962), the modern measurement-theory literature
is altogether devoid of any recognition that measurement is first and foremost an informational
relationship. It could further be argued, perhaps, that ‘x measures Y ’ also carries overtones
of x ’s doing something to Y. But over and above the purely grammatical impact of the verb’s
transitivity, this is probably no more than a trace of the empirical fact that we usually need to
interact with Y in order to assess it mensurationally.
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(vi) Interferometer readings provide a more accurate measure of the speed of
light than do direct distance-traveled observations.

(vii) The most important things in life, like health, love, and happiness, cannot
be measured.

may be accepted as typical uses of measurement words, we can assert with consid-
erable confidence that the grammatical object of measurement is either a scientific
variable, as in examples (i )-(iii) and (vii), or, as in (iv)-(vi), a variable’s value
for a particular argument. Of these two, the latter appears primary—i.e., ‘X is
a measure of variable Y ’ seems elliptical for saying that on various occasions,
X -data inform about specific values of Y. And what kind of information do they
provide? Well, whatever else may be involved, to measure entity e’s value of Y is
first and foremost to identify what value of Y holds for e. This is, in fact, a theme
so central to the intuitive concept of ‘measurement’ that often it appears to be
essentially all that is meant. That is,

Usage 1. In an extended sense of ‘measurement’, to measure entity e’s Y (or,
as it is sometimes put, to measure e with respect to Y ) is to ascertain which,
out of the alternative possibilities denoted by concept ‘Y ’, is the particular one
which obtains in e’s case. In this same sense, variable X is a measure of Y if
an entity’s value of X reveals which Y -possibility it realizes.

There are, however, two importantly different ways in which status with respect
to Y can be conveyed by values of X. On the one hand, as illustrated by examples
(i), (ii) and (vi), X and Y may be two distinct variables whose correlational
agreement permits an entity e’s value of Y to be inferred from e’s X -value. Thus,

Usage 1a. In an extended sense, variable X is a ‘measure’ of Y under conditions
C if X and Y are logically distinct variables whose joint distribution under
conditions C makes X predictively relevant to Y.18

But a variable X may also be an explication of what it measures. As every pro-
fessional scientist (if not every philosopher) is aware, the conceptual resources of
ordinary language are profoundly inadequate for precise thinking about most mat-
ters; and where this deficiency is most acute is in describing particular values of
variables. Virtually all commonsense adjectives do double duty for reference to (a)
a poorly defined variable and (b) an even more poorly delimited region of values
on that variable, while designation of specific alternatives under the variable is
hopelessly beyond the capability of ordinary language. Consider, for example,

How tall is John? Really tall.

18For the technical details of such inferences, see e.g., Rozeboom (1966).
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Jimmy’s face is awfully dirty.

Jane is sexy, but not as sexy as her sister.

Jerry and Janice are both generous [brave, moody, friendly, honest, self-
ish, etc.], but are so in different ways.

It is clear in these statements that tallness, dirtiness, sexiness, generosity, etc., are
fundamentally variables, only specific values of which hold for particular persons
even though the corresponding adjectives ‘tall’, ‘dirty’, ‘sexy’, etc., mean some-
thing like ‘having a value of the Tallness [Dirtiness, Sexiness, etc.] variable in the
upper range of possibilities for this’. (This ambiguity is undoubtedly responsible
for the increasingly prevalent use of the term ‘attribute’ in scientific writings to
denote attribute dimensions, i.e., variables.) But while ordinary language has by
now also acquired the technical ability to say precisely how tall John is (e.g., ‘76.8
inches’), it is quite incapable of putting into words (much less of ascertaining) what
the different sexinesses are in virtue of which Jane is more so than her sister, or
what specific attributes of the facial dirtiness or generosity sort a person might
conceivably possess. When Y is a commonsense variable of this kind, identifying
specific alternatives under the Y -idea is no small achievement, even though the
technical variable X so defined, just because it is more precise than the com-
monsense notion of Y, is not altogether equivalent to the latter; and answering
questions of how entities stand in respect Y by identifying their values on X is a
second sense in which ‘measurement’ conveys information about what is measured.
That is,

Usage 1b. In an extended sense, variable X is a ‘measure’ of Y when the alterna-
tive possibilities envisioned by term ‘Y ’ are vaguely conceived while the values
of X are an array of precisely defined, individually specifiable properties which
intuitively qualify as being of kind Y.

Usage 1b is nicely illustrated by example (iii), above, which also points up the fact
that the commonsense variable Y explicated by X may be multi-dimensional—
i.e., X may be only one of many variables which are equally acceptable technical
versions of Y. Usage 1b also clarifies the intent of disclaimers such as (vii). For
when humanists deny that the things most dear to them can be ‘measured’, they
are mainly incensed over the suggestion that a system of tidy abstractions can
ever be devised to capture the rich, warm, infinitely nuanced particularity of these
matters and serve them up immobilized, like butterflies pinned to a specimen
board, for dissection and comparison—e.g., that the specific quality of our love or
your happiness can ever be conveyed by impersonal scientific terms.

Despite our tendency to speak of ‘measuring’ a variable when our chief concern
is only with precise determination of its values, however, there is more to measure-
ment than just this. We would never consider, e.g., detection of a student’s college
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major to be an act of measurement, nor would we likely admit that Interuterine-
activity is a measure of Sex even if the sex of an unborn child could be diagnosed
with high accuracy from its interuterine activity. Linguistic intuition insists that
there is something numerical about measurement proper. Moreover, the latter
is one theme which has suffered no neglect in the technical literature, for in one
way or another virtually all modern measurement theorists have proposed that
measurement is numerical representation. This tradition appears to have begun
with Campbell’s statement that “measurement is the process of assigning num-
bers to represent qualities” (Campbell, 1920, p. 267—though he goes on to argue
that not any old numerical assignment counts as measurement), while Stevens has
more recently and with fewer reservations expressed the same thought as “In its
broadest sense measurement is the assignment of numerals to objects or events
according to rules” (1951, p. 1). So widely has this view become disseminated
that the descriptive semantics of ‘measurement’ must now recognize:

Usage 2. In an extended sense, variable X is a ‘measure’ of variable Y if X is a
number-valued scaling of Y.

But this is not really what measurement is. Brainsweat U.’s College-major-score
scale does not become a measure of the natural College-major variable just by
mapping college-major categories into numbers, nor would a Sex-scale variable on
which the numbers one and zero represent ‘male’ and ‘female’, respectively, be
happily regarded as a measure of sex. As we now conceive of them, College-major
and Sex are just not the sort of variable which can be measured—not because we
are unable to identify their specific values, but because they lack the character
required of a variable which qualifies as measurable. And what is this missing
character? The word for it is accessible enough, even if that word’s meaning is
rather more elusive. First note that one commonsensical reaction to the proposal
that College-major and Sex can be measured is to reject this on grounds that the
alternatives subsumed under these concepts differ in ‘kind’ rather than in ‘degree’.
But an intuitively equivalent (or nearly so) wording of this thought is to say
that College-major and Sex are ‘qualitative’ rather than ‘quantitative’, whereas
measuring consists in determining how much—i.e., what quantity—of something
there is. I submit that unless a linguistically sensitive speaker of English is able to
regard a thing as somehow ‘quantitative’, he would be loath to speak of measuring

it without a concomitant display of ‘as it were’ signals. Thus,

Usage 3. In the tough sense of the word, ‘measurement’ is assessment of quantity.
Strictly speaking, person x measures entity e’s Y iff x ascertains what quantity
of Y is possessed by e; while variable X is a measure of Y iff X is a number-
valued scale for Y on which a score n is the amount of Y -ness in the attribute
whose X -scale value n is.
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I shall not linger over arguments for the centrality of this usage, for I know of
no instance where a writer who speaks of ‘quantity’ at all has not recognized
its intimate relation to measurement, even though a contrast between ‘intensive’
and ‘extensive’ measurement or—what is not the same—between ‘derived’ and
‘fundamental’ measurement is occasionally drawn with the implication that only
the second alternative in each contrast is truly an assessment of quantity. The real
problem here is to say what it is for a variable to be ‘quantitative’.

The literature on quantity and ‘fundamental’ measurement is so vast that a
comprehensive review would be hopelessly impractical here even had I the fortitude
to try. Instead, I shall summarize what has become the dominant view of this
matter, show why it is unsatisfactory, and then sketch what in my judgment is the
correct approach.

According to Campbell (1920) and most measurement theorists who have come
after him, for a variable X over domain d to be ‘fundamentally’ measurable—i.e.,
for it to be quantitative—there must exist (a) a method for comparing d-objects
in virtue of which we can say that the X -value of one is inferior, equal, or superior
to that of another, and (b) a physical concatenation operation which combines
objects in d into aggregate d-objects which likewise have X -values standing in
this comparison relation. Then X is quantitative if these empirical relations can
be represented on a number-valued scale for X by the order of numerical sums.
The traditional example is Weight: Objects can be comparatively weighed by
means of a balance, concatenation consists in lumping them together in the same
balance pan, and it is found that weight can be so scaled that any concatenation
of objects dh, . . . , di outweighs the concatenation of objects dj , . . . , dk the scaled
weights of the former have a larger sum than the scaled weights of the latter.
This general idea can be expressed compactly, without an explicit ontology of
aggregate objects, as follows: For every two integers j and k such that 1 ≤ j < k
let CXk

j be the k -adic relation defined over d by object-concatenation and X -

comparison operations in such fashion that CXk
j (d1, . . . , dj ; dj+1, . . . , dk) holds for

two groups of objects d1, . . . , dj and dj+i, . . . , dk iff the concatenation of objects
in the first group is X -wise superior to the second-group concatenation. Then,
says the Campbellian tradition, a function ω which maps each d-object into a
real number is a fundamental measure of X iff for each j -tuple 〈d1, . . . , dj〉 and
(k-j )-tuple 〈dj+1, . . . , dk〉 of different objects in d, CXk

j (d1, . . . , dj , dj+1, . . . , dk) iff
j
∑

i=1
ωdi >

k
∑

i=j+1
ωdi.

So described, Campbellian ‘fundamental’ measurement is actually a case of
factorial decomposition. For it begins not with an array of alternative monadic
properties over domain d, but only with a relation CX over pairs of concate-
nated d-objects. If, prior to the decomposition, we have already presumed the

46



CX -relation to manifest an underlying variable X over d, then we shall also im-
mediately construe the factorization function to be a measure of X ; but until we
are able to identify X ’s values independently of the CX -comparisons, X remains
a hypothetical source variable inferred from the relational data. Even so, com-
plicity of factorial decomposition is not the central point here. What is crucial
to the Campbellian approach is that however the values of X are identified, they
are taken to be quantitative—i.e., ‘fundamentally’ measurable—if and only if their
causal implications for some binary comparison among physical concatenations of
X ’s arguments have an additive scale representation.

But this seems to me to be altogether wrong. In the first place, it locates
the essence of quantity in scale type rather than in scale content—specifically, in
whether or not the variable in question has a scale which, relative to the causal
outcome of certain combinatorial manipulations of the variable’s arguments, is of

type {
j
∑

i=1
ni >

k
∑

i=j+1
ni}. But what is so special about the latter that it should be

definitive of ‘quantity’, especially when innumerably many other sets of numerical

relations are representationally equivalent to it (e.g., {
j
∏

i=1
n′i >

k
∏

i=j+1
n′i} into to

which ithe summation inequalities are converted by rescaling-transformation n′ =
10n)? To reply—fairly enough so far as it goes—that what is essential here is not
numerical additivity as such, but the abstract structure common to all relational
systems in this representation group, still leaves mysterious why this particular
structure should be singled out for special attention. More intolerable is that
the Campbellian analysis seeks to find a variable’s quantitativeness in its nomic

imports rather than in its intrinsic character, and in a particularly restricted sort
of effect at that.

Consider, for example, the quantitative variables over persons, Being x -inches
tall and Having-y-siblings. We would agree, surely, that specific values of these
variables, e.g., ‘being 72 inches tall’ and ‘having three siblings’, are quantities, and
moreover that we can arrive at this judgment without first considering how they re-
late to their alternatives. Under the Campbellian conception of quantity, however,
this intuitive judgment makes no sense insomuch as the quantitative character of
being-72- inches-tall or having-three-siblings could appear only in the property’s
joint effect with others of its kind upon the comparative heights or number-of-
siblings of person concatenations. Further, what would it mean to speak of such
comparisons among concatenated persons? There are, to be sure, numerous ways
in which two or more persons can be physically juxtaposed (acrobatic pyramids,
subway crowds, sexual couplings, etc.), and some of these aggregates have greater
vertical spread than do others. But even were there methods for conjoining people
in such fashion that certain relations between these wholes are additively scalable
outcomes of constituent-person heights, our belief that Height is quantitative can-
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not be based on such phenomena if only because we are not now aware of them.
Whereas since only individual persons have siblings, it is not logically possible
for the Number-of-siblings variable to be quantitative in virtue of its empirical
effect upon concatenated siblinghood. Whatever we may be able to infer about a
variable’s quantitativeness from its nomic import for relations between aggregate
arguments, the latter has no bearing upon the meaning of “quantity”. When in
paradigm cases we say that Height, Volume, Number-of-siblings, Number-of-hairs-
on-head, etc., are quantitative while College-major, Lipstick-color and Sex are not,
we are passing judgment not on what these variables do but on what they are like.
The analysis of ‘quantity’ must thus be sought in terms of analytic-superordinate
scale contents rather than in the empirical-coordinate terms of the Campbellian
tradition.

But what is quantity, then? At risk of appearing hopelessly naive, I submit:

Principle of Quantitative Constitution: A value α of natural variable α is a quan-

tity iff α can be analyzed as a logical combination of a determinate number of
distinct parts.19

For example, ‘having three siblings’ is the property of having a sibling, and another,
and still another, and no more; while ‘being 72 inches tall’ consists in occupying a
region of space which is analytically divisible into 72 horizontal strata, each an inch
thick. To be sure, just what is to count as a ‘logical combination of distinct parts’
can well stand further illumination and I offer the Principle’s present wording
not as an ultimate insight but only as a guide to subsequent explication of specific
quantitative concepts in their real-life employments in science and commerce. This
is not a program to be realized in a few paragraphs; for not only are unambiguous
examples of quantity much harder to come by than one might expect, the nature
and manner of integration of a quantity’s parts also show dubious consistency from
one instance to another. (E.g., the way in which sibling-units compose a value of
the Number-of-siblings variable does not, on the face of it, show much kinship to
the way inch-units fuse into a value of Height-in-inches.) But even if the Principle
is far from a last word as it now stands, I am convinced that it captures the essence
of intuitive ‘quantity’. There is, after all, nothing very original about it—the idea
that quantities are aggregates of units is prominent not only in the commonsense
concept but in the Campbellian analysis as well. The latter’s error has been to
regard ‘units’ as objects (i.e., as the bearers of properties) and their concatenation

19Further reflection has convinced me that α is better said to be a quantity iff α is the property
of having an attribute analyzable into countable components of a certain kind, rather than being
itself this attribute, so that to predicate quantity α of an argument a is to make an existence
claim of form (∃P )[P (a) ·Q(P )] wherein Q details the relevant composition of P. However, this
technical (though possible important) modification of the Principle does not essentially alter
anything I say below. (Note added in proof.)
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as a causal process unfolding in time; whereas understood properly, the units
comprised by a quantity P are component properties of which P is an analytic

aggregate.

Given a set P of properties, each member Pi of which is a constellation of
countable components, any relation Qk(n1, . . . , nk) over numbers defines a corre-
sponding relation Qk(qP1, . . . , qPk) over P, where qPi is the number of parts in
property Pi. Often a quantity Pi can be analyzed into parts in more than one
way, with the number of parts accordingly dependent on the choice of analysis.
(E.g., the height which comprises 72 inch-units can just as well be conceptually
partitioned into six foot-units, or into five foot-units plus 12 more inch-units.) In
such cases, specification of quantity by number remains ambiguous until the kinds
of units by which the quantity is parsed are also identified. Even so, any such
analysis abstracts a genuine numerical aspect of Pi which stands in full-blooded
numerical relations to the similarly abstracted numerical aspects of other quan-
titative properties. Thus ‘being 72 inches tall’ contains twice as many inch-units
as does ‘being 36 inches tall’, while the number of siblings by which ‘having three
siblings’ exceeds ‘having one sibling’ is equal to the number of sib-units by which
‘having four siblings’ exceeds ‘having two siblings’. It is also impeccably true that
‘being six feet tall’ contains fewer foot-units than ‘being 60 inches tall’ contains
inch-units, and that the number of inch-units in the latter is twenty times as large
as the number of sib-units in ‘having three siblings’, even though we seldom find
practical occasion to compare quantities articulated by units of different types.

I am perfectly aware that many of our quantity-comparison concepts involve
more than just a counting of constituents, especially for quantities whose par-
ticulate composition is not perceptually or definitionally immediate but must be
forcibly imposed by analytic contrivance as when, e.g., heights are dissected into
components matching an arbitrarily chosen unit. Still insufficiently clear is what
it means, e.g., to say that one height is n times as great as another even when no
unit is specified, or to make comparisons among units of measurement themselves,
or to speak of fractional and even irrational quantities. These are matters best
reserved for another occasion, however, for they turn largely upon the explication
of numerical concepts per se, a task which is still unfinished despite the impor-
tant inroads by modern set-theoretical treatments of number. If the present rough
sketch of quantity’s lair does no more than revive awareness that this concept’s
true habitat is somewhere amid the formal complexities of compound predicates,
rather than in the nomic-import bushes beaten by so many recent measurement
theorists, its intent will be well served.
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The Scientific Significance of Quantity

Outside observers of scientific practice have often commented (not always favor-
ably) on the near-idolatrous esteem that quantity commands in science. In many
cases the occasion for this judgment has undoubtedly been an ingenuous failure to
distinguish numerical scaling from measurement proper; for while it is seldom that
the variables studied in scientific research are not scaled numerically, it takes close
scrutiny to tell whether this is anything more than a semantic convenience. Just
the same, there are indeed good methodological reasons why true quantity is dear
to the heart of technical science. How this is so will be our closing consideration;
but first, we have some unfinished business to complete.

Regarding the relevance of quantity for scale content, it is obvious that if φ
is a quantitative scale for natural variable α—i.e., if each φ-value is the num-
ber of u-units in the corresponding value of α—then any numerical relation Qk

over φ-values represents the quantitative α-value relation ‘comprising u-units in
respective amounts satisfying Qk’. That is, numerical relations over quantitative
scale values are essentially relations over the scaled quantities themselves, so that
the distinction between scale type and scale content here virtually disappears. In
particular, the ‘additivity’ which has so often been viewed as quantity’s hallmark
is merely a truism of arithmetic and as such has no more significance for measure-
ment theory than does any other arithmetic property. (Thus if in my garage I
have a pint of brake fluid, three quarts of distilled water, and a gallon of alcohol,
then my garage contains 15 pints of liquid—not because these fluids would jointly
fill a 15-pint container, but simply because mathematically, 1 unit + 6 units + 8
units = 15 units.) In short, when φ is a quantitative scale, we are free to interpret
all numerical relations over φ-values in the commonsensical fashion which scaling
theory rightly cautions against for numerical scales in general.

Our other unfinished business concerns the possible inferences to be drawn
from scale representation of a variable’s nomic imports. It is altogether possible
for the values of natural variable α to be quantities without our being aware that
this is their nature, especially if α is known to us only through factorial decom-
position of relational data. Whether α is quantitative, therefore, and if so, in
what manner and of what units are its values composed, are questions which may
conceivably be answered by the representation group of α’s lawful effects. For
if the laws governing quantitative variables have a systematically different struc-
ture from laws in which nonquantitative variables participate, then, conversely, we
should be able to infer something about a problematic variable’s quantitativeness
from the scale relations which are able to represent its nomic behavior. To be sure,
whether there actually exist metaprinciples which relate a variable’s character to
the forms of the regularities which govern it as yet remains highly speculative—in
fact, the bare suggestion is so unprecedented that many readers will likely reject
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it out of hand. Yet, surely it is not completely irrational to suspect that there are
things to be learned by supplementing search for what natural regularities obtain
with inquiry into why these are as they are, even if this will not be answered
overnight or even in a generation. Meanwhile, a grain of encouragement perhaps
lies in Stevens’ (1957) empirical distinction between ‘prothetic’ and ‘metathetic’
sensory dimensions reflecting a possible distinction between how organic systems
react to quantitative and qualitative inputs. Anticipation that quantitativeness
affects nomic structure also has some rationalistic justification. For example, if
the causal influences of quantities are exerted per unit, must this not impose some
fashion of constraint on the resultant laws? And if further the quantity’s articu-
lation into units is a conceptual artifice which can be imposed in many different
ways, might this not yield a concatenation of such constraints compatible only
with certain restricted law-forms?20 Whatever merit, or lack of it, these gropings
may have, it remains a fact of human reason that we do at times infer quantity
from nomic consequences, notably, in factorial decompositions of the Campbel-
lian ‘fundamental measurement’ sort. For when C is a comparison relation whose
arguments are physical aggregates of objects, while the latter have a mapping ψ
into numbers such that a concatenation’s C -comparison behavior is determined
by the sum of its constituents’ ψ-values, it is extraordinarily difficult to resist—
nor should we necessarily resist—concluding that C -comparisons result from the
juxtaposition of underlying quantities for which ψ is a quantitative scale. The
psychological immediacy of this inference is precisely what makes it so easy to
confuse the combinatorial consequences of quantity with its nature.

To conclude this prolegomenon to the theory of quantity, I shall suggest why
it is that quantitative variables are so popular in scientific circles. Briefly, the
point is that quantitativeness apparently provides the only route by which we can
gain cognitive access to variables with a transfinite number of values. Before we
can effectively study a natural variable α we must possess linguistic resources for
conceptualizing and communicating about each specific value of α. This does not
demand that we ever make full use of this potential (an impossibility unless α is
finite), but it does require that we be able to identify any particular value of α and
to understand any such reference made by others. That is, for every value αi of α,
our language must contain a predicate ai which designates αi, at least in generative
potential in the way, e.g., we have a name for every numerical integer even though
no one could ever speak them all. But how can we acquire this array of concepts?
If the number of α-values is finite, then each ai can be logically primitive with its
meaning imparted, say, by ostensive definition. But if α has a transfinite number
of values, then it is not possible for us to learn each ai separately—instead, there

20What I dimly sense here is the possibility that Luce’s Principle (Luce, 1959b), which is
generically untenable (Rozeboom, 1962b), may in fact hold for certain kinds of quantitative
relationships, in particular, those addressed by physicists in the theory of ‘dimensional analysis’.
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must be a generative pattern by which all but an at-most finite number of the
ai-predicates are built up through iteration of a learnably small number of mean-
ing elements. (That an infinitude of α-values must all be different constructions
out of the same atomic constituents seems requisite to our recognition of them
as mutually exclusive.) The meaning content of such descriptive complexes can
be of two basic kinds. On the one hand, ai may specify intrinsic features of the
property αi it designates. In this case, the iteration of meaning elements in ai may
generally be regarded as a description of iterated units constituting αi; whence
αi qualifies as a quantity. The other alternative is that ai describes αi in terms
of its nomic correlates, notably, its connections with observation variables. For
example, almost all variables studied by the more advanced sciences are measured
by ‘test’ procedures wherein the outcome of an entity’s standardized interaction
with an assessment device is an index of its standing on an underlying variable
α. (The theory of α’s relation to the test-outcome variable is usually grounded
upon a factorial decomposition—often an intuitive one—in which α is implicated
by data of which test scores are but a small part.) In such a case, the instrument
reading is only an imperfect causal consequence of the α-value so indicated, yet we
are conceptually able to differentiate one αi from another only in terms of the dif-
ferent test outcomes (and other observable effects) to which these give rise. Thus
‘The value of α under which τi is the most probable τ -test outcome’ describes (in
general, ignoring complications of nonmonotonicity) a different α-value for every
different τ -alternative. But if a transfinite number of α-values are to be so identi-
fied, then τ must likewise be transfinite—whence by our previous argument, if τ
is not extrinsically defined in terms of still other variables, it must in general be
a quantitative variable. Thus, e.g., thermometer readings differentially identify a
continuum of temperatures only because indicator-fluid volume is itself a contin-
uous variable whose values are known to us quantitatively, and similarly for any
measurement system in which the test outcome is literally a pointer reading.

The importance of quantity for identifying specific values of variables can also
be appreciated through considering what character a natural variable must have
in order that we be able to assign scale representations to its values. (E.g., a
continuous ordinal variable cannot be scaled by reference to its ordinal features
alone. Only if its values can be described metrically, either intrinsically or through
the quantitative features of their effects, can we specify a particular mapping of
them into numbers.) But this is an argument which can be saved for another
occasion, for its main conclusion has already appeared: With few if any significant

exceptions, a transfinite-valued variable must either be intrinsically quantitative or

have quantitative correlates in order for all its values to be individually conceivable

by us. Wherever nature is more abundantly diversified than finite categories will
express, we can know its fine structure only in quantitative terms. Whether this
is merely a Kantian coloration imposed by human limitation upon our image of
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the external world or corresponds to reality’s ultimate texture, I do not care to
venture.

References

Adams, E. W., Fagot, R. F., & Robinson, R. E. (1965). A theory of appropriate
statistics. Psychometrika, 30 , 99–127.

Campbell, N. R. (1920). Physics: The elements. Cambridge: Cambridge Univer-
sity Press.

Coombs, C. H. (1964). A theory of data. New York: Wiley.
Edwards, W. (1962). Subjective probabilities inferred from decisions. Psychological

Review , 69 , 109–35.
Leonard, H. S. (1962). The use and abuse of measurement as a facet of scientific

research. Seattle: University of Washington Press.
Lorge, I. (1951). The fundamental nature of measurement. In E. F. Lindquist

(Ed.), Educational measurement. Washington: American Council on Educa-
tion.

Luce, R. D. (1959a). Individual choice behavior: A theoretical analysis. New York:
John Wiley & Sons, Inc.

Luce, R. D. (1959b). On the possible psychophysical laws. Psychological Review ,
66 , 81–95.

Luce, R. D., & Tukey, J. W. (1964). Simultaneous conjoint measurement: A new
type of fundamental measurement. Journal of Mathematical Psychology , 1 ,
1–27.

Rozeboom, W. W. (1961). Ontological induction and the logical typology of
scientific variables. Philosophy of Science, 28 , 337-377.

Rozeboom, W. W. (1962a). Intentionality and existence. Mind , 71 , 15–32.
Rozeboom, W. W. (1962b). The untenability of Luce’s principle. Psychological

Review , 69 , 542–7.
Rozeboom, W. W. (1966). Foundations of the theory of prediction. Homewood,

Illinois: The Dorsey Press.
Stevens, S. S. (1951). Mathematics, measurement, and psychophysics. In

S. S. Stevens (Ed.), Handbook of experimental psychology. New York: John
Wiley & Sons, Inc.

Stevens, S. S. (1957). On the psychophysical law. Psychological Review , 64 ,
153–81.

Sturtevant, A. H. (1965). The fly room. American Scientist , 53 , 303–7.
Suppes, P., & Zinnes, J. L. (1963). Basic measurement theory. In R. D. Luce,

R. R. Bush, & E. Galanter (Eds.), Handbook of mathematical psychology

(Vol. 1). New York: Wiley & Sons, Inc.

53


