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V. Causal Sysiems

*
"system" concepts are the means by which we cope with causal complexity,

Three main themes pervadt: fhese; the amalgamation of loci that are causally linked

in significant ways, the'iracing of causal-propagation lines by iteration of local
regularities, and abstfaciive simplificaticn., In this Section, I shall develop
»:;rm;lisms fer catching hnald of the first two of these whose full import will not
becore cléar until later. Bub not tc'eﬁbéfk'dpon this Sectionrcomplétcly rasotivated,
veflect that everyday olijects--myself (now), the book (today) that I resd yesterday,
my melfunctioning pockﬁiiéaiculator (iast month), my office fuiniture ahd window
plants, ete. etec.--are ?éldém if ever the individual loci of basic cau=zal events.
- v Rather, they are complexes of sub-objects (parts) which are themselves ensembles
of sub-parts and so on possitbly though not necessarily ad infinitum. And %he
pronerties and behavier of any such object or sub-cbiect as a whole are likewise
conetituted by the properiies/behavior of ite narts according to finer—grained laws
tf which the object's molar regularities are abstraciive consequences. At sone level
or levels in this hierarchy of part-analysis, we presurably encounter causal loci
whose precursive/éxcﬁrs1ve/causa1 properties, snd the laws these engage; determine
the holistic character cf the molar objects they constitute. Seeking to understand
i the whole in terms of its constituents.is essentielly what "systems" thinking is all

about. The aim of this section is to create a formal framework that effectively

|
|
|

deploys the full manifcld of diverse conceptual ingredients required for this under-

standing;

To simplify notation, let us sreak cf an n-tuple El(gl),...,fn(gh) (n21) of

., N ) - . - o’ .
cvents &3 a single "compound" event P{a) in which g = ¢81r...,8,> and P(__) = <L1\~”),
. .
""Rn(—~)>’ and sey that a devendent event Q{c) is cnused (in part) by a curnound
] L3 - . a )
event P(a) cceurring at "corpound” locus a inst in ecsse G(e) is caused jedntly by

all norponent evenis in P(a). Ve may also undersiznd cne cewpound cvent to be

"eontained" in annther just in case all component events in the first are aleo
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components of the second. Then if the input events in Defs, 2-6 aré allowed to be
corpound, we can without loss of generality take n =1 in all form-[8] causal regular-
ities. At times it is convenient to carry this convention even farther. We may
define the notion of "compound event" recursively by stipulating that (1) a genuine
(primitive, simple, non-compound) event is a compound event of complexity level O,
and (2) for each integer n, an indexed set of events of complexity level pn or less,
in which at least one is of complexity level n,is a compound event of complexity
level n+ 1. (Technically, we would *+hen also w~nt to distingnich smerg Aiffcrant
types of events at comnlexity level n according to the character of the index1ng
invbived.) "Compound 1ovus of complexity level p*is defined similarly, Then
generality-form '(Vx,2)[S(x,2) > Qz = £(Px)]! can be taken to subsume very complicated
arrays of caussl regularities‘if construed to quantify over compound loci, albeit
some care is needed to articulate which components of é(z) ére causes of which
components of é(g). Although it suffices for this Secticn to presume loei and events
only of complexity levels O or 1, I shall not make that rectristion formally exnlieit
simply because there is nn evident gain in doing so.

Ordinary language is exceedingly vague about what logical sorts of entities
are to count as "systems." But to be integrated under this term somehow are (1)
- set F of causal regularities, (2) a set A of entities for which ordinary language
has no unambiguous label but in which 'object' (also 'thing') comes clese to the
mark; (3) a breakdown of each A in A into a collection of lecus tuples in the scopes
of laws in F; and (4) one or more lag operators that carry séme system-objects intq
others along lines of causal connection., To bégin putting these together (though
;ég will be deferred until later), let us stipulate that for any function-symbol 'g',
if the values of £ are ordered sets (e.g. tuples) indexed by a cormon index set K,
‘6 ' designates the function whose value for any argument a is the kth component of
ga, i.e, ﬂkg = (dg)k. More generally, for any tuple k =<ky,...,k > of indices in K,
dt is the function whose value for any argument a is tuple <ﬁklg,...,ﬁkng>, and
sirilarly when k is ary other indexed set of indices in K--i.e. for any g-argurent a,

dga derives from k by replacing each kx in k by #k—' Then,
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/For some A in A only if this holds for all A in A,
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X Definition 5,1. A (locally deterministic) basic causal system (abbreviated "bes®)
" '
& is a 5-tuple I = <‘:§;,1_(,.F.‘,)4,¢f> such that: (1) A is a nonempty set, X is a non-

empty index set, F = {_F_‘i: ke K¢ is a set indexed by K, and ¢ and g are both

g e A it s

- functions on A whose values are sets each indexed by K. (2) For each k in K,
E, is a causal law (¥x,2)[S, (x,2) > Qz = £, (Pyx)] in which _ifk(gt_) is a compound
event (slbeit pcssibly containing only one component event). (3) For each k in K,

s/'k and "k are functiens from A into _Ifk's domain and range, respectively, such

[‘ that .S.k(’Lk.AL,?‘ké) for every A in A. (4) For any k and k' in X, <¢ké" -t ‘¢kt§.,?!k:.-§3

If <~A\,_I§,§,¢,pb is a basic causal system, set A comprises the system's pbjects

Mesbi> = (B Mt sPy> only if

o ——— 5 o ey

and is the system's molar domain, index set K is the system's organizor, <¥,£> is

=k

its or anization, F is its inner C(ausal)-structure, and the unordered set of all

le ¢ T

hi

laws indexed in F is the system's C(ausal)-character.

To appreciate the sense of Def. 5.1, observe that if £ = (A,_K,g,)l,d> is a bes,
every Z-object A in A corresponds to, though does not e¥plicitly include, an ordered’
set of facts/evénts tﬁat is not quite but almost fully indexed by K. Specifically,
for any object A in the system's molar domain and any index k in its organizor, apolying
functions v and g (i.e. the kth compohents of functions )6 and g) to A picks out'a
particular compound locus ¢, A and simple locus (or rlocus tuple) AA. Meanwhile, index .
k also identifies'through I's inner C-structure F a (more or less complex) relational
property Sy in which ¢k-‘A= stands to ;‘ké,‘ a compound variable P, whose domain includes
%k_l_&., and another variable Qy whose domain include; gﬁké, namely the scope, input
variable, and outout variable, respectively, of the kth law in };. Tcgether, these
coordinate system cbject A with not only the fact that §k(¢k_é,ﬁk§) but also the compound
event _fjk(v‘ké) (i.e. compound locus ’éké having whatever.value of compcund variable Py
it does have) and the simple event ék(pfk_é) (i.e. simple locus or locus tuple g A having
whatever value of simple monadic or relational variable Q) it does have). These
specifications of events i’k()ﬁ(_t_&) and _é_k(ﬁk_.q) do not identify what values these variables
have for these narticular loci, anymore than referring to Mary's father by the

description 'Mary's father! suffices to identify who he is. But because the one
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event is caused by the other under law Py, the value of Qk for locus ﬁkA is determined
in the system by the value Qf Py for locus y&g, Moreover, it is also possible that
some or all of the component events in Ek(¢k§) are also dependent events "in" A or
more precisely coordinated with A by other indices in K. (f.e., there may be one or
more k' in X such that Qk.(ﬁk,ﬁ) is a corponent of ék(¢§é)‘) Thus the total set of
events so coordinated with object A in system T can be divided into syster-input
events, rediating events that are determined by causal antecedents acknowledged in
the sysiem but in turn help t§ determine others, and system-outprut events,

A sysﬁem's inner grstfucture differs from its C-character in that the same
law F may be indexed repeatedly in E’ corresponding to different locus tuples in F's
scope into which <¢k,ﬁk> raps A for different k in K. Wote also that if <£.,_Ig,£,¢,,{>
1s a bes then sois (ALKF,£',4'> for any subset A' of A and restriction ¢¢',f' of
<8 to‘é'; It is often heuristically conveniént to‘téke a bes's molar domain to
corprise just a single object.4

Evidently, if <A,§LE,%,¢> is a basic causal system, then
(VA)[AeA> QA = £, (P4 4)]

for every k in K We 'may include the K-indexed set of these latter generalities; which
quantify over system objects rather than loei, in wﬁat we shall later call the system's

outer C(ausal)-structure. But a bes is generally characterized by vastly more

regularities than are made explicit by its iﬁner and corresponding outer C-structure.
In particular, when a bes <ﬁ,§,§,¢;d> is causally recursive, i.e. when some of its
events that are outputs under‘g\are also local inpu@s-for other events whose causation
is also made explicit in the system, the system generally has a latent C-structure
that includes not merelylz;but additional laws derived by composition of laws in‘E

as well, . ’ . T, LT T

[The following paragraphs‘on law-compesition more proverly belong
in the preceding section on Lawfulness, and will be transferred

' there in subsequent revisions of this mateérial.] -

¢
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The composition of one causal law into another is an extremely important
conceot that is closely related to the mathematics of function—composition but is
unhaprily rather more ccrplicated than that. Reverting temporally to the more

articulate notation of law-form [8], consider two simple causal laws

E]_:' (VZ9§.\[§1(§’.§‘ 5Qz = .f_‘]_(PX.)] ’
Fye (Vx,z) [§2(Z’.§) DRz = .f.‘.g(Q.Z)] ’

and three events P(a), Q(b), and R(g) having respective loci a,b,c such that §1(g,g)
and S5(b,¢). Evidently P(a) causes Q(b) which in turn causes R(g), so by the trans-
itivity of causation P(a) causes 3(g)--but under what law? The functicnal connection
between a's value of P and ¢'s value of R in this case is just Re = Qz(gl(Pg)), and
this relation generalizes to all locus pairs ¢a',g'> for which there is a mediating
locus b' avvropriately linked under the scope of Ey tovg' on the one hand, and under
the scove of 22 to ¢' on the other. Thus El and Eé joinfly entail that

E,t W22 J00)IE, (2:1)8,(2,2)] = Rz = (8 (P0))§
is a causal law, under which moreover the causation of é(g) by é(g) is subsumed.
We want to say that F;, 1s a "composition" of Fy into E5 and that this composition
js "instantiated" by sequence ¢a,b»,<b,c>of locus tuples. However, we also need to
generalize these notions to iterated causality governed by laws considerably more
complicated than in this extremely simple example. The wanted generalizations are
easy enough to intuit; but stating them with technical precision turns out to be
surprisingly difficult.

Suppose, for example, that in addition to F, and Fp, it is also a law that

Es: (Vz.rl,z.z,z)[§3(.>s1,x2,z) > Rz = £5(Qx%),0,)] ,
where §3(§1,32,g) entails Xy 7 %5e (Note that F, ‘and £3 are entirely compatable so
long as their scopes are incompatable. ) Thgn El can be composed into both input
positions in F3 to yield causal law
Fiizt (Vxpo2p2) § 0y, 2,018 (%0008 (0 3) 85y 2p,2) = Rz = £5(£, (Pxy), fl(sz))}

(It 1s of considerable interest to observe that F113 is open regardlng whether or

not xy = 12.) But F; can also be composcd into just the first input position of 23,
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yielding

Fipt O2y,3,2) f Q08 (y,1) 85(%,%5,2)] o Rz = £5(£;(Pxy),02))}-
So far so good; but if F5 is replaced by its logical equivalent

Fle (V2y,%5,2)(85(%),%5,2) o Rz = £3(Px)) + £5(Px,)]
in which

S3(x0%p2) =4 0 S(x02) (2 = %)) £ 5 (1/2)L

composition of El into just the first input position of Eé gives

2PE (Vzlyzz,&)f(iz)[él(zl,x)'.S.é(z,zz,z)] = Rz = £3(£; (Px;)) + £3(Px,)¢,
the scove of which is equivalent to §1(§1,32)'§2(32,g). Is Ei2 a causal law?
According to HT-8 and Def. 2 (Sect. IV), only if it is prover to view P(a) and §(b)
as causing R(c) jointly when S,(a,b) and Sy(b,c); and since the force of F; and F,
(equivalently, F, and F}) is that P(a) causes R(c) only through mediation by 3(b),
it seems questionable to claim that P(a) works conjointly with §(b) to-cause Rie)..
In contrast, for loci a,by,by,c such that §1(g,g1), §1(g,g2), and §2(§1,§2,g), so
that <8,by,c> is in the scope of Fy, and Rg = 23(21(Pg),Q(92)), it does seem proper
to regard P(a) and é(gz) as joint causes of R(g), insomuch as while é(hz) mediates
one line of influence from P(a) to R(e), é(g) also also affects R(c) in an additional
way independent of that., And yet it also seems trpe, undér 3113, that there is a
seﬁsé in which i(g) has sole causal responsibility for ﬁ(g), albeit by wéy of parallel
mediation through é(gl) and é(gz). (There is nothing genuinely paradoxical about

the degree of
this so long as we acknowledge thatfone event's responsibility for another is relative
to a specified set of additional causes of the latter; but to our prevailingly still-
primitive ways of thinking about cansal connection, it certainly seems paradoxical.)
Sti1l, are the intuitions about conjoint causation to which I have just

appealed really all that secure? Since nowhere in HT-8, Def. 2, or their discussion
have I attempted to clarify what is meant by stipulating in Def, 2 that 21(51),...,
En(zn) cause §(z) jointly, we are still very much in need of some analysis of this
notion, At one extreme of its possibilities, it might require no more than that

él(gl),...Jén(zn) are all individually causes of é(g), in which case the present




"5 . 59"

Eiz qualifies as a causal law after all. Whereas at another extreme, "joint" cauvsation
might involve such an active collaboration among joint causes that in the present
example under F,, P(a) and Q(bz) do not jointly cause R(c) when Sl(a,gl) and
SB(b ,c) because P(a) does not itself work with Q( 2) in the requisite fashion
even though it brings abcut another event, Q(_l), that does. I am not myself able
to make sen;e of a notion of conjoint causation so strong as the latter, and am
instead prevpared to advance an account of this under which causes —ﬂ(xj)""’ih(zn)
of é(g) are also joint causes thereof just in case each one of them matters for Q(g)
-given the remainder. But since that account involves some complications, nor can I
show conclusively that it is the correct one, I shall say no more about the nature
of conjoint causation here ekcept that this is one more issue of causality where
our present understanding is still rudimentary.

What we have just seen is that in attempting to formalize principles of
mediated causation, we can generally compose one law into another in more than one
way, while moreover the universal conditional that so results may or may not be
genuinely causal if the conjointneés requirement is at all stringent. For many
purposes howevér, including present efforté to formalize a concept of "causal system"
adequate to deep analysis of system structure in its manifold aspects, we can make
do quite nicely with a sense of causal law even weaker than that of Def. 2. Specifi-

cally, let us say that a generality of form [8] in Def. 2 is a virtual csusal law

just in case the definiens of Def. 2 obtains after '... are joint causes of ...' is
weakened to read '... are each a cause of ...'. In Def, 5.1 and subseqﬁent defini-
tions in this Section, it will be most expedient to take the "causal laws" indexed
in bes Z's C-structure F, to be virtual causal laws., (Even so, should ve wish a
concept of causal systems in which F F is constrained to include only laws that are
unqualifiedly causal, or even purely causal in one or another of the stronger senses
deseribed by Defs. 3-6, nothing in this Section will require significant modification
sovlong as the same grade of causal law is presumed throughout.) Remaining content

with composed laws that are perhaps only virtually causal does not, however, alter
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the multiplicity of ways to compose one law into another. That is perhaps no great
conceptual vroblem beyond disallowing us to speak of the composition of Ei into 21;
but it does make for difficulty in specifying exhaustively what it is for one law

to be a composition of others. Let us provisionally try the following:

Definition 5.2. Let 21,22,23 be generali.ties of form [8], i.e., for i =1,2,3, .
j = (Vxlyc-o, 1,2)[8 (xlgcoc,znj,&) > Qj gj(lezly...,PJannj)]o Then,
4) Fy is the_ ith-place composition of Fy inte F, just in case:. 1) Q = Psi,

Q3 Q,, and n =ptop-1; (11) __3(x ,...,_nB,z) -de_f(ilz)[ (xl,...,_nl,x) ..2(
znlﬂ,...,anﬁ_l,x,_nlﬁ,...,g_cnlmz_l,_z__)], (i) for each input variable Py (4=
1yeeesmy ) of F 39 Py = Ppy i Jed, Pyy = Py(y 44 if Lejei- 1+p_1, and

PBJ = P2(j-n1+1) if i+n2i=n) +ny-1; and (iv) for any point <Psy,...,
22(1-1)’211’ cee ,21n1,22(1+1) yece r£2n2> in EB 's input space, 23 (221, cee ’22(1—1) ’2]_1’

looyglnlﬂgz(i.l.l)’O-,gznz) f (P2l’ooo’P2(i 1),f (Pll,o-ogpln )’_2(i+1),cc-’_2n2))

B) A tuple 421,...,gn »>- is the ith-place ccndensation of tuple <gl~,...,_a_na>

> Just in case izn;, 8, =By, and <gj5...58

into tuple <b,,...,b > =
p _1’ 9 nc

<p_1, e e "b'i-l"gl’ see ,gna-l,gi+1’ oo e ,b_nb> . If 23 iS the i-.th—place compOSition Df
El into Fp, a 2-tuple <a,b>, in which a and b are tuples of loci or locus tuples,

instantiates the ith-place composition of E; into E, just in case a is .in the

scope of El’ b is in the scope of F,, and some tuple in the scope of §3 is the
ith-place condensation of a into b--i.e. just in case §1(§_), S,(k), and the .

last component of a is the ith component of b.

c) A generali’qy 3‘"—12 is a simple composition of 2‘_1 into F, Jjust in case, for
some integer i, -1'312 is the ith-place composition of _1:‘:1 into 22. . 21 is composable
into F, Just in case there exists.a simple composition of F; into ?_:2.

D) A generality F* of form [8] is an (15,...,1,)-place forward composition
of sequence _I:‘,l,...,En of form-[8] generalities just in case there exists a gener-
‘ality sequence F3,...,ER, terminating in F*, such that F§ is the ijth-place
composition of E, into ¥y while if 2<j<n, _F_‘; is the ;l_jth-place composition

of Fj 21 into Fj The (12,.._. ,i_n)-place forward condensation of tuple-sequence
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- Byrecerd is defined similarly., Locus-complex sequence 8yseees8y instantiates
(12,...,1n)—glace forward composition of gl,...,gn Jjust in case there exists an
(15540451 )-place forward composition of Fy,...,E, while for each § =2,...,n,
@;j-1,8¢ instantiates the ;jth-place composition of zj-l into Ej' Generality-
sequence El""’zn has a simple forward composition instantiated by 81seeery

just in case, for some integer tuple (12,...,;n>, 875.-.,8, instantiates
(32,...,;n)-p1ace forward composition of Ej,...,F,. Sequence E;,...,E, is

forwardly composable just in case it has a simple forward composition. -

Sirple forward compositions of a composable law-sequence zl,...,zn in general
comprise only a small vroportion of the compositions that can be generated from these

laws., (E.g., backward compositions of the sequence, wherein: -1 is first composed

En
into F , En—z next composed into the first corposition, and so on, include all forward
compositions gnd generally many more as well; while permuting the series before
composing-forﬁard or backward, or extending it by inserting additional oceurrences
of laws already included--and it i§ important to note, e.g., that if g&'s output
variable is included among its input variables, Ei can be compecsed into itself
endlessly--, generally makes still more compositional alternatives available.)
But with §ne major and one minor qualification, all conceivable law-compositions
apoear to be achievable by iterated simple composition in the sense of Def. 5.2C. .
The major qualification is that when extending the concept of law-composition to
laws containing an infinite number of input variables, we want to be able to compose
into infinitely many input components simultaneously--which a finite series of
simple compositions cannot achieve. (Fortunately, we shall have no present need
for infinite compositions, either simultaneous or successive.l) The minor qualifi-
cation is that if the ontput variable Ql of El is logically complex, it is possible
that some or all components of Q; are available to composition in the input of ¥,
even though they have a scattered indexing in Fy into which El cannot be composed

S0

under the Def. 5.2B formalism. Butflong as the output variable Q of each form-[8]

law is constrained to be a 1-tuple, as entailed in Def, 2 by stipulation that for
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every Q-argument ¢, é(g) is a single evenf,hthe problem of Q being logically complex
does not arise unless a given event can be "single" even while consisting of one or
more loci exemplifying a rultiplicity of attributes--a prospect that we may take to
be analytically incoherent unless no events are so elemental that they cannot be in
principle analyzed further. Until we have good reason to work seriously with the
prospect of endless analysis, there is perhaps no great urgency aﬁout extending

Def. 5.2 to accomcdate 1aﬁs with complex output variables.

Def, 5.2 does not stipulate that the form-[8] generalities whose comvositions
it concerns are necessarily causal laws in any grade of nomicality. But it is
important to observe that if El2 is a simple composition of El into 22, and El and
22 are both virtually causal--as obtains in particular if F; and F, are'qausal in
any of the sfronger senses of Defs. 2-6--then Fp, is also a virtual causal law.

That is, virtually causal lawfulness is preserved under simple compositioh. (Under
what constraints compcsition preserves stronger grades of nomicality is unclear.)
Moreover, when composition of virtual causal laws is iterated, simple forward
compositions of composable law sequences have a sbecial significance in terms of
causal chains not in general true of other iterated-corposition patterns. Specifi-
cally, if El""’zn has a simple forward compoéitipn instantiated by locus-complex
seéuence 81sevesfpy and for each i = 1,...,n, F4 is a virtual causal law while the

last component of a, is g

then él(gl)—*éz(gz)-a...—*Qn(gn) is a causal-provagation sequence in'which each 91(91)

(whence g; is an argument of F,'s output variable Q;),
is a cause of Qy,q(cs4)-

Returning, finally, to this Section's concern with formalizing the nature
of system structure, we note that whenever, for any indices k and k' in the organizor
of bes I, there is a simple composition E* of Fy into E, that is instantiated by
<¢k5,¢kﬁ>,<¢k,5,ﬁk'§> for any I-object A, F* is a law (at least virtvally causal)
that not only governs events already included in Z but is entailed to do so, even
when F* is not itself indexed in 2, by &'s explicit C-structure F and organization
<{Y,f>. Censequently, all such F*, and thelr own compositions instantiated by loci

.in’Z, etc., may be construed to be part of the system's latent C-structure. We
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fble 1npf anothep! their ghmpositipd 1s alsp/a causal
albeit the coMiposed lg
Vs

So far, Def. 5.1 is little more than an arbitrary formalism, and will largely
remain so until Section VII. Still, a sketch of system organization as an omniscient
being might develop His conception of a-particular -instance may be helpful at this
point. The role of molar domain A and functions <\,#> thereon rapping each system
object into ordered sets of loci is to replace an ensemble of causally interconnected
loci by a single entity of which the former can be construed as parts or attachments.
It is possible to do this quite arbitrarily. Thus for any indexed set g‘ = gf_k: ke }Sz
of causal laws, one almost-trivial way to define a bes <é,§,§,¢,p§> with C-structure
F is to stipulate that A = {Aj} 1is the set of all _K—indexed sets A; = t{‘!'ik"z'ik tkek¢
of ordered pairs such that for each kX in X, ‘Zik’zik> is in the scope 'of Ek while each
¢k (4,). 1s the function on A that maps each system_‘object A; into the first (second)
component of _1_\,1‘5 kth elerent <X;y,2;y 5. But a more instructive way for us to construct,
Godlike, a particular bes whose objects are .richly integrated causally, is as follows:
Starting with some event g that interests gs, let e, be some part-cause of g Then
by HI-8 there is a law F, = Vx,2)(8; (x,2) > @ (x,2) = _f_‘l(Plz)] such that for some
locus tuples a and ¢, &) = él(g) while g, 1s a component of compound event i’l(g). We
now bulld a set £ of events and a set E of laws recursively, from a base in which }v‘.
comprises just F; and e comprises just Q(c) and the events in :El(g), by doing sore
or a1l (in any case the third) of the following at each step of the recursion: (1)
Add to g some or all events that are caused by events already in g under some law
already in F. (E.g., the :El(g) already in e causes not only §(c) but also Q(g') for

every ¢' such that Sy(a,c').) (2) For some g4 already in e, if 2'5'. is some cause or
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some effect of & ﬁot already.in &, add g{ to e and to‘f;add a law under uhich g and
e are causally connected if this is not already in F. (3) For every F,: (Vx,z)[
8y (2,2) D Qz = £ (Ppx)] already in F, and any events P, (a) and Qk(g) such that
S, (a,e), if Qk(g) and some but not all components of ék(g) aré already in e, add to
e the other component.events in Ek(g). Once e and F are as comprehensive as we wish,
after a finite or infinite number of such steps, let 8, be the set of all loci of the
evente/ f%ke A to be some fragment of a sufficient to allow later reconstruction of
the whole as wanted, and on the basis of properties and relations that hold in‘a other
than values of the variables in‘z, notably ones that constitute the scopes of the
laws in F, define a set of relations ¢ such that for every 8 in a there is at least
one @, in ji such that A is -ei—relaézh te just a;. From S:, in turn, it is straight-
forward to construct an indexing of‘E, and sets of functions {¢kZ and fﬁkf indexed by
the same X that indeyes‘g, such that for each k in X, A is an argument of both ¢k
and ék while <¢kg,dk5> is in the scope cf Fy. Finally, let A be the set of all Ai
for which the latter conditions remain true when A; is substituted for A. Then
<£.‘,§,’I:‘,¢,d> satisfies Def, 5,1.

The constructicn just described includes a certain amount of handwaving, most
critically in appreal to relations @ insoruch as the properties/relations constituting

L a

the scopes of the laws in F may not suffice, for each ay in’g, to relate A to a,
uniquely (though God can vresumably find a way). But the example's point is merely
to suggest in rough overview how, starting with certain events (more realistically
certain kinds of events) that especially interest us, we can develop concepts of

objects that are assemblages of loci for events that include not only the ones of
'focal interest but also the more salient causes and effects of these. Note also——
though the point may as yet be a little difficult to appreciate in abstract--how
arbitrarily (within 1imits) we can choose a system's objects. The essential "object"
is a set of loci so indexed that its constituents causally coupled by the systenm's

inner C-structure can be picked out by appropriate whole-to-part functions. But any

other set of entities that can be put into one-one, or even many-one, correspondence
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with the set of essential objécts will serve just as well, This and related points
merit formalization. ILet "x is a constibtuént of y" mean that x is either identical
to y, or is an element or indexed component of y, or is an element or indexed component

of an element or indexed comvonent of y, etc. Then

Definition 5.3. Let £ = <A,K,F,¥,6> be a basic causal system while < is a
-function on g, each value of which is a set of loci indexed by the same set H--i.e.,

for each A in A and each h in H, o<h(;}_) is the locus of & particular causal event.

Then & is an L(pcus)-snalyzor for £ just in case: (1) For each A in A and all
h,h' in H, o¢pA and (A are distinct loci if h #h'; (2) for each h in H there
is at least one (generally many) k in K such that XA is a constituent either

of \,lk_A_ or of 4 .A; (3) for each k in X there is a complex h of indices in H such
that ¢ 4,4 A7 = oz for all A in

h
only 1f (¥A,fA> = <#A',fA'>. A bes

A; and (4) for any A and A' in A, o¢tA = &A'
is L—anaixzable just in case it has an L-anal-~
yzor, The H-indexed locus set oA into which L-analyzor o¢ of becs I maps any
Z-object A is ;A"s core? (relative to o<);‘ the set of‘ all Z-object cores is Z's
core domain (relative to o¢); and each index heH of o is a *locus in £ (relative
to ). [Note that every such *locus h corresponds to a map from Z-objects into

single loci, so that if the molar domain of Z is restricted to a single object

A, *locus h uniquely represents locus e A.]

Ignoring Clause 4 of Def. 5.3 (which is merely a convenience entailing that
there exist functions ¢* and g* such that ¢ = ¥« and g = g%, and can always be
satisfied by some o¢ when Clauses 1-3 are satisfiable), function o< is an L-analyzor
for bes <A,K,F,¥,4> just in case, for each I-object A, A comprises just the con-
stituents of <yA,dA», indexed by a *locus set H in such fashion that no locus in oA
is repeated at different indices, and the system's organization ¢¥,g> picks out locus
complexes from the core of each A in A on the basis of fhose loci's indices in NA.B
Not all bess are L-analyzable (e.g. the number of distinct loci in <¢A,#A> need not

be the same for all A in é‘); but any can be reduced to one that is just by domain-
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restriction (ée_e Def. 5.4, bel'ow). The *locus set for an L-analyzor is arbitrary
except for its cardinality, but any two L—ahalyzors for the same bgs are

identical up to a cne-one transformation of one's *locus set into the otber's.l’ In
what follows, I shall usually speak of the L-analyzor, the *locus set, and the core
domain for any L-analyzable bcs even though strictly speaking these are unique only
up to isomorphism of *loci. Moreover, whenever relevant, I shall also presume any
bes ;at issue to be L-analyzable. |

For any bes I = <A,K,F,¢,f> with L-analyzor o whose *locus set is H, there
exists a unique bes ¥ = <_§.*,K,§,¢*,;§*) with the same organizor X and inner C-structure
F as Z, and having an l-analyzor o¢* with the same *locus set H as o¢, such that A%
is the core domain of I (i.e. A* = o¢A), o* is the Identity function on A* (i.e.
oCtA* = A*-f‘or each A* in.é‘*), and ¥ and g are the compositions of o into ¢* and g*,
respectively (i.e. ¢ = "¢ and g = g¥%¢ ). This IZ*, which may be called the "core
equivalent" or simnly the core of ¥, is in effect the ontological essence of Z, 1In
contrast, a system's moiar dorain has no inherent ontic signifiéance;- for if <§,§,§,¢,g{>
is any l-analyzable bes, any function /3 from an arbitrary set _‘I}n onto ‘{\1 defines an
I~-analyzable bes <§,§,£,f4@,¢/3> with molar domain B but the same core as 4&,5,2,5&,57.
Similarly, t-wo' or more bess can all have the same molar domain A even though each
object's core differs fi'om system to system. (Later, I will suggest that this is
a large vart of why we find it so difficult to make clear the ontology of everyday
objects.)

There are several ways in which one bes can be a set-theoretical fragment of
another. Let us ‘say that two bess <§,,K,E,¢,ﬂf> and¢A',K',F',£',4'> are "identical up
to indexing" just in case A = {\“' and for each k in K there is a k' in K', and conversely,
such that F = Fy,, ¢k = ¢t1, and "k = ff1+ (When this is so, Clause 4 of Def. 5.1
implies thav there is justl one k' that corresponds to each k, and conversely, in this

way,) Then,

Definition 5.4. Let T = <41§,_K,§,¢,p!7 and I' = ¢A',K',F' /', 6" be two basic

causal systems, Then I is an extension of Z', and I' arestriction of I, just in
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case some §g§ " derived from T by some-not-ﬁecessarily-proper restriction of

A and/or X is identical with ¥' up to indexing; while the extension or restriction

is index-preserving if ' = £!', If the restriction is Just on{&, or just on K,

Z is respectively a domain extension or content extension of L', while ZI' is

respectively a domain restriction or content restriction of £. If I' is a content

restriction of £ that is also 1ndex;prééerﬁing; i.e. if 2"derives from Z just

by deleting some indices in the latter's organizor, I' is a gegment of Z.

Although the conceot of domain extension/restriction is largely
trivial, it is important to note that for any nonerpty subset A' of the molar domain
A of any bes Z, restriction of £ to molar domain A' yields a bes X! that has the same
inner C-structure, same orgaﬁizor, and (save for domain restriction) same organization
as X, while every A in A' has the same core in Z' that it has in £. Accordingly, if
5A5§ is a partition of molar domain A such that all objects in each subset gﬂ are alike
in some respect R that interests us, bes T = <§,§,§,¢,K> can be viewed as the unicn
of domainwise disjoint but contentwise essentially identical ° systems <é?,§,§,¢5,ﬁj)
each of which has a molar domain 5? that is homogeneous in respect R. (Thus in par-
ticular, any bcs can be partitioned into cohtentwise identical " systems each of
which is L-analyzable.) |

On the other hand, content extensions of a becs I raise points of considerable
interest, especially when we consider enlarging just the system's (i) object cores,
(11) its inner C-structure, or (iii) its organization without changing the system in
any other respect beycnd the entailed index additicns. In Case (1),.given bes £ =
<A, K,F/,d> with L-analyzor o¢ there are in general both trivial and nontrivial ways
to enlarge each object's core by adding to it additional loci causally coupled by
laws already included in F, Nontrivial core enlargement‘i;\illustrated by considering
the domain By and excursor fL of some law F, in z:and adding to each oA, with
approoriate extension of the system in other entailed resvects, all not-already-included
constituents of every set fizk of loci (or locus tuples if Fx's output variable is

relational) for which Xy is a comnound locus in B, whose constituents are all in «A.
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(Since_the nuﬁﬁer of such loci need not be the saﬁe for all A in é,'it may be possible
to extend only a domain restriction of I in this way.)

Regarding Case (i1), the C-character of a given bes <é,5',§',¢',{') does ‘not
generally include all causal variables on which the systeﬁ's object-core loci have
values. Hence it may be possible to extend the system's organizor from X' to X (with
correlative extensions of E', ¥', and g') so that for each k in X but not in X!,
<¢&£,ﬁké> is in the scope of a law F) not already indexed in X' even though all its
constituents are already in the core of A. (Note that the extension in this case
does not change any system object's core. Even so, it is again possible that only
a domain restriction of the system can be so extended.,) Indeed, such extension is
generally possible even without introducing any new causal variables, narely by adding
to the system's C-character the compositions of laws already therein whose scopes
include complexes of loci already in the system's object cores. Carrying law-compo-

sitional extension to its limit leads to

Definition 5.5. Basic causal system X = <A, K,F, ¢8> is a law-compositional
extension of bes I' = <A',K',E',¥',¢"> just in case the latter is identical up

to indexing with an index-preserving content restriction 2" = <A,§",§f,¢",5") of

: . (4f £ is not L-analyzable)for
Z (whence A" = A' = A and X' & K) such that any L-analyzor for I orjsome domain

for
restriction of £ is also an L-analyzor for " orjthat same domain restriction

of = (i.e. all loci in each A relative to I are also in A relative to ), while
simple forward
also, for any k in K but not in X", F is & A\composition of a sequence of laws
&f“"&nﬁmaukjublpuﬂ)mgh If moreover for every k in K but not
: forward .
in X', F 1s a f composition of a law-sequence Ekl,...,zkn with all k; (1=1ye0.,0)
in X" such that also <<¢klé,ﬁklg>,...,<¢k A,f, A» instantiates this law~ccmposition
n n

for somemaendsdwemes cvery. A in ﬁ, % is an intrinsic law-compositicnal extension

of V. I is an extrinsic law-compositional extension of I' just in case Zis a

law-compositional extension of Z' but not an intrinsic one. A bes is law~-compo-

sitionally complete just in case it has no proper intrinsic law-compositional
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extension, i.e. iff it is identical up to indexing with every oﬁe of its inﬁrinsic
iaw-comnositional extensions, and is iaw-compoéitionally sggergémglgte Just in case
it has no proper lay-compositional extension either intrinsic or extrinsic. The
law-compositional completicn of any bes is any intrinsic law-compositional extension
thereof that is law-compositionally complete.

an-intrinsic
Since ___rig-ﬂ-law~compositional-extension-gﬁ— is transitive and anti-symmetric

(treating identity-up-to-indeiing as simple identity), it is a partial order on bess,
Hence assuming the Axiom of Choice, it can be shown that every becs has a law-composit-
ional crmpletion that is unique uo to indexing. Note that when 23 is a composition
of laws El and Ié in Z's C-character, it is possible that some ZI-object A, some complex
a of loci in A's core «A (relative to Z), and some locus ¢ in A are such that <¢a,c>
is in the scope of F, even though this is not entailed by any information about which
complexes of loci in A are in the scopes of El and F,. This is because there may
be a locus outside of oA that mediates a causal connection from a to ¢ under EB’ and
is the reason why intrinsic law-compositional extensions of a bcs need to be distinguishet
from extrinsic ones.

Finally, case (i1ii) of system-content extension acknowledges that Def. 5.1
does not require all complexes of system loci that are in the scopes of the system's
laws to be identified by the system's explicit organization. For a given bes % =
<t,K,F,¢,8>, 1t is possible that for some law F = (V¥x,2)[S(x,2z) > Qz = £(Px)] in the
C-character of Z, and some complexes a and ¢ of loci in the core of some Z-object A,
P(a) canses Q(¢) under F because S(a,c) happens to obtain even though there is no k

in X such that <¢k§,¢k5> = <a,c>» while Ek =F, If so, Z's organization and C structure
can be extended (though perhaps only in a domain restriction of £) to remedy this
lack without changing the system's C character or object cores., Such considerations

lead to

- Definition 5.6. A bes I = ¢<A,K,F,¢,4> with L-analyzor &« is an prganizational

extension of bes I' = {A',K',E',¢',ﬁ'> with L-analyzor «' just in case (1) I is

4

a content extension of £' (whence A' = Q), (2) each law indexed in‘E.
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is also indeved in F (whenﬁe T' has the same C-character as I), and (3) for every
Ain A, 8]11 loci in oA are also in «'A (whence oA and oc'A ‘are identical up to
#)pcus isomorphism,and =< and =¢' can always be chgsen for Z and Z', respectively,
so that o' =), A bcs is organizationally corplete just in case it has no
proper oréanizational exténsions, j.e. iff it is identical up to indexing with all
of its organizational extensions. The organizational completion of any bcs is

any organizational extension thereof that is organizationally complete.

Definition 5.7. A bes T is domain-homogeneous just in case it has an L-analyzcr

——

o¢ such that for any given complex h of #1poci in 's *locus set, if F is any law
in Z's C-character, o(EA is in the scope of F for some IZ-object A only if this is

gso for all Z-objects.

Every L-analyzable bes has an organizaticnal-completion that is unique up to indexing,
and can always be domainwise partitioned into domain-homogeneous systems with the same
content as the original. Moreover, if bes <A,K,F,¥%,6> is both organizationally
complete and domain-homogeneous, a complex o<EA of loci in the core of any A in A is

in the scope of any law E in the system's C-character just in case czﬁg = <¢kg,¢kg>
for some k in X. Finally, since the organizational completion of the law-compositional

completion (though not generally the converse) of any bes is both organizaticnally

and law-complete, let us say

Definition 5.8. One bcs is the content closure of another just in case the

first is the organizational completion of the law-compositional completien of

the second. A bes is content-clesed just.in case it is its own content closure.

Ooviously, the content closure of any bes is content-closed. Since any L-analyzor of
any bes I is also an L-analyzor of ©'s content closure, and conversely, we can always
stipulate this to be the same for both.

A bes's content closure is its largest content extension that is logically

inherent in the original system. Thus when considering the lawfulness of a given bes,

it is aporopriate to define its "total Q—structure"‘to comprise both the inner and

-
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outer g-structure of its content closure. Beyond that, the system has a "covariational®
or "associative" structure comprising all regularities, causal or not, entailed by
the system's C-character. (For example, (Vx,y)(S,(x,y) o Qy = Ql(Plg)] and (Vx,z)[
Sp(x,2) > Qz = £5(P;x)] jointly entail (Vz,g)[(Jz)z_s,l(z,x)‘_s_g(z,g)i > (AR)§Qy =
21(23 * Qz = gé(g)}], which plgces constraints on the joint values possible for Q¥
and ng for any locus vair ¢y,z> in this covariational law's scope. However, we
shall have no need to formalize this latter notion.

C-structure or more broadly agsociative structure, i.e. the causal or causality-
derived regularities that constrain a system's causal attributes, is a fundarental
kind of system structure, indeed virtually the only kind that is ever acknowledged
when behavioral scientists or abstract systems theorists (e.g. Mesarovich & Takahara,
1976) talk about "structure." Yet a second kind, just as fundamental as the first,
comprises the extracausal relations among the system's object varts. ILet us call
this "locus structure," which for the world as a whole, without regard for particular
system grounings, might idezlly be taken to comprise all logically simrle or complex
facts whose non-logical ingredients (subjectsvand‘attributes) are just loeci, precursa,
and ercursa, (This includes how precursa and excursa are distributed as well as which
particular locus tuples instantiate them.) That is, in its purest form, locus structure
is what determines which locus tuples lie in the scéoes of what causally complete
causal laws. In addition, we may also find it convenient to treat formal relations
- among loci and locus comolexes--e.g., whether locus z is the ith component of locus
tuple %, whether locus complexes x and g have any constituents in common, etc.--to be
a variety of locus structure even though it is unclear (see p. 14, above) in what
respects if any such relations are ontically "real," (The latter might be called
"formal" locus structure in contrast to the first-mentioned "-eursive" variety.)
However, this ideal conception of locus structure is neither sharply defined nor
nsefully avplicable to systems whose laws are not stipulated teo be pure and causally
closed. Pending the appearance of svecific needs, therefore, let us provisionally

say that the L(ocus)-structure of any given bes I = <A,K,F,,4> is, or is characterized
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and : ,
by, the I-analyzor o jorganization ¢y*,£* of L's content closure I¥.= ¢ A, K¥ F# % d%>,

tbgeﬁhpr with the indexed set {—-S-k’ _lge_ls*} of scopes in F*, If I* is also domain-
homogeneons (as can always be arranged by suitable domain restriction of I), <¢*,g*>
identifies, for each complex o(EA of loei in the core of any Ekobjegt A and each causal
law F entailed by E's C-character, whether or not °<Eé is in the scope S of F (namely,
by whether or not both a(EA =¢<¢§A,ﬁ§£> and § = 8§ for some k in X*), while &« identifies
for each I~object A the loci which are its parts or (if A is distinct from its core)
the appendages through which it particivates in the world's causal order. Since we
have not required all laws in a bes's C-character to be causally pure, nor have we
excluded causal attributes from the definitions of L-analyzors, a particular system's
L-structure is not in general entirely independent of causal attributes. Even so,

the system's L-structure subsumes facts about it that are stipulated in the system's
identity, in contrast to the system's conceptually oven prorerties determined by its
loci's values on causal variables made explicit as variables in the system's laws,

An awkwardness of this provisional definition of L-structure is that it is
1ccus-soecific‘and object-specific, i.e. it does not allow us to acknowledge that
gystems having different core domains, or even differing just in molar objects but
not in their cores, may nevertheless be L-structurally alike. Accordingly, let us
say that two bess I and I' have the same L-structure Just in case there exists a
bes I* such that £ and I' are each identical up to indexing with some (not necessarily
the same) domain restriction of ¥, We can alsc speak of two particular system objects,
relative to the bess of which they are respectively objects, as having or not having

the same L-structure in this sense.

The theory of part-whole and part-part relations in complex systems: Some intro-
ductory frapgments.

Although I have so far made little effort to make this Section's definitions
interpretively meaningful, it will nonetheless be evident that the core of any system -
object, though concelved as a single entity, is generally an ensemble of loci for

causal processes (i.e. cause/effect sequences) that occupy a region of space-time.
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Any such object core has a greéter or lesser degree of excursive thickness, as measured
in first-approximation by the marimal length of law-compositional sequences that are
instantiated within it. Since causal sequences propagate indefinitely, how we segment
their loci into distinct object cores is rather arbitrary. In particular, when for
some purposes we find it expedient to highlight system objects with excursively

narrow cores (e.g. time slices of temporally enduring Things), we usually find it
desirable to keep sight of how these are causally linked as segments of excursively

broader objects,

For any bes £ = <ﬁ,§t§,¢3ﬁ>, the <A,K! F',¢', g% derived from I by restricting

LY

X to any nonempty subset X' of K is also a bes and hence a segment of Z. (This is
because the first part of Def. 5.1's Clause 4 preserves under organizor restriction
the organizor nonredundancy stipulated by that Clause's second part.) Thus the set
of all segments of a given bes T is in one-one correspondence with the set of all
nonempty subsets of L's organizor. -For L-analyzable bess, however, a more insightful

characterization of segments is possible.

Definition 5.9. Bes L' is a full segrent of bes Z = <.§,_I§,§,}4,d>-just in case

I' is a segment of & such that for every k in the organizor X of Z, if all constit-

uents of (¢k§’%k-&’ are also constituents of <¥'A,£'A> for all A in A, where ¢¢',#"

is the organization of X', then k is in the organizor X' of X'.

Definition 5.10. Bes I' = ¢A,K',F',§',4'> is a locus-preserving segment of

a
bes ¥ = <~Q,_}§,§,¢,g§> just in case I' isjsegment of ¥ such that for each A in A,

all loci in <¥A,fA> are also constituents of <«£'A,4'A>.

For any segment I', full or otherwise, of a bes ¥ having L-analyzor o with *locus
set H, the restriction ' of o derived from o< by deleting just the *loci in H

that index loci in I not retained in I' is an L-analyzor of Z'. Thus,

Theorem. Let I = %,g,g,«,é,;b be a basic causal system having an L-analyzor
o¢ with *locus set H. Then if bes I' is a segment of I, I' is L-analyzed by some

*locus restriction &' of o --i.,e. o' and o have the same domain A, the *locus.
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set H! for ' is a nonerpty subset of the *locus set § for o, and e<[,'1 = o for

every h in H'. Conversely, if o' is a *locus restriction of o to *loci in a
nonempty subset H' of H, and Z' is the bes derived from Z by restricting the
organizor X of I to the organizor XK' of Z' in such fashion that each k in K is
left in K' just in case all locus constituents of <¢kA,;$k5> are in o'A for some
(equivalently, every) A in A, ' is a full segment of L for which &' is an
;I_r-analyzor; while any locus-preserving segment of X' is also a segment of X for .

which o' is an L-analyzor.

It follows from this Theorem {uhich-ean—bo-tukertpedefine-seprentation-for

that for any bes T = ¢<A,K,F,¥,¢> with L-analyzor « and

*locus set H, the set of all‘full segments of ¥ is in one-one co;respcndence with the

set of all nonempty subsets of H. Further, the set of all full segments of £ is in
one-one correspondence with the disjoint subsets in a partition of the set of all
segments of I; specifically, if X' is a full segment of ¥, the segments of I coordi-
nated with I' by the latter correspondence are the locus~preserving segments of X',

It is convenient to adopt the notation that if 1 is an index for some subset ﬂ(t)

of H, Z(t) = ‘A’K(t)’g(t)ﬁﬁ(t)’é(t)> is some not-necessarily-proper locus-preserving
segment of the full segment of Z corresvonding to g(t)--i.e., E(t) is an index-preserving
content restriction of I whose object cores are restricted exactly to loci with indices
in ﬂ(t)-—while kat) is the L-analyzor fér Z(t) derived from o¢ by restriction of H

to H(t)' Using this notation, we may ‘then say

Definition 5.11. An indexed set % = fZ(t): :c_e_T_z of basic causal systems

is a gepmented causal system ("scs") just in case it is a T-indexed set of segments

of some L-analyzable basic causal system, i,e. just in case there exists a becs
£ =<¢AK,F,, 6> having an L-analyzor o with *locus set H, such that (1) T also
indexes a set {g{_(t): 36‘.1‘2 of nonempty subsets of H, and (2) for each t in T,
L) = <é’§(t)’£(t)'¢(t)”§(t)> is a segment of I for which the restriction (1)
of & to *loci in E(t) is an L-analyzor. Any bcs I so related to scs Zf'r is by

definition a generator of 2%
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Note that Def. 5.11 does not r%quire subsets.ZE(t)Z of H to be disjoint (we shall, in
fact, have important use to make of this permitted overlap). Neither does the definition
require the union cf’{ﬂ(t)g over all t in T to exhaust H, which is one of the reasons

why a given scs has many different generators., Every scs does have a unique minimal

generator, however:

Definition.5,12. Bcs X is respectively the union or intersection of a

segmented causal system Z% Just in case each Z(¢) in Z% is a segment of I, or I is
a segment of each Z(t)’ and the organizor X of I is the union, or intersection,
cver T of the organizors {E(t)z of fZ(t)E.
‘Tt is then easily seen that
Theorem. Any segmented causal system Z% has exactly one union UZ%, which is
both a generator of Z% and a segment of any other generator of Z%. Z%vhas at most
one intersection which, if it exists, is the union of all Z' such that Z' is a

segment of every Z(t) in Z%.

The union of scs Z% is not in genersl identical with some other generator ZI*
of Z%, not even vhen UZ% is organizationally complete and Z* is only a content exten-
sion of Uf%, because I¥*'s C-character may contain laws that are compositions of laws
contained in the union of the C-characters of the i(t)’ perhaps even in the C-character
of just one of them, when the composition is too global (i.,e. excursively extended)
to be instantiated in any one segment X(t). In that case, it may or may not be
vossible to reclaim the organization of ¥ not made explicit in UZ% by some intrinsic

law-compositional extension of the latter. In light of that possibility, let us say

Definition 5.13. Segmented causal system Z% sepmentizes (equivalently, is a

sepmentation of) basic causal system I just in case each Z(t) in Z% is a segment
of £ and £ is a not-necessarily-preper segment of the law-compositional closure
of the union of IF. If each E(4y in 55 is a full segment of %, T3 is a full

segmentation of Z,
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A segméntation of Z is‘in effect a dissection of T into generally-overlapping
partslin such fashion that these parts colléctively retain encugh of the original to
allow reconstitution of £ as a whole. As already noted in slightly different terms,
we cannot produce a segmentation of I just by collecting a set of segments of X that

jointly contain all loci in & im=feotyamserbiirary-sg

Qniigg-itSJmﬁnnr 8o segmentizing a given becs £ is not a trivial exercise., Even
less trivial is to find segrentations of I that parse Z's total structure in ways that
are insightful. Just what these ways may be is an open-ended questicn to which we
have scarcely begun to articulate any comprehensive answers. But fragments of the
story are prominent in traditional systems thinking, two of which in particular are
so foundational that it is important to introduce them here even though a proper
development of them is neither practical nor necessary on this occasion.

For one, it is very possible that the total structure of a given bes X is
built out of a small number of simole structures that recur repeatedly throughout a

segmentation of £, We can formalize this notlon as follows:

Definition 5.14. Bes I* is a structural prototype for bes L= <A,§,F;¢,ﬁ>

under domain transformation (3 just in case /3 is a one-one function from A onto
a set B such that bes <§,K,E,%3_l,¢ﬂ‘1> is identical up to indexing with a not-

necessarily-proper demain restriction of Z¥.

Theorem. If bes Z* is a structural prototype for bes L under domain trans-
forration /3, and x* is an L-analyzor for I*, then c&fﬂg (i.e. the composition

of /3 into o*) is an L-analyzor for Z.

. Definition 5.15. Two bess £ and I' have the same structure (both L-structure
and C-structure) just in case there exist domain transformations for I and Z'
sone
respectively under which Z* is a siructural prototype for both T and Z'. [Note:

this is an equivalence relation on bess.]
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Definition 5.16. For any scs Z% indexed by T and having molar domain A (i.e.
A is the molar domain of each Z(4) in 2%), let /g(t) for each t in T be the

function on A such that A = ¢A,t> for each A in A, Then a structural analysis
A (1) = bt A

of scs 2% is a pair <S,0* in which S is a set of l~analyzable bcss .no two of which
have the same structure and o is a function from T into S such that for each t in

T, ot is a structural prototype for Z(4) under domain transformation /Q(t).

Every scs Z% has a structural analysis <§,c> that can be developed by first
transforming the molar domain of each Z(t) in Z% from A to A(t) = /%t)ﬁ; sorting
the domain-transformed {Z(t)i into same-structure equivalince classes; and combining
(by rolar-domain union) the segments in each equivalencezazi:; these are also re-indexed
to have the same organizor,rto form the bcs in S that is the structural prototype for
each segrent in this equivalence class, Note further that if <S,0> is a structural
analysis of scs Z% whose union UZ% = <A, K,F,¢,f> has L-analyzor of with *lccus set H,
then if ot = ot' for any two segments Z(t) and E(t') in E%,'{§,o> determines a one-one
corresvondence . between *loci in'ﬁ(t) and *loci in E(t') such that if h is any complex
of *loci in H(t) and h' is the corresponding complex of *loci in ﬁ(t')’ then for
any molar objects A and A' in é, and any k in XK, the complex o<(t)5g of loci in the
core of A under Z(t) is in the scove of law F) just in case the complex c(kt.)g.g‘
of loci in the core of A' under Z(4) is also in Fy's scope.

If ¢<5,0> 1s a structural analysis of Z%, ol =ot! for any t and t' in T just
in case E(t) and Z(t') have the same structure, Other things equal, it seems advan-
tageous to segmentize a given bes T in such fashion that a maximal number of these
segments e¥emplify a minimum number of different structures. However, segmentizing
I to display a high degree of modular repetitiousness in this way is best viewed as
secondary to (though generally co-pur#uable with) segmentizing £ to parse its causal
evolution, In real-life aprlications of systems think}ng, we find ourselves highly
motivated to analyze each enduring Thing (i.e., molar.object in an excursively extended
system) into temnoral "stages" that partake of a before/after ordering through which‘

causation propagates.  To capture this intuition comprehensively, with sufficient
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technical depth and flexibility to subsume traditiocnal models of system dynamics while
evercising a capacity to generalize insightfully beyond the restrictive special pre-

surpcsitions of these, is perhaps the most important goal to which a theory of system

structure can aspire,

Definition 5.17. Let £ = ¢A,X,F,/,#> be a basic causal system and recall

that for each k in X, Fy is a causal law (¥x,2)(S, (x,2) o Qz = £, (P x)]. Then

for any I-object A and any event e: (1) e is antecedent in (the core. of) A under T
just in .
icase g is a component of compound event Py (¥ A) for some k in K. (2) e is con-

sequent in A (under £) just in case g = Qk(ﬂké) for some k in K. (3) e is an

event of A (under I) just in case e is either antecedent or consequent in A under Z.
) under X
(4) e is an input (putput) event of A just in case e is antecedent but not cen-

_ under Z. under
sequent (consequent but not antecedent) in A{ (5) e is a mediation event of AfE

just in case e is both antecedent and consequent in A under Z.

Definition £,18. Bes T is externally determined just in pase it has an

intrinsic law-compositional extensinn Z* =<<£,§*L§*,¢*,é*) such that for every
k in K*, there is a k' in K* (not always k' # k) for which Qf, = Q}, #¥, = )
and every component event in compound event iﬁ.(%ﬁ,é) for any & in & is an

input event in A under -I%,

Bes T is externally determined jﬁst in case any consequent event of any
Y~object A is determined just by input events of A under a firite sequence of Z's
laws by avplications made explicit in Z, Any bes is externally determined if its
organizor has finite cardinality., On the other hand, it is entirely possible for
a bes with infinite organizor to contain infinite causal precessions, each event in
which having at least one cause also within the precession, (Systems that are not
externally determined raise some yery interesting questions--scientific, vhilosophical,

and mathematical--that must be passed by here.)
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Definition 5.19. Let ki,...sk, (n=2) be a finite sequence of indices in

the organizor X of bes T = ¢A,K,F,¥%,>. Then kyseeosk, is a C(ausal)-chain in

L just in case law sequence Ekl,...;zkn has a simple forward composition
instantiated by <¢klﬁ,¢k1_A_>,.. . ,<¢kn_.5,dkn§> for some (or equivalently, if T is
L-analyzable, every) I-object A. For any two indices k and k' in K, k Z-precedes
.k' just in case there is a C-chain gl,...,gn in Z such that 31 = k and gn = k',.
while k Z-matches k' just in case ‘Qk’fk’ = <Qk,,¢k,>»(where as before Q is the

output variable of Ek), and k IZ-forecasts k' Just in case k Z-precedes some k"

in X that Z-matches k',

Theorem. &-match is an equivalence relaticn (i.e., reflexive, symmetric,

and transitive) on indices in Z's organizor.

Thedrem. If g,kl,...,kn,k' is a C-chain in Z, so are k kl"”’kn and
kl,...,kn,K'. (I.e., any consecutive subsequence of a C-chain in I is also

a C-chain in z.)

Theorem. If k I-precedes k', then k Z-forecasts k'. If k Z-matches k' and
k! IZ-precedes k", then k Z-precédes k". 1If k I-forecasts k' and k' either -
S-precedes or I-forecasts k", then k respectively either Z-precedes or X-fore-
casts k", Corol]agx: The relations of I-precedence and I-forecast are both

transitive.

If k Z-orecedes k' and I is L-analyzable, then for every Z-object A, event
Qk(ﬁkﬁ) as. well as well as each event in ék(¢kg) is a cause of event Qp1(fy14) in
a fashion made explicit by covering laws and mediating events identified in Z. (If

k' immediately follows k in all C-chains from k to k', no mediating events are acknow-

ledged in I between ék(ﬁké) and Qk,(ﬁk,g).) The same is true if k I-forecasts k!,
though if k merely Z-forecasts k' without Z-preceding it, the causes of ék,(ﬁk,g)
made exvlicit in Ek'“‘k'é) may not include any of the events mediating between

Qk(ﬁké) and ék.(ﬁk.é). If k T-matches k', ék(ﬁkg) and Qk.(ik,ﬂ) are the same event,
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albeit the causes thereof made e¥plicit in I by k (namely, the component events in
Ek(¢&g))may not be the same as the ones made explicit by k'.

Since I-precedence is transitive, and by postulation (cf. HT-4) is also
antisymmetric and irreflexive, IZ-precedence is a strict partial order on I's organizor
indices, Sco is I-forecast. Indeed, Z-forecast is almost the same relation as I~pre-
cedence; the only difference is that when k Z-precedes k', k may not Z-precede all

k" that Z-match k'.

Definition 5.20. ILet Z(S) and Z(y) be any two segments of bes Z. Then 2(3)
is a Z-ancestor of Z(t) just in case (1) every index in Z(S)'s organizor K(g)
I-matches or Z-forecasts some index in Z(t)'s organizor K(y); (2) every index
in K(t) that I-matches some index in (g) is also in 2(8); and (3) for every
C-chain gl,...,gn in I, if ky is in K(t) while k, Z-matches some index in K(s)
then all of kl,...,kn are in both 5(9) and K(t)' [Note: Clause 2 is conceptually
a limiting case of Clause 3.] A segment Z(t) of £ is Z-compact just in case Z(t)
is a Z-ancestor of itself. 2Z(g) is Z-immanent for Z(t) just in case Z(g) 1is a

Z~ancestor of Z(t) and the union of 2(3) and Z(t) is Z-compact,

To avoid the awkwardness of saying that event g is a particular kind of event
of A under one Z-segment 2(£) but perhaps not under another (since A has different
cores under different Z-segments), let us refer to events of A(t) (where A(t) =
/%t)é = ¢A,t> as defined previously) rather than of A under Z(t). (Events of A's
core under 2(t3 are identical with events of the core of A(t) under the bes resulting
from the /%t)-transformation of Z(t)'s molar domain, so this shift of terminology
preserves the sense of Def, 5.17 while obviating the need for explicit mention of
the Zfsegment under which e is or is not an evént of g(t).) Then fer one segment
Z(S) of global bes L to be a "Z-ancestor" of another steg:§:ﬁe§(t), Def. 5.20

requires that for each I-object A, every event ¢ of A is|a Z-explicit cause of
(s) *°1 p

some event of A(yy or is itself an event of A(4)? whereas in contrast, no causal
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sequence gl—agz—,...-’gn rregresses from a consequent event g, of A(¢) to an event

e, of A(s)’ with the causation of each &4 by e made explicit by Z, unless &

SyF...7Pe is a causal sequence of events common to both A(s) and A(t) with the

-

causation rade explicit for A(S) by Z(g) and for Av) by Z(t)' For Z(t) to be

"Z-compact," if g1~’gz~a...->gn is a I-exolicit causal sequence in which &

are both events of A(t) (more precisely with ey consequent in A(t)),all events in

and &,

this sequence must be events of A(t) with the causation made explieit by Z(t)'
Finally, for a Z-ancestor Z(s) of E(t) to be "Z~immranent" for Z(t), both X(s) and
Z(t) must be I-compact while moreover, for any Z-expliclt causal sequence gi—#...—’gn
that nasses from an event g of A(S) but not of é(t) to an event en of 4(t) but not
of A-(s) must be mediated by one or more consecutive events g >...7%e. V(1< memn'<n)
in this sequence that are events of both A(s) and A(t)' That is, when Z(g) is
Z-immanent for Z(4), all Z-explicit causation from events of A(g) to events of g(t)
passes through an interface between A(s) and é(t) comprising events common to both.
To put the point still another way, when Z(s) is Z-immanent for E(t), determination
of one event by others within both 5(8) and A(t) separately is nomic; but determination
passes from one to the other by the logical connection of identity.

By virtue of the oroperties of C-chains and Z~-forecast already noted, it is

elementary (but very much nontrivial) to see that

Theorem. lLet E(r)’ Z(s), and Z(t) be an& segments of bes Z. Then: (a) If -
Z(r) is a I~ancestor of Z(S) and Z(s) is a Z-ancestor of Z(4), then Z(r) is a
Z-ancestor of Z(t). (b) 1f Z(g) and Z(t) are I-ancestors of each other, then
Z(s) = Z(t);s (Corollary: I-ancestory is transitive and anti-symretric, and is
hence a partial order on Z-segments.) (g) If Z(r) and Z(g) are both Z-ancestors
of Z(t), any segment of the union of Z(r) and Z(s) is a ¥-ancestor of E(t).

(a) 1f Z(r) 1s a Z-ancestor of both Z(g) and Z(y), it is also a Z-ancestor of
their union. (e) If Z(g) is Z~immanent for £(4)s Z(g) and Z(4) are both I-compact.

(£) 1f £(p) is Z-immanent for Z(g) and Z(4) is I-immanent for Z(4), Z(p) 1is
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Z-immanent for the union of Z(g) and Z(4), and the union of Z(r) and Z(5) is

Z-immanent for Z(t).

Clause 1 of.this definition of Z-ancestory is a rather strong condition
that one might well wish to relax. (That is, shouldn't we allow one Z-segrent to
be a causal predecéssor of another withouf requiring every event in the first to
have some causal effect on the second?) However, the wanted relaxation is difficult
to bring off while preserving the relation as a partial order. Instead, it seems
more advantageous to retain Z-ancestory in its strong Def. 5.20 sense for our basic
causal ordering of Z-segments, but to augment Z-compact Z-segments partaking of a
Z-ancestory structure by certain auxillary stegments distinctively appropriate

to the former,

is Z~terminal just in case for

bes

Definition 5.21. A segment Z(t) of bes
all k and k' in the organizor K of Z, if k Z-forecasts k' and k is in the organ-
izor K(4) of Z(t)’ then k' is also in K(y). Z(t) is Z-initial just in case for

all k and k' in X, if k &-forecasts k' and k' is in K(y), then k is also in K(t)'

Theorem, If Z(t) is a segment of X while Z(41) is a segment of E(t),-then

Z(t,) is Z-terminal (Z-initial) if and only if it is Z(¢)-terminal (Z(t)-initial);

Theorem. If Z-segments Z(s) and Z(t) are both Z-terminal (Z-initial) then
the union and, if it exists, the intersection of Z(g) and Z(¢) are both

Y-terminal (Z-initial).

If X(t) is Z-terminal, all Z-explicit causal progressions issuing from a
consequent event of A({) remain in A(t)‘ If E(g) is T-initial, all Z-erplicit causal

progressions arrive at an event of A(y) only from other events of A(y).

Definition 5.22. Let Z(t) be a segment of bes Z. Then a segment Z(yu) of

Z(4) is the putput section of I(4) (relative to Z£) just in case Z(gn) is the

union of all Z-initial segments of E(t). E(t') is the input section of Z(t)
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(relative to I) just in case Z(t,) is the union of all Z-initial segments of

Z(t)e Z(y») 1s the state section of Z(y) (relative to Z) just in case Z(yx) is
the union of all segments of Z(t) that are disjoint from both the input secticn
and the output section of Z(4). [Note: Any one or two of these three sections
may not exist for a given Z(t). Also, the input and output sections of Z(y) need

not be disjoint.]

Whern z(t‘)/z(t*)/z(t") are respectively the input/state/output sections
of Z(t), for each Z~object A we may correspondingly speak of g(t.)/g(t*)/g(t“)

as the input/state/output sections of A(y).

Theorem. A S-organizor index k is in the organizor of the state section of
Z-segment Z(t) just in case there exist Z-organizor indices k' and k" such that
k' I-forecasts k which in turn Z-forecasts k', while neither k! nor k" is in the

organizor of Z(t).

That is, every event in the state section of é(t) has both Z-explicit causes
and Z~-erplicit effects outside of A(t)’ whereas this is not true of any events in
either the input or the output sections of A(y).

Definition 5.23. Let Z(s) and E(t) be any segments of bes Z. Then Z(g)

and Z(t) are statewise equivalent (relative to Z) just in case Z(g) &and E(t)

have the same state section (relative to I). Z(s) is a state-ancestor of Z(t)
(relative to I) just in case the state section of Z(g) (relative to £) is a

Y-ancestor of the state section of E(t) (relative to I).

Because anyIZ(a) and Z(t) £hat are statewise equivalent are state-ancestors
of one another even when they are not identiqal, state-ancestory is not in general a
partial order on the set of all Z-segments. It is, hDWeVer, coextensive with the
IZ-ancestory relation, and hence.likewise a partial order, over any subset of Z-segments
containing at most one I-segment from each statewise-equivalence class of Z-segments.
That is, state-ancestory determines a partial order on statewise-equivalence classes

of X-segments.,
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Def. 5.22 requires neither that the input section z(t') nor the output
section E(t") of a Z-segment I(y) have any special causal tie to the input section
Z(t*) of Z(4)s nor that Z(t*).itself have any organizational cohesiveness. Stipulating
that. Z(4y be Z—compéct not only tightens up Z(4) but also forbids any Z-explicit
causal progression from events of Agr) to events 6f A(t*)’ or from events of A(yx)
to events of A(t“)’ to be ZT-explicitly mediated by events not in Z(¢). However,
this still allows E(t.) and X(t“) to be coupled with E(t*) more loosely than we may
consider aporopriate in some analyses of system structure. Even when Z(t) is X-ccmpact,
it is still possible for a Z-explicit causal progression to leave g(t) after starting
in A(t')’ to enter &(t") from outside of é(t)’ or to go from A(t') to A(gn)s without
passing through &(t*)‘ We can easily-enough suppress these possibilities, if we wish

to do so, by restricting our attention to "state-dominated" Z-segmenis as follows:

Definition 5.24. Let Z(r)’ Z(s)s and Z(t) be any segments of bes Z. Then

2(8) T-mediates between Z(r) and E(t) just in case for every C~chain gl,..,,gn
in T, if kg is in the organizor K(;) of Z(r) while k, S-matches an index in the
organizor K(y) of Z(4)s OF if k; is in K(+) while k, Z-matches an index in K(p)»
then at least one of indices gl,...,gn is in the organizor of Z(g). (Note that
this definition is satisfied vacuously if no index in K(y) or K(t) I-forecasts

an index in the other.)

Definition 5.25. A segment Z(t) of bes T is state-dominated (relative to )

just in case (1) Z(y) is S-compact; (2) the state section Z(¢x) of Z(y) exists;
(3) if either the input section Z(t.) or the output section Z(yu) of I(y) exists,
E(t*) s-mediates between the union of {z(t,),z(t")} and any I-segment 2(8) whose
intersection with Z(4) is nmll (i.e. that is disjount with Z(t)); and (4) if

both E(t‘) and z(t") exist, 2(t*) mediates between them,

I thihk that the structure envisioned by Def., 5.25 is in fact often presupposed
in commonsense system concepts: in particular, it seems to be a necessary (though

 not sufficient) condition for Z~gsegment Z(t) to qualify as a "stage" of global system
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Z. It is not yet clear to me; however, whether state-domination has any deep theo-
retical significance beyond being a property that may well be entailed by other
conditions we find useful to impose on Z-segments worthy of special attention.

Let us now seek to formalize the classical conception of system dynamics.
Commonsensically, this notion envisions that a temporally enduring gleocbal object
consists of "stapes" that are serially ordered by time, and that this object's causal
condition at each stage of development is causally determined by the system's causal
condition at a more-or-less just-preceding stage together with input to input to the
global object that is essentially synchronic with the stage being determined. With
this model in mind, let us say

Definition 5.26. A segmented causal system )'.‘zzr ={Z(t): ;_tel’i is a dynamic
relative to Z:

segmentation of bes ¥ just in case, (1) Each Z(t) in Z% is a ¥-compact, exter-

nally deterrined segment of X. (2) I is the union of 2%. (3) Z% is linearly
ordered by state-ancestory xmimtinwenckma® (i.e., the state sections, Z(s*) and
Z(t*) resnectively, of any Z(g) and X(4) in E% exist, are distinet if E(S)‘and
S(t) are distinct, and either Z(s*) is a X~ancestor of Z(t*) or E(t*) is a ik
ancestor of 2(3*)). (4) For any distinct Z(S) and E(t) in Z% such that Z(S)

is a state-ancestor of Z(4), the state section E(gx) of Z(s) Z-mediates between
Z(t) and any XZ-segment Z(r) disjoint from Z(g») that is a segment of the union
of all Z-segments in Z% which are state-ancestors of Z(g). (5) For any E(r) and
Z(4) in 2% such that Z(y) is a state-ancestor of Z(t), there exists a finite
sequence Z(sl),...,Z(sn) of Z-segments in Z% such that I(p) = Z(sl), E(sn) = Z(t)’
and for each 1 =1,...,n-1, the state section of X(Si) is ¥-immanent for the

state section of 2(91+1)°

The force of Def, 5.26's Clauses 1 and 2 is reasonably self-evident, except
perhaps for stipulating that each Z(y) in Z% is externally determined. Although fhe |
definition of this in Def. 5.18 is not altogether optimal (it does not achieve its
intended force for systems whose C-character contains laws with infinitely many input

variables: and can perhaps better be replaced by a definition in terms of C-chains
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from which the present Def. 5;18 follows), it entails that for each A(t) in each
Z(t) in 2%, all consequent events of é(t) are determined by the set of all (local)
input events of g(t) according to regularities entailed by Z(4)'s C-structure.
Clause 2 can just as well be relaxed to allow £ to be any intrinsic law-compositional
extension of the union of Z% so long as I in Clauses 1 and 3-5 is replaced by UI%;
but it is generally expedient to keep UZ% as law-compositiornally nonredundant as
possible, insoruch as the more fulsomely £ is an intrinsic law-compositional extension
of UZ%, the greater the excursive thickness a Z-segment in 2% must have in order to
qualify as Z-compact in contrast to Z%-compact. It may also warrant mention that
stipulating Y-compactness for each Z(t) in Z% can be omitted from Clause 1, since
this is in any case entailed by the remainder of Def. 5.26. |

Clause 3 of Def. 5.26 is simple enough in its own right; but its main ferce
is in conjunction with Clauses 4 and 5. By Clauses 3 and 5, for every E(t) in Z%
save possibly a first one there is at least one E(s) in 2% whose state section 2(8*)
is Z-immanent for the state section Z(t*) of Z(t).’ (Similarly, the state section of
each Z(g) in 2% save possibly a final one is Zkimménent for the state section of at
least one other I(4y in Z%.) Then according to Clauses 3 and 4, if I(g*) is Z-immanent
for Z(t*) (Z(S) and Z(t) in X}%), then for every Z-cbject A, every Z-explicit causal
progression entering A(t) from elsewhere in A passes through one or more events
common to A(s*) and g(t*)--which in light of Clause 1 entails that all events of
A(t\ are wholly determined by events of A(s*) together with the (global) innut events
of A under ¥ that are also input events of A(t)‘ Clause 4 also entails that each
Z(t) in 2% is state-domingted, which together with Clause 1 entails that all events
of the output section A(t") of A(t)’ if extant, are wholly determined by events of
A(t*) together with any (global) input events of A under & that are also input events
of A(t).

Finally, it is important to aprreciate that Clauses 1 and 5 of Def. 5.26 do
not require i% to be discretely ordered by state-ancestory. It is entirely pernissible

under Def., 5.26 that between any two I-segments in 2% lies an infinitude of others.
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Footnotes, Section 5.

1Simultaneous infinite compositions, though demanding of technical care, are essent-

ially unproblematic conceptually. Successive infinite compositions (notably backward,
to preserve a given set of output events) is something else again. These can be
well-defined in very special cases, but in general present enormous conceptual

difficulties. (See Rdzeboom, 1978; Section ITI.)

2 :
For superior connotations, o<A might be called the "constitution" e¢f A But this

locution is so unwieldly that I shall use "core" instead.

3'I‘he nature of lL-analyzabllity can also be clarified as follows: The organization
(¢,f> of any bes T uniquely determines a function £ = é}h: 1e.g§ from é into
J-indexed locus sets, where each ]} in J is a pair comprising an index k in Z's organ-
jzor and the indices of loccus-positicns in Ek's scope, such that for each A in A,

847 is a J-indexed set of loci in A's core in which, however, the the same locus

may occur more than once. Then I is L-analyzable just in case, for every j and j°

in J, SjA = gj,g is tfue for one A in A only if it is true for all. If this

identity conditien is satisfied, an L-analyzor can be constructed from & by restric-

ting J to exclude redundancies., This also suffices to satisfy Clause 4 of Def. 5.3.

4That oc is unique up to *locus isomcrphism for a given L-analyzable bes follows

from the construction partially sketched in fn. 3,

SThis follows just from the formalized properties of Z-ancestory; it does not require
apoeal to causality's axiomatic (HT-4) partial-order character. Fven so, the latter

is required to make the formal definiticn of Z-ancestory a useful system concept.




