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CHAPTER 3. SCIENTIFIC EXPLANATION IN THE LARGE

Once a science has organized its basic préedicates amd the-primary *prin-
ciples conjectured to subsume them (1st-grade systemacy) into conceptions of -
variables governed by functiomal *laws (2nd-grade systemacy), it is ready to
undertake more advanced (3rd grade) integrations of scientific knowledge, both
horizontally and verticalij;'in*ﬂhich our explananda are no longer just single
events but states or.trajeéibfies of complex systems and laws themselves.

Horizontal systematizations comprehend expanses of causal‘networks--events richly
interconnected by production transitivities--by compounding causal recursions

into accounts of'process regulation, growth and, at the apex of scientific insight
into how things work, system dynamics. And vertical systematizations explain how
macro-phenomena derive acausally from collections of micro-events.

Be forewarned, however, that the formalisms that achieve these complex
integrations demand careful study: You cannot rush through their ensuing exposition
and expect your commonsense intuitions to cream off its gist. To be sure, not every-
thing below calls for your immediata attention; in fact, several short passages and
one long subsection are marked with double braékets ([[/]) to indicate that these
are technicalities best omitted on first reading. But formalistic esoterica are
the very heart of what is at issue here; and to appreciate what is being said, you
must think through the notation and savor the logical force of what these rarified
abstractions would assert were their schematic terﬁs fleshed out by full-blooded
conceptions of specific domains/variables/abstractors/translocators/transducers.

Considering this Chapter's relentless stacking of one formalistic construction
upon another with scarcely any illustrations to root them in your own experience,

I had best preview the ground to be covered and tell what may be in this for you.

The material builds in five waves (with a nontechnical epilog), starting with the
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lawfulness of causal processe#. This beginning (pp. 67-80)is fairly standard stuff
in that it merely exhibits the Slese essence of a specialized, engrmously powerful
wvay to explain/predict the behavior of causal systems that has long enjoyed extensive
applications in the more advanced quantitative sciences. It is important for you to
comprehend the distinctive format of process laws if you want to understand the
hard-science conception of how nature works, and even more so if you aspire tob
excellence as a practicioner of science. (Professional science training by no means
assures this understanding; in particular, education in psychology profoundly
neglects causal recursion in its near-exclusive emphasis on Analysis-of-Variance
research designs, with the stultifying result that few modern psychologists ever
learn to think system-dynamically.) FEven so, this section's technicalities are not
explicitly foundational for what comes after; so without penalty you can skim or
omit whatever details here exceed your tedium tolerance.

Secondly (pp. 81-88) comes an easy overview of assorted causal metapripciples
in aceord with which some well-Slesed laws (or *laws) follow from others. This -
brief section is a major contribution to the theory of lawfulness; for with the
notable exception of Mediated Composition (the main metaprinciple of causal recursion),
scarcely any of these derivations have heretofore been recognized for what they are,
despite the ubiquity of their use in technical practice. The importance of making
these explicit is twofold: For one, as demonstrated by numerous subsequent citations,
their recognition is required to make clear the logic by which ensembles of micro-
laws generate lawful molar systems. And secondly, verballzing them forces awareness
upon us of seminal problems in the nature of molar causality that cry for deeper
inquiry. We cannot pursue those particular issues here; but evenafﬁfacknpwledgia;_bh
their challenge is a significant step ahead.

_ With Metaprinciple preparations in hand, we next turn to the SLese con-
ception of how a macro-system's molar behavior supervenes upon the assembly structure

and micro-causal functioning of its parts. This is developed in three phases which,
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regrettably but inescapably, are all formalistically formidable. First (pp. 88-98)
comes an account of hou’medern-methn@a?éf“éaia;hnalyﬁisnfit;atgtisxiegl,m@dels to
sample observations. The schematisms in which I couch this overview will seem
strange to readers familiar with the multivariate literature; for I emphasize Slese
operatigns that are largely concealed by the conventional algebra whose elliptic
notation for these models is designed for efficiency " in 'métheméti;p;?;ahaIysigﬁiﬂf,
However, our concern here is not to enhance extant multivariate methodoiogy (though
exhibiting its deeper Slese character has considerable potential for that), but to
observe how these well-established technical practices are a major paradigm of
molar explanation. The acausal supervenience of a statistical sample's holistic
features/behavior upon that of its individual members is utterly tramnsparent; and
once it becomes clear (if one can surmount the formalisms) how the repertoire of
Slese constructions comes together in impressively nontrivial real-life reductive
explanations of statistical wholes-by their parts-—-honestly verbalizable statements
with determinate substantive content, not just promissory hand-waving--we are set
to appreciate how this very same SLese logic of supervenience applies to macro-objects
having compositions vastly more intricate than that of statistical aggregates.

In this next phase (pp.198?1}9);@?ﬁkwelopment--fhe molar spin-off of complex'
micro-structure--we break new ground: We are na longer just clarifying the logic
of micro-molar stories already common in the extant sclentific literature, but
are instead outlining a theory of how such accounts could be.giign'farwéahﬁéxlz;,
cohesive macro-objects were our knowledge of their micro-constituents sufficiently
complete. It is far from certain that this theory's present statement expressly
schematizes all salient micro-determinants of molar phenomena; and indeed I will
acknowledge important respects in which it is rudimentary. You will find little
in this that you can use for substantive applications, and that may be reason
enough for you to give it short shrift, But i1f you are serious about the nature

of supervenience, levels of organization, molar causality, reduction/emergence,
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and their like, you should feel some obligation to struggle with Def. 2 and its
molar consequences. For to my knowledge this is the first conceptually articulate
model to appear on how macro-objects with strong internal structure derive their
holistic lawfulness from their micro-causal underlay. You may be unimpressed with
this account's depth; but it sets benchmarks fer you to criticize or improve upon
if you care about this classic cluster of obscurities,

Indeed, primitive as this pioneering probe of supervenient macro-causality
may be, it suffices to expose certain deep puzzles, idealized out of existence in
the extant systems-theoretic literature, of how stable molar lawfulness in real-
world macro-subjects can obtain at all much less be humanly comprehensible., These
are turgid technicalities (or at least I mamage to make them se) that only the
most dedicated specialists in System Structure will want to pursue. Nevertheless,
they ground such important issues in causal ontology, in particular, the nature
of structure-~transcending "functional" properties and the supe?venience shaping of

accidents ‘
infra-causal essences into nglar-cauéality'x that it seems only preper to close
put”eur diseussion of molar explamation githia“synnpsisteffthé”Structaraléﬁariétiéﬁ?
problem, 1t§ abstract formal selution, and what it takes- for that-splation--which
on-clese inspection looks hoaxy--te be sometimes in fact a-practical eme. Pp. 110-

123 attempts just that as a first sketch awaiting elaboration.
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Sclentific systemacy 3H. Causal recursion and system dvpamics.

A "process" is essentially one damned thing after another, i.e.,
more soberly, a sequence of simple or compound events in which each stage
is causally consequent upon its precursors. To predict/explain a process we
must appeal to an ensemble of laws that subsumes each mediating event in the
sequence as output under one law and input under another. Detailed analysis
of process regulation and system dynamics requires careful attention to
connectivity relations among the locations of participant events, as provided

for under precondition placeholder 7‘ in law: sch:#ffﬁg?ﬁ; and what formalisms

are most generically insightful for study of system behavior is still not
entirely clear to me. Even so, it is decently straightforward to formalize
causal recursions among laws that have been put into form (8) by a suitable
embedding of their locus structures in the t-derivational character of their
manifest variables. Imposition of form (8)--which places no constraint on
the complexity of translocators variously included in ¥ and\ﬁhep?pmponenta of X
--appears to lose generality at most in the breadth of domains and perhaps not
;ven severely in that.

Causal recursions, system dynamics, and frocess regularities are all
slightly different technical perspectives on causal ¢ continuance: Causal = -

"effecta_igene?‘*”“?” "f;saanagquences ‘of theiriﬁpwn,*»iﬁgrghy erea%iugn

causal progressions wherein events ‘earlier in the sequence influence later ones
through the mediation of others more proximate to them. To see how the longer-
reach lawfulness in such sequences derives from that of its intervening steps,

use ellipsis (8') for law~form (8) to suppose that

Ly: InDy, 2'= 51(.)_() ’ Lyt InDy, y= #2(.2.'9.§) ’

are two laws whose domains have a non-null intersection D D1/]D2. Then for
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any ¢ in Dy, it follows that

y(e) = £5(z'(2),2(2)) = £,(6 (X(2)),%()) .

That 1s, since the output z' of Iy is a component of L,'s input (2',2], L, and
I integrate into an overarshing law Iy, ramely,

g

Lt o InDpy Z=4L,ED () = A (), ),

under which the components of compound variable [X,Z] Jointly determine variable
ﬁ% in domain D Dy, through the (partial) mediation of variable zf I shall call

this LﬂZ the product of integrable law-pair <LQ,L2 .

Example. Suppose that D is a population of human perceivers at times
when they visually focus on a spot §1 of variable luminance surrounded by )
a darker field 5,. Let y be the subjective brightness of S1 for the perceiver
on some psychophysical rating scale; let 2y (k = 1,2) measure the perceiver's
neural activity at the retinal region stimulated by light from S,; and let

X (k = 1,2) be the photometric intensity of light leaving Sy Finally,

is how contrastively patterned retinal excitation gives rise to perceived

focal brightness. Then through the mediation of Zy) field-luminenee x2
coajcina retinal activity 21 to determine subjective brightneas y according
to the product of <Lg>,Iy2, namely,

S




68—

: InD, ¥ =gz, -dalx, - B)"

c!t"

1

And from integration of ‘Lal’Lb" in turn, distal stimulus intensities X
and X3 jointly determine perceived focal brightness y through the mediation
A

of proximal excitation [fl’fZJ by transduction

InD, ¥=calyy -7 -dalmp -7 .

A.t"

That is, with the detailed transducers in L, and L ahbreviated as wi_)=
al__ = b) and ﬁ;?'

.h_)\~ “g- ~;;;d_;:; respectfiVely, _composition of

1

%(12) into y = d(gl,zz) yields 1 = 4z ,¢(x2)) while composition
of 2y = ¢(§1) into the latter then gives y = ﬁ(%( ,%( ))

It is of some importance to appreciate that determination L, of‘y by
<%9,¥p> in this example is a perfectly good causal regularity given that laz
and lb are, even though psychologists do not ordinarily mix distal and proximal

stimuli when speaking of joint input. In present case L., distal stimulus

=’

variable X2 has nonzero weight for y when conjoined with proximal stimulus
A

variable z; in transduction y = ﬁ(gl,gl(;_r_z)) because X, has effects on y

4

unmediated by 2. But in the causal equation telling how all of distal and

proximal variables <¥1,§2,?1,32> work conjointly to determine ?, nanmely,

InD, y=4(z),2z) +0x +0x,,

d!t"

X and X2 have zero weights because their effects on y in D are wholly
4

mediated by [%1’422] .

An annoying complication for the causal sfatus of the product law le
entalled by an integrable law-pair <L1 12> is that the composition # (_ﬁ,__) :"M‘¢w;

= ;42(;51 ),,___) 6:‘.‘ aauaal transdncers 4ﬁ1,;§2> in <k, st may be ot the il

AR
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causal transducer of‘;'s determination by [¥,%] in D35 but only an acausal
regressor (cf. p; 37 above) coiﬁcident with the other over the subrange of

[§,?]-values occurrent in 212.8 But so long as the causal-mediation ordering

81 have explored this situation rather thoroughly in unpublished work under the

vorking title "Complexities of mediation structure." Believe me; details you
don't want.

of component variables in [%’fj’f’f] complies with standard preconditions, in
particular when no component of [%,%] is errorlessly determined in 212 by the
others (which is a sufficient but not necessary condition), the causal transducer
under which the input of <L, ,L,>-product Ly, determines its output is indeed 512,
jugt as intuition desires. The generic theory of conditions under which product-
iéws inherit the causal status of the laws they integrate is one of the .
most important research frontiers now open for advanced work on the logic of
causality, secondary only - to the obscure but~ vital 1linkage "of
plausible “infererice to ééusal—ordgr preSumpfioﬁa mghd,_;hgviprugign;éiiqg;’
of melar/,éauééiity; But since this formally complex issue is easily detached
from our main concerns here, I shall presume that whenever Lﬂ2 is stated to be
the product of integrable causal laws <Lq,L2>, the causal ordering of variables
" in the latter is such that Lié;tégz%sia~causal law whose transducer is the
composition of Li's transducer into that of LQ.

Evidently, the principle of law-integration just sketched can be expanded.
Call any sequence <L1,I_.42,.;.,_I_.m> (m=2) of laws a ¢(omposable)-series just in
case, for each j =1,...,m-1, <L ’Lj+1> is integrable. Then by iteration of
pairwise law-production, any c-series ‘Lﬂ""’Lh> integrates into a product
law L;m whose domain Q{m is the intersection of the domains of Lﬁ"”’Lm3 and

any consecutive subsequence of this c-series is also a c-series that likewise
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integrates into a product lax{. (Constraints are needed on the causal ordering

of the variables in a c-series to insure that all its product laws derive their
causal transducers by composition from those of the laws they overarch; but I
have already waved off this problem by allusion to "standard preconditions.")

For any c-series ¢Iqye.. Ly, let us say that the ensemble ”I’: of laws comprising
all Lj therein together with the products of this sequence and all its consecutive

subsequences is a (gimple) causal recursiop over domain Qﬁn.g More generally,

9The phrase 'causal recursion' or 'recursive causal model' is often used more
loosely than this; but in all modern multivariate applications it expresses
concern for ensembles of laws that are integrable in the fashion here described.

we may say that an ensemble L of laws is a (recursive) causal system over

domain D* iff (a) }"is closed under the law-product operation (i.e., every
product of integrable laws in L is also in L, (k) each law in L is either
integrable with some other law in ‘E or is the product of integrable laws in nI:’,
and (¢) D*¥ is the intersection of the domains of all laws in }“.

a recursive causal system,
,[[If'};is 4 any variable that is, or is a component of, the input (output)

of some law in "I:‘ is a local input (local putput) of L; any variable that is

a local input but not a local output (local output but not a local input) of
,.I.'\ is a global input (global output) of }:; and any variable that is both a
local input and a local output of ’Iv:‘ is a mediation or system variable of ’I:,.
For any global input variable Xy of causal system L; and any object o in ,I;',.-s
o -l comprising = -
domain, NI:‘ implies the existence of, and accounts for, a process/ rh;g‘i followed
by. [ 31(231'2'] foli_lgfv«'f%;_i ‘By‘_'..‘ . fol?:c;‘zzin‘zz F}répl;-g-" f@ilowedﬂ:pz; ]’%tr-,'g‘(_,__ﬁerei_‘fi;is a
. nce, )
global output variable of L. In thia/ Xopees »Xp.] are rediation variables of ‘I..‘,
each event [xy;o] (k=2,...,8)- 1s ‘caused by }'%k;i;gj.__conjointly"witb
other'eirents‘"-zf'ecbgrii‘zed' by 41:‘; and for each ¢h,k> such that 1<h<k=<r, 41;’
contains one or more laws Lj under which rfh;iﬂ and = certain _other

YLJ-identifiéd events conjointly cause’ [x,327] through the mediation of p's

standing on variables Xy.y,...,¥y_). 1




For simplicity, I have described recursive causal systems as certain
collections of form-(8) 1aws; But to acknowledge the epistemic imperfection of
our conceptions of these, we could speak instead of conjectured causal *systems
whose elements are causal *laws. Even so, the dublety of *laws is an extra
burden that we can well do without when dealing with matters of this coﬁplexity.
In pvarticular, presumption of truth allows us to ignore technicalities of
coherence in a conjectured *law ensemble that would otherwise demand attention.

With a bit of care for causal-order preconditions, we can allow the
outputs of form-(8) *laws to be compound variables rather than singletons.

That i3, (8') can be expanded into

A

(8'a) InD, Y= i(g) (Y= [yl,‘...,yz"] , ®= "‘1"?.;',",1) ) o

=

where Y is a tuple of basia or derivetive ..ra.:.x.'. ighoag domains include D,
§(§) is compact notation for 4;{1(?\(),...,%(}‘()), and (8'a) ‘asserts that in.D,
Iy = 4 g (X) for each § = 1,...,0. We note that the {th compcnent g 3 of compound
transducer & may assign null weight to some of the component variables in },
nadel¥; to ones that are not in fact sources of ,\73 unmediated in D by the other
}—components (cf. Les Do 68 above); but beyond that we continue to disregard
niceties about the precise causal status of the ‘transducer in (8'a). In any case,
1t is evident that some compound-output laws are integrable into product laws in
the same fashion as are suitably matched-single~eutlput laws; so we permit the

individual laws constituting a recursive causal system» ‘Ii to have form (8'a) as

‘- < L

well as form (8'). :” e o T

An outstandingly important special case of causal recursion comprises the
lagged self-products of any "auto-regressive" *law whose output variable differs
from one or more components of its input only by an embedded translocator. Specifi-

cally, suppose that output variable y in (8/8') is a locus displacement y = [*kg]

of the kth component of input compound X = [3\!1,...,§m]. Making this translocation




explicit while keeping notation simple by choosing k = 1 and rewriting % as [y,%]
A

(so that Xy, and %k;sbeeenz y and Z;) converts (8) to
(11) For all p in D, 4y(g(_q)) = #({(9.).42(9)) ’
or more compactly

(111)% InD, ¥f = §4(y,2) .

% ®Here and henceforth I shall write 'yf', and similarly for other notatienally-
explicit t-derivative variables, for the value on [xf] for an arbitrary member
of D in counterpart to the output side of schema: (8 This notation should
slide easily across your eye without provoking you to notice that composition

of translocation function £ into an arbitrary value y of variable y, rather

than into y itself qua function, makes no literal sense.
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This says that each member g of D has a*unigue‘g;suscg3§§r;£(g) whpfe value on
variable X is determined in part by 9's own value Dn‘?. i call translocaﬁor
" function £ in (11) the (manifest) excurser of *law (11). Its role is to identify
-where a particular cause subsumed by (11) exerts its effect. That is, if 0 is

the manifest locus of compound event r[y,%];g » (11) describes how this determines
the y-event whose manifest locus is specifically f£(2) rather than any of the

othe; individuals in D which also have {-values albeit ones due under (11) to
antecedent Z—events other than FX;Q1. (I say "manifest" locus here because if

X is t-derivative, e.g. when y= the-height-of-_'s-father, we may wish to say
that the manifest locus p of event rX}QJ differs by translocation from its real
locus.) All causal laws, not just auto-regressions, include excursive relations
in their preconditions on the events they connect as cause and effecty.nor-are-
these always functions; but we can let the excursotaﬁqj2§ﬂﬁoﬁxeg?9381onajgv;proxy

here for the more general case.

As already noted (cf. (6')), the most familiar instances of causal excursion
(continuant thing)
are time-displacements between stages of the same enduring subjeét under which

the f-successor of g-at-t (= 5) is g a little later than 1. Then (11) specifies

how the value of y at any stage of g's development affects g's y-status shortly
A 2
thereafter. Moreover, this temporal paradigm can easily be generalized: Relative

to any form-(11) law with domain D

and excursor.f, we stipulate that an enduring
D-mbject 1s a subset of D that is connected by £. That is, g is an f-wise
enduring D-subject iff g comprises just D-members any two of which are .related by

£ or some pover of £. [When (11) is a macro-step product of a more continucus

-

growth process, as described later, we tske f's "powers" {;{f to inelude decom--
positional factors of £ as well as its integer powers clarified belov.] Then

"/ earlier and lter stages of the same g are fderitified in terms of vhich D-mewbers

can be carried into which others bj powers of £.
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Evidently, if I {;27 is a source of the ;—value of o's f-successor, then the
latter should similarly be a source of the 4y-value of £(p)'s own f-successor, and so
on for arbitrarily many steps of f-progression. But an important impediment to this
iteration is that although excursor £ in (11) is by stipulation a function whose
domain De includes D, so that £(2) uniquely exists for every © in D, f(O)tgzI/::gzranteed
to have an f-successor of its own only if £(p) too is in D--which may not be so,
insomuch as enduring subjects eventually reach a terminal stage, notably death;-at:
which they have no continuations covered by the laws that govern their pre-terminal
stages. That is, for any integer r >1, the r-fold compositiocn f of £ into itself,

i1.e. £5(_) = dof £(£7 ’1(___)), is generally only a partia]l functien over D insomuch as

£'s ‘domain v_}_:.f #ay not include all of its range nor is £F(9) necessarily in D even

vhen it 1s in D,.
To cope with this complication, let D/f be the set of all D-members having

immediate f-successors in D, i.e.,
D/f =;or §2:2€Dand £(g)eD?

Then for each m = 0,1,2,..., recalling that by convention fl = f and g° is the Identity
function over Qf, we can pick out those members of D that have at least an p-fold

sequence of f-successors in D by writing _/f “def D and from there

Df gt @/ 0/8 = fo @D franz=01.0) .

m , m
Note that D/f has the property that for any nonnegative integers r«m, if g&D/f
_ m m-r
then £¥(g) €D/ £<D. That is, £1(D/L) S D/ £.
Since any law whose domain includes D is also a law over any subset of D,
it follows frem (11) by restricting D to just those D-members that can be described

as immediate f-successors of other D-members that

(12) ' For any g in D/f, zﬁ(g)" = !‘(Zﬂ&);?ﬁ@)) ’

or more briefly

(12) In D/f, ¥f° = 4(xL,28) .




;
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More generally, for each g in D/f, £7(g) is in D and hence, from (11),

(13) Smok, T = ez} (r=012...m)

for any positive ‘integer m not so large that 27} is of neeessity empty. For

any m =2, (13) is a c-series whose domain is Q/f (since D, ;/f is- ggﬁtgﬁﬁ;

_L_ for any r <m)-and whese overarchirg preduet-law is
m : o
(14) In /L, Lfm+1 = ;+]_(I’.Z.).Z£’Z£2’ eees2f?)

where é;+1 is defined recursively as

d;(_.,._) _:def g, , 9{;+1(_a---,_,__) “def F{(F‘;(_,-":_);_) .

“Finally, combining ( 3) -~ with the product of every consecutive subsequence

of (13) gives

(15) L: In D/E, Syttt = gp(af’, T, 2™ ,ze" Y (osperttentl ) .

Iaw-systemtgy is the causal recursion into which (11) unfolds for any
m>1, albeit (15) adds little to what is already explicit in (14). 1t sets out
the simplest formal model of process rggglation! describing how each lﬁter
étage of a succession of Zbevents is determined by any selected earlier stége
together with the history of exogenous influences (Z-inputs) over intervening
steps of the process. We can further view (15)'s-sulbi-ensemble for any fixed
r, say r = 0, as telling - for  qa§h:;§b§éc$Hg§5§nmg/yhose f-successors {ith)g

remain in D over a sufficiently long progression § = 1,2,... how ;ﬁt(ﬁ) develops

frem z(g) as a function of t under accumulatinmg Swpmt l&!turbﬁ:ﬁggg -&!ﬁc!flcc&ﬁﬁ;lm_;

let {:t(gg)fg = 0,1,2,...} be an f-succession of stages, all in D, of the same

enduring sﬁbject 8 commencing with s's origin g at time-zero.lo Then yo(g) “3ef

104e are here thinking of time (or amy other excursive counterpart of time) as scaled
locally for each enduring subject g by successor:displacements from a fixed stage g
of g selected to be g's "origin." That is, g-at-(time)-f =ger f*'(o;) for each non-
negative integer t. If ue wish, we can further stipulate that 04 1is the f-wise "birth
of 8 in the sense " that 05 has no f-precursor in D; but that is not obligatory.
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y(g-at-time-0) = y(é§3igAg'a initial endowment" on y, and for any sequence

] A :

<2 ,21,22,...> of %—values that we choose to view as a "standard" input history

on Z, the trajectory (i.e. time-course) of y-development projected for g from its
: A

initial endowment is the’@stimate-sequence {9(_;_-“-;): t=1,2,... wherein
: A
§'(§."3t"§) “def ‘ (y (s)’-o’—l""’zt 1) (t=1,2,...) «

And the divergence of g's actual y-trajectory {y(ggat—ﬁ): t =0,1,2,...% from
A
this projection is explained in terms of g's more-or-less atypical Z—history by
A the standard

noting what perturbations from gﬁt(yo(s),_o,..., t-l)f 1 =10,1,2,...¢ resulﬁ vhen; |
%—parameters therein are replaced by <%(§rat—time-0),_a(gratétimeil), I

Despite the wealth of system complexity that can be built up from (11),
this is still just auto-regression at minimum. One obvious but impertant
enrichment is to replace y in (11) by a compound variable. If ¥ = [yl,yz,...]

A A A

i1s a tuple of system or "endogenous" variables while % is a tuple of whatever global
input or "exogenous" variables, including stochastic residuals, are needed to

account for system change beyond the system's own state (i.e. ¥;va1ue), the

basis of multidimensional auto-regression 1s

(16) mD If = &(Q1,2 .

Gw‘sajiﬁg that.vé?iables Z are "input" in (16), we imply inter alia that for each
g in D, none of the effect of r;;g] upon f¥;£(g)713 mediated by any component of
r?;;]. However, it is not always convenient to make this causal-order constraint

a strict precondition in the abstract formalization of system processes.) Formally,
there is scarcely any difference between (16) and (11'); and the equations and

interpretations already given for (11)'s recursive unfolding apply equally
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(with; and § for y and #) to the recursive system entailed by (16). In fact,
A .
(16) can always be subsumed under (11') by viewing Y in the latter as the car-

teslan product of the component variables in ¥-—which is in effect what we do when

11

conceiving each value Y of ¥ as a "(total) system state". Do not-bw misled—=

T
\.

11In the systems-theoretic literature, it is often unclear whether what is meant
by "system" is (a) a recursive ensemble of laws (or *laws), (b) a member of the
domain D of those laws, (¢) an f-connected subset of D, (d) some subset of the
events §Tx;p1¢ in which x is a variable of the system and o a member of its domain,
or (¢) some amalgam of all of these. When one speaks of "system state," however,
there is an implieit focus on the status of some particular g in D on the totality
of just the system variables (contra glebal inputs/outputs), i.e. the ones that oceur
nonvacuously on both sides of equation (16). But our conception of o in such
contexts usually functions as a universally quantified placeholder as in (11)--
which is to say that "system state" is primarily just a particular value of y in
(11'), or of ¥ in (16), viewed from concern for its causes and effects. 4

by (16)'s formal simplicity, however; for this is compact notation for

Zlf. %1(11’“"%;21’-”’.2.;1?

(161) In D,

I I |

Xmi ﬁfm(zl,---,xm,zl,---,zn) o

Even when transdacers Bi,...,dm are of4very simple form (linearity being the mathe-
matical ideal) with all exogenous variables {fkg constant or random, the system-
state trajectories Z}ft(ﬁ)i t = 0,1,2,...? that unfold from }(2) under iteration

of (16') can be quite complex, with the trajectory on each Y-component ¥y being in
A

general a weighted composite of several curvosq_gi_uhighfggﬁgrare monotone trends
that may or may not converge to asyﬁ;totes while otheis are cycles differing in
periodicity and damping.

Model (16) has so vast a literature, both>1n theory and in applications,
that it seems parochial to cite any one example. Yet 1t is worth recalling, with
Garfinkel (1981, p. 53f.), the classical elegance of its application by macro-
biology to prey/predator population dynamics. In this instance, each D-member is

a bio-community b at some time t; f(b-at-t) is b at time t+A; and each‘{j(prat-g)‘

is the quantity of some animal or plant species §j in b at t. The abundance of
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each species §j in b at t+A is an increasing function of the abundances of §j
and certain other species in b at t (the more rabbits there are the greater their
total reproduction, and the thicker the browse the more they flourish), but is a
decreasing function of abundance in other species that prey upon §j (the more
numerous the wolves the worse for rabbit survival; the denser the rabbits the
greater the strain on the browse), and is also affected in identifiable ways by
exogenous conditions between t and i+A such as vagaries of weather and cropping
or succorance from outside the system (cf. biblical wrath of God and manna from
heaven). Natural cycles of vrey/predator build-up and decline are captured
nicely by this model, and long-term effects of various contemplated human inter-
ventions can also be well forecast by its iteration.

Our componentializing total system state as a tuple of coordinates
(values) on. arbitrarily many axes (component variables) of a multidimensional
space of system-state alternatives, as made explicit in (16') in contrast to
(11), is essential for practical theory development in natural science. Put
abstractly, this need arises from limitations on the sorts of complexity we can
handle in our conceptions of transducers. But at the operational level of
scientific inquiry, it is evident that we never begin to make sense out of
empirical phenomena until we decompose the total system at issue into subsystems
whose respective causal functionings can be worked out in partial independence of
the rest. This is one reason why the Turing Machine model of "computational
processes" so popular in the recent cognitive-science literature is a grotesquely
inappropriate paradigm for thinking about the behavior of natural systems,

When excursor f is a within-subject time displacement, (16) is with
certain mild qualifications the basic Qlassical model of system dynamics. One

But those can be included in (16) as it stands by allowing some components
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of ¥ to have null weight in transducer $, or added by conjoining (16) with an
output subsy=tem, e.g. X = P(Y,E). A more significant qualification is that

system dynamics is often expressed not by growth law (16) but by the corresponding

difference-equation

(17) InD, AsX = &(,2) -1 ( BeY(R) =3¢ YE(®) - Y()),

which describes the change of system-state over one f-step in a subject whose
stages are in D. Formulas (16) and (17) are so directly interconvertible that
there seems little to choose between them; yet they challenge the philosophy
of explanation to ajudicate whether system change as expressed by (17) is due to
the growth expressed by.(16), or whether, conversely, a system grows because
it changes. (Were it not flagrantly digressive here, I wonld argue for the former.)
Moreover, (17) serves as reminder that this is a discrete-time counterpart
of the contipuous-change models that have long been thefbaCkane.ﬁf,mathemaﬁicg}
physies. The ontological status of instantaneous change, which underlies the
issue of change-vs.-growth priority, is out of bounds here. Even so, the
prospect of replacing (17) by a prima facie more fundamental differential
equation points out that given any maero-step gpowth process of form (16),
there may well exist for any arbitrarily large integer B amicro-step auto-regression -
for system variables Y of which (16) is the mp-fold aute-product in the way that
(14) is the m-fold auto-product of (11). (Such infinite subdivisibility of ex-
curaion steps is essentially what it means to postulate differentiable growth.)
Whether strict continuity of process stages on a particular tuple X of system
variables is even logically possible depends importantly on detail of how we
define the objects in }'s domain, For example, were } to comprise ehi;ﬁ;en'a~
scores “on a battery of tests that take appreciable time to administer, the
developmental stage of any child s to which we attribute X—scores on a given

testing occasion 1

is most naturally conceived as an interval of s's 1life
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spanning minutes if not days; and even if we did artificially define the locus

of g's-having-test-scores-Y-on-occasion-t to be an instant of g's duration, we
could not reasonably expect the dynamics of instantaneous ¥-scores to be usefully
characterized by differential equations or even by difference equations for

time displacements on the order of seconds or less. A great deal of practical
importance lies within this abstractly obvious point, as will!bé'touchedrppvn‘

in Chapter 4.

([One reason for describing dynamic model (16/17) as "basic" is its meager
manifest structure compared to the almost-unlimited potential for proliferating
the same system variables under different translocators on both sides of the
dynamic equation. Technically, (16) is a "first-order" autoaregrgssigg5Who§e

manifest,(pfi)thibrder exténsion ig
m
(18) In D/g, 1™ = F(xe" 2t xe™tzem . 18,20,Y,2)

albeit to appreciate the implicit scope of (16) it is worth mention that (18)
translocation

can in turn be converted by [ into-a special-case of form (16). ~With the pdssiblagf

exception of field theory in physics--about which, unhappily, I know very little--

model {18) and  its continuous-change counterpart is about as far as modern

causal-systems theory has yet gone.12 Yet many natural phenomena are not

12The mathematical literature on system trajectories contains other meodels . quite.
different frem (18),. notably spectral decompositions in time-series analysis,
that likewise search for regularities in system growth; but. these have =
little if anything to say about causality.

comfortably formalizable even within the generality of (18).

[[Consider, for example, the determination of height in éhima}Q-by the -
heights of their parents. (Ignore that phenotypic parental height is;ﬁot really
itself a cause of offspring height, but is merely diagnostic of genetic factors
that do the job.) Let 2 be Height over some suitably restricted subset D of
temporal stages {grat-gz of bisexual organisms fs?, while <§d,§g>is the parents-of

translocator defined previously (p. 26), i.e. f (s-at-t) = s's-father-at-time-
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of-g's-conception and similarly for maternal translocator gir Then we may suppose

(19) For all p (= g-at-t) in D, ;(g) = ﬁ(gzd(g),ggg(g),g(g)) ’
or simply
(19" InD, h = pf(g,.,}ﬁg,ﬁ) ,

where E is a tuple of specified and/or residual height sources additional to the
we want to
two parental-height variables. If/be specific about the transducer in (19), we

can further assume g(__, , ) = g;l(.5gl__ + -521,,7+,g255)' Whére{gI'SCéles
Height as Height-in-inches and g is some suitable numerical scaling of E. This
model illustrates first of.all’ that aute-regressive locus displacements need not be
just within-subject time differences. But its main point is that the manifest
excursor in (19) runs backward: Instead of telling where certain causes have

a certain kind of effect, as in (11/16/18), the translocators in (19) map the

loci of its accounted-for effects into the loci of their causes. And the sequence

of product-laws entailed by iteration of (19) is & precession, not & suceessian

-1ike,(14) Thus from (19) we have

n V/gnD/ty [BEmhty) = [F(aBhipfmELy)ih(htaty b2 B0)]

which integrates with (19') to give h as a function of grandparental heights
D-members having both parents
together with supplementary sources [?ﬁdygfg,E] in domain _/f-nﬁ% of4/in D.
[Although model (19) can be reformalized in various ways to have a domain

and manifest locus structure different from (19), I can find none of form (18)

- that can be repeatedly stepped forward to yield a form-(15) autorrgg:eggizggsysﬁg@“

with nonempty domain. Clearly, recursive causal processes whose single-step

dynamics have a manifest tree structure oé this sort can step forward indefinitely;
yet to my knowledge, extant abstract systems theory has not yet worked out effective
formalisms for iterating forward-branching systems. More generally,_£~sub§it'that

progress in our understanding of complex natural systems depends greatly upon our

‘enhaneing. the E%ﬁiegléﬁé?flexibiiity“Withwwhich we conceive of locus structures.]]
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Causal Metaprinciples.
Scientific practice exhibits many ways to explain laws, causal and other-

wise. I shall briefly describe the most elemental of these, without detailing how
they instantiate generic explanation schema (2), under a handy label for each. I
characterize these as "elemental" because they often--some almost always--occur

in combination as parts of more complicated explanations. The grade of causality
in laws so explained is prevailingly problematic, even though intuitien is not
likely to dispute that we want to consider most of them "causal" in at least some
superveniently weak sense., Indeed, it is precisely the prospect of finding
explanations such as these for molar laws that commonsense insists are causal

that mandates search for a coherent theory of grades or levels of causality.

Mediated Composition. If <L1""’Lm? is a c-series (ef, p.69) of . o

consecutively integrable laws whose product is L{mgjthen L{m,igféxlaw‘due<

to Ly,...,L, that is moreover causal if the latter are causal and have a suitably

standard mediation structure. This paradigm for explaining wide-arched laws

by identifying process mechanisms for their production has overwhelmingly
dominated past accounts of this matter. In particular, factoring a received
input/output dependency as a product of mediating causal operations has been
classically the target of "black box" analysis in systems theory. And for
psychologists of an older but still surviving generation, this was the model
popularized by Tolman (1936) for unraveling the intricacies of behavior's overt
lawfulness by appeal to "intervening variables" as unobserved causal mediators.
Although there is no reason to hold the grade of causality in product-law L{m
inferior to that of its factors Ll""’Lh’ L{m is less fundamental than the
latter not merely in being explanatorily derivative from them but also in usually
having much narrower scope (i.e. breadth of domain) than any one of Lyseoosly.
Accordingly, to move beyond L{m to disclosure of some parsing <ly,...,L> of the |
process mechanism generating Lim is often a considerable advance in scientifie

knowledge,
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Domain Constriction, Wesk apd strong. For any causal law
L*: - Inpt, x =A@

and any proper subset Q;;pff‘g';",;

L: ‘InD, y=¢gQX)

is also a causal law that is due jointly to L+ and domain relation 1_3C2+. -

Formally this seems trivial; yet it is far from trivial for empirical research
to establish L first and only afterward learn that specification of original
domain D contains irrelevancies whose deletion expands L into L_+. Moreover,

when D 1is so restricted that some component variables in 2‘( are essentially

constant throughout D, what we are likely to have identified is not L but only

_I__P: InD, y=4#'(X"),

wherein }' comprises just the components of 2\( that have nonzero variance in Q,
and ¢' is the function on the range of }‘(' derived by constriction of £ to:the
particular constancies in D on X-components not in X'. That is, if X = [%',%"]

-

while X3 is the constant value of {" in D, ;f'(’_v__) = 5(__,1_15_).

-

o

. ¢

__ jmwewple. -In pencil-shadews law Ls (p: 45, sboys), mmerical parsmeters 96 and -
8 in _I,ps's transducer are due to constancies in demain.D,, of the pencil's height
and positioning on the table. The contribtition of these latter variables to a
broader law l'.gs of pencil shadows from which Los is derivative can readily be
1dentified so long as the scope of our expansion is modest, Specifically, if
Q;S is a broadening of gps that retains all the essential constancies in _1_);’

except for sllowing-variation in t/*: Pencil-helght-in-incheg and w: Pepeil-

distapce-in-inches-from-point-on~table-closest-to-light, we have

hew
+ , + = A
Lo Tnlpe ¥ % 3TH

te

’

with e a negligible residual as before. Then lbs derives from ..I.;e by selecting
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st to comprise just those Q;a-objects whose valﬁes of k and W are 8 and 12,
respectively, and constricting L;s's transducer accordingly. Note that L;s
remains true if g;, is replaced by its subset st, whereas Lbﬂ does pot
generalize to Q;s.

More generally, }' in an L° so derived from §+ can be any subtuple of } that includes
all }-components having nonzero variance in D. 1°, too, is a causal law explained
by domain constriction of Lf; but recovery of §+ from 1° is much harder than from
L insomuch as the former requires not only elimination of domain irrelevancies but
also discovery of what locally constant variables make what difference for what
parameters in transducer g' of 1°. (That a law's transducer can embody causal
contributions from local constancies points out that the nature of causal trans-
duction and the role of a law's domain preconditions in production of its output
deserve far more discussion than I have given them here.) The difference between
L and L° is methodologically quite important; so to label this distinction we can
refer to the transducer-narrowing move from ;f to L° as strong domain constriction
in contrast to weak domain restriction that retains the broader-scope transducer.
That is, strong domain constriction may be viewed as weak domain constriction of
L* to L, followed by the shift from L to L? which, if wanting its own label, might
be called "transducer absorption:". |

| [For simplicity, I bave identified Strong Domin Constriction as deriving L
from L through transducer absorption of vériables X" that are constant at some value
X3 in Q. However, let us say that subtuple %“ of X = [%',%“] is quasi-constant at X3
in L iff, for all values X' of X! and X" of X" whose Joint occurrence in D is nomically
possible, g(X',X") = g(X',X3). That is, X" is quasi-constant in L iff the variance
of X" allowed in L's domain is unable to produce any variance in L's output. Then
everything said above about Strong Domain Constriction goes through as before if

teonstant' is weakened to 'quasi-constant' and thave nonzero variance' to 'lack quasi-

constancy'. This point has passing importance in Chapter 5. ]
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Domain Tranpslocation. For any non-null subset Qé of the domain of any
translocation function £, if £ maps each member of Q§ into some object in the

domain Dy of causal law

L: InDy, x=4E),
then
L, InB}, ¥£= AL

is a causal law for determination of [zﬁ]Aby [?ﬁ] in Dg that in general is due to
Lﬂ together with the t-derivative constitutions of Lif's variables. (For clarifi-

cation of L,,'s notation, recall fn. 9a, p. 7la.)

Example. Suppose that D, comprises (momentary stages of) humans, that y is
Weight, and that % is a compound of physiological and dietary factors. Then
Ll says that the weight of any human o is caused under transduction g by po's
X-status. If f is now the wife-of translocator over the domain D. of mono-

f

gamous males and, more restrictively than necessary, we take g} to consist of
monogamous Englishmen, each Q in Q} has exactly one wife in the domain of Ll’

and Llf says that the wife-weight of any monogamous Englishman o is caused
g-wise by o's wifely X-ness.

When le is explained under Mediated Composition as the product of ‘li""’Lm”
almost certainly some of the latter derive from more basic laws by Domain Trans-
location (ef. auto-regressive unfolding, p. 73f.). Prima facie, Ine is just a
domain constriction of iny; yet conceptually, _I_.lf's variables appear distinect from
those of I,, nor is D¢ always included in Dy. And if the manmer in which variables
}_f_ and zg are initially identified by science I does not make manifest that these
are in fact t-derivative from } and z, respectively, say because what Z has estab-

lished is not Llf as such but a less perspicuous conception

L In D, y*=4(")
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of the same factual generality signified by Ly¢, discovery that,pg,”%?,fénd:y"‘are
N oo A - .
in fact Df, xg, and zﬁ, respectively, so that L{ reduces by substitution of identicals

to Iyr and is hence explained by Ll’ would be no small achievement for science E.

[Note 1. When Li is so reduced to Llf’ Z must also acknowledge the

principles

P,: For each p; in Dy (= Dg), there is exactly ome oi;in Qi\such that °j = £(o )

B,: For each g, in Df and o4 in D) such that oy = f(o )s [X“,y“](gi) = [X,y (2 ) .

22 is not only a functional law of generic form (9), it is explanatory in that for
each o in D} and f(@) in Dy, o has its particular value of [}”,y“] (= [}g,!g])
because ffo) has whatever [},X]-state it does. But P, is not a causal law; .
rather, it expresses a constitutional dependency ofl*[f",i"];g upon f[f,}];ﬁ(g)?
disclosed by analysis~-an ontological, not conceptual, analysis--of the compo-
sitions of these events. It is hard to find a name for laws of this sort having
Just the right heuristic flavor, but "amalytic reduction" or "supervenience
analysis" come close. As for 21, whether this has explanatory force depends on
details of the particular case--it may, for example, be true by definitional
artifice (e.g., starting with a relation 7} on sz(gl that is not a function,
we might stipulate that Qé comprises just the objects in D¢ having exactly ome
7}-re1atum in Ql). But formally, 21 illustrates principles governing particular
facts of locus structure that for at least some £ (notably, ones that are genuine
causal excursa) are explanatorily prior to any of the world's causal events.
[Note 2. Statements about t-derivative variables and their principles of
explanation catch us in an awkward ontological bind whose optimal philosophic
management is still unclear. Consider the sentence, 'Spratt's wife is fat.'
We can parse this as attributing either the property Having-a-fat-wife to Spratt,
or Fatness to Spratt's wife--which is to say that this sentence's gerundive,

'Spratt's wife's being fat', seems ambiguous between naming an event whose locus
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is Spratt and one whose locus is Spratt's wife. More generally, when variable
[%ﬁ] is t-derivative from variable X, We can apparently construe gerundized true
sentence '*i(g) = x' to signify either the event rf;i(g)T or the manifestly

quite different event rfg;g]. Now, an ontology that takes such translocational
multicopying of x-events seriously, to the point of distinguishing f}i;g? from
r*;i(g)7 causally, seems surrealistic at best. Yet for reasons deeply rooted

in our most basig machinery of thought, it i1s extraordinarily diffiecult to abandon
talking as though F%Q;QT is distinet from rf;i(g)T. That is, we have no ready
way to identify Spratt's having a fat wife with Mrs., Spratt's being fat. Someday
we will surely arrive at an understanding of semantics that can translate such
hopefully harmless fables into ontological austerities that need no apologies

for pretense. But until then, we must try to imagine coherently “sepsrate:positions
for F*;i(g)ﬂ and F{i;g] in our models of the world's explanatory order. Tt is
straightforward enough to hold r§;£(2)7, together with the fact that g has just
one f-relatum, amalytically (pot causally) responsible for r{2;97. But if we
hope to envision causal laws in which [%i] is an input variable, the productivity
force we attribute to [%i] can only be a supervenient shadow of r¥;2(2)7's grade
of causality. To illustrate, suppose that f};g(gi)j is a cause of some rg;g(gj)]
and hence t-derivatively of Q{Q;gjj. If we wish to say that r{§?917’ too, 18 a
cause of FX;§(23)7 or of ryg;ng, how do we put [?;i(gi)j and r§£;gij together

in a single story about production of f{;i(gj)j and E;gjgjj? Our best move 1s
not to try combining these in the way we connect two events that work together,
conjointly or one through the other's mediation, inbbringing about a shared
effect. Instead, we need to segregate r§£;2£7 from [};1(91)7 in non-interacting
stories at different levels of causality. So in particular, when the law Ine
derived by translocation from causal law 1y 1s parsed as attributing causal
linkages to events whose loci in Qé are artificial displacements of real causal

loci that are in or have been previously transloca ed into Dy, the grade of
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cauSality" involved in 1., must be superveniently derivative from, not the

same as, that in Iy

[Note 3. Whether we can disambiguate this metaprinciple's explanatory-
order claim, that Llf is "in principle" due to Ll’ as a strict no-exceptions
rather than just an expectation in the main depends on whether y is identical
with [zﬁi’ll whenever the restriction of translocator £ to its subdomain Q%
has an inverse ;"1, or whether there is instead some sense in which [Zﬁi-ll
is superveqiently distinct from y despite gg'l's being simply an Identity
.fﬁnction on Dy. (Fn. 4 in Chapter 1 points out why the latter suggestion is
not quite so ludicrous as it seems.) For example, if Wtf@;g:&gqgéﬁéFgfwgighﬁw
is the variable whose value for any monogamous Englishman is the weight of
his wife's husband, is Spratt's-having-a—wife!s+§P5bandfs-weight—of-163-1bs.
the very same event as Spratt's-weighing-163-lbs., as commonsense insists, or
does the logic by which we work t-derivative events into the world's becausal
order require these to be distinguished? Unless [ng'l] generally differs
from X, however, a pair of laws <LQ,L1f> instantiating the Domain Translocation
schema may give explanatory priority to Lyg rather than to Lq-—a; you can see

by replacing <y,X? in I, by <y£,Xf» and both occurrences of £ in Llf by gg'l. 1
A A AT A
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Output Abstraction. If variable z is a-derivative from the output } of

a causal law

_L!: InD, Y= i’(.X.) ’

i.e., if z = [g%] for some abstractor function g, then
Loy InD, z=g¢X) (2= [gl])

is a causal law, due to L& and ?'s constltutional derivation from }, whose transducer
is the composition of § into g and whose grade of causality is presumably more
rarified than that of Ly- For example, suppose that X is the singleton Height
variable over bisexual organisms, } i1s a tuple of Height sources, and z is the

binary variable of being/not-being at least one meter tall. Then an organism's
%—condition causally determines whether it is at least ome meter tall by producing
its value on the continuous height variable from whose range the binary height
classification is’an analytic abstraction. More generally, the metaprinciple of
Output Abstraction says that any molar event Fg};g7 is caused, perhaps superveniently,
by any causal source of the compound event r};g7 from which ﬂg};gj is a molar

abstraction.

[Note. By rights, this metaprinciple (and similarly for Input Abstraction,
below) should also extend to cases wherein g in LBY is a scaling function; and
to be sure, laws encorporating scaled variables need to be positioned somewhere
ampng_ﬂﬁhep,ggniéfs”~bécaﬁéiﬁg§,. Yot if LgY 1s due to Ly when g is a scaling
function, then Ly is also due to L y~—in flagrant violation of the antisymmetry
of explanation--unless we can disclaim that variable g~ gx is identical with
variable ;. As a last resort, ué can support that disclaimer on grounds mentioned
in fn. 4, p. 22; but surely there are better ways to cope with this diffieulty. So
let us sneak by with ‘seme evasive Pleédiﬂ%,tha$~the'theqiy"°f(a°a“§ai-exPla”§ti§§;

‘1s still too nascent for all its major problems to-demand.immedfate solution. ]
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Input Abstraction. Let

Lox: InD, y = fg(X)

be a causal law whose transducer can be factored as the composition of some function
g into another, g. That 1s, gg(__) = g(g(_)). And write Z for the simple or com-
pound variable derived from } by viewing g in Lyx not as a transducer composant

but as an abstractor applied to §, i.e., % = [g%]. [We allow that some §-comp0nents

may persist unabstracted as components of %, as when, e.g., } =3ef [}1,}2],

E(X) =gor <& (%1),Xy7, and Z = [gX] = [[gX;1,X2]. 1 Then
Lyz: InD, y=4(2) (2=1[gX1)

is a supervenient causal law that is due to wa together with %'s a-derivational
nature. For example, if EO is the a-derivative variable Meap-parental-height-in-

inches (see p. 26), we can infer from our previously (p. 80) conjectured law

InD, b = g (.5gbf7+ .58,h80 + £,B)
of height inheritance that
-], =
InD, h = g (b, +&E

is also, at some level of molar abstraction, a causal law under which g's height
is brought about by 8's mean-parental-height together with supplementary inpuﬁ‘[ﬁ;gl.
In essence, what this metaprinciple claims is that when several different values of

§.haVﬁ_identical'effect§~on'y, then the disjunctive property of having one of
“TTA
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these X—equivalent alternatives on % can itself be treated as a molar source of
this same Zaefféct-—albeit not on the same causality level as the former, else

we would have the problem of explaining how the disjunction and the %—value which
entails it for a particular _ work conjointly in determination of f{;;7., It

is not plain that every L&Z derived by input abstraction from a causal law is
itself causal ai;any,level of supervenience; and it may well turn«puﬁrtbat;
severe additional qualifications are needed here. Even so, unless laws derived
by input abstraction generally enjoy some grade of causal stature, attribution of

causal efficacy to commonsense molar events could never be more than fatuity.

OQutput Compounding. Let
L; {mo, 1, =4®f (x=1...0)

be an m-tuple of causal laws with the same input }.‘ If X =ef [zi,...,;m],

Lyt InDF, I= &(X)

is also a causal law due to laws L. This is one metaprinciple that seems entirely
unproblematic, and with the aid of Input Expansion, below, is our basis for
allowing the outputs of causal laws to be compound variables. The importance

of combining laws L into a single compound law le is that Iny thereby becomes

available as a basis for further derivation, by Output Abstraction and Input

Abstraction, of laws that account for complex molar events 5[g§;§]}. .
Input Expapsion. To comjoin a given law
Ly: In D, yi = A (%)

with others by Output Compounding, Lk's input may first require inflation by local
irrelevancies to which its transducer gives null weight. Suppose that }k is only a
proper subtuple of the totality § of input dimensions in the laws to be conjoined.

To expand I to receive all of } as input, let o, be the component-selector function,

from the range of % into the range of }k, that maps each value X of
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X inte the Xi-value X, embedded in X. Then as illustFated-by L, on P. €8,

L, InD, y, = ;ﬁkak()_()

<

is a law that is also causal if the components:of X not in %k héye:néteﬁfeetfen Tk

o and indeed is more basic than L% R
in D that is not wholly mediated .by Xy, [ in that case, (Details of this mediation
condition are developed in my "Complexities of mediation structure" document
cited in fn. 8.) Transducer ,ékgk in Ly, illustrates what is meant by saying
that a law may assign "null weight" to some components of its input. For }kok
simply ignores values of %Acomponents that are not also in }k, i.e., if X, is
the value of X, embedded in §-va1ue X, Vﬁqu(l) =¢i3k(zk). Whenever we undertake
to explain a meolar event fg[yl,...,yﬁ];gj for seme © in D by appeal to an array

A . A

of molecular laws {zk = dk(xk)} (k =1,...,m) over D

-

we must first extend each
of the latter to have as common input all the different variables in <§1,...,}m7--
which, depending on the mediation structure of these variables, may or may not

be possible simply by Input Expansion--before Output Compounding and thereafter

Output Abstraction can be applied.

Scientific systemacy 3V. Molar explapationsg. .

It 1s evident frem the foregoing ﬁhat lawfulness derived from an ensemble
of causal laws may well have dubious causal quality. But that should hold no
surprise; for more generally, causal laws can generate unlimited patterns of

acausal concordance, functional or otherwise.

Suppose, for example, that compound variable ¥ has causal origin
_I_.!: InD, Y= @(‘X;) ( ‘Y= [Yl""’fn]’ i(: [fly-uyfm]’ $ =< 19~°°"n7 ) .

As X takes on different values for assorted members of D, the component variables
in } are not free to vary independently of one another but are censtrained under
the component functions in § by their commen source X. 1In ideal cases this

can preclude occurrence in D of many logically possible score combinations on
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<X1’°"’y“>‘ Indeed, if the number m of }-components is smaller than the number
A

n of components in X while the first m component functions in § satisfy certain
mild orthodoxies, we can write Y = [3!1,}2] and § = <@,, §,> where Y, and cfl
contain the first m components of Y and ®, respectively, and have that &

has an inverse.'% Then insomuch as ¥; = f (X) and X, = PZ(X) in D (immediate

4More generally, without imposition of "orthodoxies" on <di,...,# 25 3 'n is suf-
ficiently large for fixed m- thgre#ﬂill 1ikely be some integer r<’n such that {j
«s+ gfuyhas an inverse. But T may well be larger-than mj and to insure the exis%ence
of this r~eveﬁ'when g,mueh,exceeds m we need some consiiaints on <#1,...,5n>.'

from Ly), it follows that

Neither of these latter regularities expresses a causal dependency of va; Y2

upon Yl’ but both are lawful enough to sustain genuine predictions based on

compound
Yi—information. That is, given knowledge of a‘causal law Ly having the ideal

~ knowledge
properties just described-—though how we might‘éome by that‘lf X-scores are not

-directly observable remains to bemseenselgarningrwhere some 6 ;n D:stands just

on subtuple‘}1 of { allows us to recover 9's standing on Xi—source f and from
there to predict what value © has on other effects ¥2 pf f. And as bonus,
we get to explain both the predicted event T} ;gﬂ and our evidence {21;27
for it as due to the inferred underlying event r§;§7.

To be sure, this predictive ideal is never entirely realistic. For
noise factors (measurement error, unique sources, stochastic residuals, or what-
QVer) on the input_atde of any multivariate causal law Ly are always numerous
enough to thwart errorless identification of rx,§1 or even certain exclusion of

possibllitg (
Y

any/ for Yg(o Yl’Yz])’ from any part. TYl o7 of FY,OT, Even s0, Ly will

still induce a distinctively patterned distribution of Y-scores not only i D

but ‘alse in observably finite. subsets of D. And so we arrive at the two _great
rav - .
problems of } macro-phenomena that drive the modern methedology of statistical
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data analysis: Civen that all components of compound variable ¥ in Ly are obser-
vable but that some or all components of X are not, (a) how can we usefully
characterize the X-score patterning in sample populations drawn from D, and

(b) how can we exploit this pattern information to infer decently reliable
conclusions about the transducer @ and underlying %-values from which our
observed X;scores have arisen? The first of these is the problem of data
analysig; the second, that of data interpretatiop.

In theory, the answer to (a) is straightforward: Every statistic defined
by a-derivation on the range of X's sample distributions. (see p{ﬁ?S, ]
abeve) -i8 a dimension of molar X—patterning; and although the totality of con-
celvable pattern dimensions is unworkably large (i.e. infinite), it only remains
to choose which manageably small subset thereof seems most interpretively informs
ative, In practice, of course, a great deal of sophisticated effort has gone into
establishing traditions for tEEEEaRrgewwwisnd such choices, and many important
technicalities remain open to further inquiry (including some pretty basic
- foundation gaps that need filling with something more solid than the pious
presumptions that now patch them over.) Yet the essence of statisticagzg:alysis/
interpretation can be deftly summarized by our now-established SLese formalisms,
and is well worth thinking through not so much for what it reveals about scientific

knowledge as for its perspicuity as a paradigm of molar explanation.

Statistical sggregates. - -
In a typical application of modern statistics to empirical research, we
make observations on a tuple X of numerically scaled data variables for each individ-
-ual objeet o in a size-N sample B of some population D, while hypothesizing
that X is produced in D by numerically scaled but generally unobserved sources
<§,?> (in which % is distinguished for later treatment as a tuple of "random"

variables) according to a causal law
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(20) InD, I= §,(XE).

We assume that (20)'s transducer belongs to some identified class & of functions,
L al

but that its particular a-indexed instance within this class is unknown. (In

practice, 'a' demarks a finite tuple of algebraic parameters within a computable

function-form ®.) We can choose form &

to equate some or all components of ?‘(
g

with particular components of X; so some of the nominally unobserved inputs in

(20) can in fact be data variables. [Also, source variables <X,E> can be under
conjectured o
some array ofjconstraints expressible e.g. in form

(20-2dd) In D, Qb(K,E) =0,

i.e., <¢b1(2(.,§) =0, % ,(XE) =0, ...>, in which ¥, is a function selected by
unknown parameter tuple b from known form g. In particular, (20-add) may be
an algebraic reorganization of a recursive system gIn D, J_(j = ¢gj (gg,gg)g of
causal laws wherein ?‘tj is some component of/)‘( while 14(3 and E.‘" are subtuples of

J
?1( and E, respectively.]
A

hypothesis schema

The most familiar version of (20), one that research practice has exploited
prodigiously, is the basic "general linear model" under which } = [itl,...,irm],
X = [%rl,...,,;‘(m,f], E = [f]’ and the {m+l)th aom;ﬁonént”ﬁé\ of ;;év,=*<¢1;5'!-4—’-m’¢a>
is a linear function of [3\(,5‘;] with coefficients g = <¢a;,a,,...,8,> and 1.
(Components "1”"”‘111 of @a trivially identify each ﬁon “the left wivth’g'ti"on '
the right.) Then the model's nontrivial part is just

(20.1) In D, X = §O+§1§1+._._L taxy te

in which scores on YsXyseeosdpy for sampled D~members are known but coefficients a
A

and scores on random residual e are not. Or if we waive our model-standardizing

but otherwise needless constraint that all data variables in (20) are components

of output compound }', we can say more simply that the basic General Linear Model

is (20)'s instance wherein 4Y and EI are singletons and (20) has linear form (20.1).
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As is well known, (20.1) in turn subsumes group comparisons, Analysis of Variance/
Covariance, and Regression Analysis with any ﬁarametrically linear form of regression
surface. Another major instance of generic model (20) is Factor Analysis, wherein
§ 1s a tuple of unobserved source variables postulated to explain the sample
covariances observed among data variables X while % comprises unobserved "unique"
residuals of these outpufs. And in certain very recent advances of multivariate
analysis, each D-member is an enduring subject for which the value of each com~
ponent XJ of g is a "repeated measurements" sequence of scores on some variable
Xs at different times in that subject's developmental history.

Tbﬁdevelop sampling theory for recovery of unknowns in (20), let Q§

comprise all N-tuples Sy of individuals from D such that s, satisfies certain

N
co-selection constraints of obscure factual character but denoted by such statis-
ticians' phrases as "independent random sample." And for k = 1,...,N, let £
be the translocator from Qﬁ into D such that each ;k(gN) is the kth member of

sample gy. Then by Domain Translocation, (20) generates
(21) In D.;p gﬁk = @a(}_(.i.'k’gf.k)} ( k=1,...,N )

and from there, by Input Expansion and Output Compounding,

(22) In Dy, I* = &X(X*E*)
in which
* = * = #* =
X def [/‘Yilt oo ’,‘Y.EN] ’ } def [zrgls X ’Z(EN] ’ E def [;Egl’ oo ’§£N] ’

and
§: =ief <é801,..., §80N>

where each Oy is the component-selector function that maps any value of [§*,§*]
into the value of [§£k’§£k] embedded therein. In practice, values of X*»(and
similarly for %* and %*) are often written as Variables-by-Individuals score

#* = -
matrices, i.e., Y (§N) {Ijkz wherein gk is the score on the jth } variable
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for the kth member of sample 8y- This matrix reading of I*, X*, and E* is hence-
forth presumed here, Then é: in (22) is the function that maps each score-matrix
pair <X*,E*> into the score matrix whose kth column (k = 1,2,...,N) is the @,-trans-
form of the kth colummns of X* and E*.

[When model (20) includes additional source-variable constraints (20-add),
these are similarly compounded into

(22-8dd) In gg’ I;(_x"l E*) =0 (}; =def < )ébal,..., “bUN> ) ..]]

To continue illustration with the General Linear Model, when (20) is

specialized to (20.1), (22) becomes in the notation of matrix algebra just

(s, &, ay 1][%:]

#

(22.1) - InDp ¥

CRLENT RTTRN * LA

wherein'i* is an N-tuple of ls, and each of x*,;{,...,g,g* is the }tuple (rowv
vector) of scores in 8y on the vafiable indicated. Although all scores one and §
for all sample members ére in the righthand side of (22,1), this equation's algebra
selects just the kth cémponehts of e* and the rows of X* for determining the kth _v
component of y*. That is, with far less algebraic deﬁrterity but greater notatiénal '

resemblance to generic formla (22), (22.1) can be equivalently written as

(22.1a) | In §§, CoeosXpreoed T ooy g, + Qlok(g_ll,...,_x_’ln) + ...+ !-lok(zlnl’

a..’g’nN) +..°k(£1’c-o,gw)’ eoe > .

In (22.1a), Yo X 3" and gy sre respectively the kth elemaﬁt of vector y* of scores
on 2', the hith element of matrix X* of scores on §, and the jth element of vector e*
of scores on e for an arbitrary N-tuple of D-members; and component-selector function
o) picks out the kth element bf any N-tuple to which it is applie'd.' |

Let us pause to flesh out the meaning of formalism (22). We have begun

with é compound 4Y = [!1,...,Xn] of numerically scaled variables whose values
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ve ‘have aétually learned for ceﬁtain,quegts {p our vieinity. And for reasops. . -
Qeldom closely chutinized in practice, we feel it worthwhile to conjecture that
for each member o of some domain D decently sampladvby the individuals whose }kscores
we have.oﬁserved, o's score—tuple‘<!i(2),...,xh(g)> on Y is caused by 2's scores
<¥(Q),§(g)> on-numerically scaled compound source-variables } = [flf""fh] and

- residual E = [21,...,2n] under a transducer QL = <¢a1”"";n) (1.e. IJ = J;J(z,g)
for each i = 1,...,n) specified by still-unknown parameters g = <..;,gh,...> in
a stipulated function-form %g. For example, Xl(g)”"’!n(g) might be person o's
scores on an array of small infellectual tagks (test problems) on which we think
perfﬁrmance in a ce#taia;testing situation partly definitive of D is due mainly
to the performer's standing on an array } of ability/personality/motivational

- factors together with assorted chance.disturbances that can be aggregated into
one residual 23 for each;pggfggpancevaimgga§onAgj._Q(Itﬂis;gogfob;tgaggry.to
allocate exactly one residual_to each%cnmpanent of “output compound }, but that
is standard in practice.) It should be noted that model (20) for siggle D-members

is itself explicitly or implicitly derived from m sub-models
(20) n D, fz= ,;5(;_51,...,;5%.23)} (§=L.c0m)

one for each z;dimension y
A

b/
subtuple of f, and ey is the jth component of f. The righthand side of each 1" -

s Wherein ‘f;1""?f5m3> is a not-necgssarily—proper

equation in (20') is first converted to dj(;l,...,;.,gl....,gn), i.e. {3(;,3).
by Input Expansion under presumption that any components of {§,§] not in [}31,
""fjmj’:J] have no effect on ¥, unmediated by the latter, and those expansions
are then conjoined by Output Compounding to yield (20).  Until recently, applied
data analysis seldom started with component models (20').in whi§k=ili~aon~rosidual

} ' | - input to any one {J was leqs than total input array f. But that is no longer true

| of modern recursive-modelling practices.

© What ve initially surmise about the Y-sources X in (20) variegﬁg;éf?%??fgpp”

one application to another. Often we have views on the substantive nature of sohp
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}-dimensions fj’ e.g. theories of intelligencé and personality, even when‘fj—scores
are not directly observable. And’sometimes ve not merely lknow what fj-ness is,

but believe it to be measured by one of our }-variables zh so accurately that we
can simply equate Zh with fj by fixing the hth component function ;h = ﬁ;h(§,§)

in (20) to bey =0-x) + .o. + 0y g + 1Ty + 0oXgpy + ouu + 00Xy + 008y +
ce. + 0°g, or its equivalent. (This is what was meant above by describing certain
§;-componentg in our first version of the basic General Linear Model as “trivial.®)
But at the other extreme, we may conjecture virtually nothing ahout § beyond that
some such B-tuple of hidden sources seems needed to explain the patterning of

sample data on ¥ in D.

With suitable specification of its open parameters, law-conjecture (20)
proffers explanation for the ¥;scores of single objects in D. but to'analyze/;izf
interpret sample data on Y, we must expand micro-model (20) into a macro-model (22)
under which an. aggregate of [%,g]-events explains the X—state of a group of D-members.
There is nothing at all mysterious about this expansion; but its technicalities
even for random sampling are somewhat more intricate than commonsense kens, and
getting clear on how SLese manages this is an essential preface to understanding
the strueture of more complex micro-molar systems, Given N individuals sampled
from D, our first move is to index these from 1 £ol§ in arbitrary but thereafter
fixed order, and then to think of this collection as a molar umit, ‘N’ comprising
N disjoint parts that can be picked out of 8y by indexical descriptors. That is,

'the kth individual in sample g.f, abbreviated gk(gN) in (21), refers to sample-
member o This allows our observed array fryj;§k1: i=1...,m; k= 1,...,8¢

of scattered micro-events to be formalized as a single macro-event F}*;gnn whose
manifest locus is molar object Sy Specifically, we multicopy each component XJ

of Y into N t-derivative m;cro—variables ng =3ef [gjgk] (k =1,...,N) over the
domain Dy of N-member samples from D--i.e., the value of ng for g, is the value

of y; for sy's kth member--and then compound all the latter as Y* =, . [!sk: p] = 1,

eoesns k=1,...,N]. We can then conjecture that observed macro-event f}*;gNT is
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accounted for by a macro-antecedent l'[?‘l*,g:*];gn‘[ under a macro-principle (22)
derived from the micro-principle (20) under which, for each part 2 of gy [ };gk'[
is due to a micro-event f[})\(,?];gﬂ that differs on}y by translocation from a
fragment of F[}*,?*];g_rﬂ. Specifically, (22)'s transducer is a doubly indexed
array §* = tef f;“j’k: i=1,...,n; k= 1,...,3} wherein each "Fk is a function on
the range of {3(*,1/!\:*] that outputs the kth sample-member's value of the jth data
dimension by first selecting, from the macro-compound [}*,?*](gw) of micro-input
scores for all the sample members, just the sub-array contributed by 2y and then
applying to this selection the jth component ;Sa 3 of transducer §a in (20). 1f
(20) is causal, (22) too is causal--or so the metaprinciple of Output Compounding
claims--80 long as the determination of each ["\yj 50,71 by [ [},}B] 32, 1is unmediated
by any micré-input event [ fh”—kn or r? j‘;'gk,‘] whose locus is a member o,, of Sy
different from 2y (This mediation premise is reasonable enough when 8y intuitively
qualifies as an "independent random sample" from D; but it is generally less
plausible for more natural molar systems discussed later.)
Elaboration of (20) into (22) is not an end in itself. Indeed, this
would have little point were it not for the molar abstractions to which (22) gives
rise. For it is now possible that we can a-deriye from X* a compound molar pattern
variable ;Y/* whose determination by em-abstraction g* from [%?,ﬁ*}, under a transducer
Ma entailed by &: Is sufficiently simple, given that the residua}s compoupded=: . -
in E¥ behave as stati;tical theory deems proper, that parameters a in fa, ﬁ,ané.
[q can be recovered from the value of f* eomputed fqr':gN:f.xk‘om-;ﬂdgta array x*(gN).
W.Specifically, let G = <gy,...,g.> be some array of numerical statistics (i.e.
pattern abstractors) on experimental set-up ™. (See p. 27f. for review of this
terminology.) That is, each Sj is some number-valued function on the range of /I\*,
so that for each value Y* of X*, gjl* is a single number distilled by g'j""out of
score: array Y*, Then from (22) it follows by Output Abstraction that

(23) In Dy E43* = gy $r(X%E¥) (1=21..02),
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wherein gJZ" is the value of pattern variable [gﬁ*] for an arbitrary Df-member
vwhose value of X* is Y*, If the component functions in tuples G and 5‘ are
algebraically well-behaved in the fashion typified by polynomials, there will exist

a finite tuple H = (ﬁl,...,h > ef statistics on [X* E*], identified just by G

e

vand the known form @ of § »-and for each gj in G a finection ° Tja on the-range

of H selected from a known function-form Tj by the same parameters a = <...,ah, coed

=

that select $,-from fem ﬁ, such that
‘j@: = yj‘ag ( l%l,o.o&!) L)

This rewriting of £ f: as 7‘3&_!1 is nothing more than an algebraic rearrangement

of elementary mathe@tical operaﬁons which can be combined in alternative ways

to achleve the same mapping from the range of [X* E*] into the range of atatistic.;gj.
‘ [Roughly speaking, the reorganiszation of gjf" sought by 753“ is for H to
perforn as much condensation of the function's argument as is possible (under the
constraint that H is to be the same for all gl”""r) without involving any of

the unknown parameters a, before ?’5 carries out the final distillation to which
ais essential To illustrate, let gu be the function that extracts the arithmetic
mean of any N numbers to which it is applied, i.e., B\x("‘l""’!ﬁ) Z3ef (;1 + ..

+ 3N)/_l_!. And write 1: for the linear transducer in (_22.1). Then I: is composable
into &, (since all values of [ : are number N-tuples); and to see how their composition
can be reorganized in the fashion desired, we apply %‘x: to an arbitrary argument
<X*,e*> and observe from the righthand side of (22.1) that

g, LA(x*,0*)

xu(gol* + 51;_; + ...+ 2.;: + e*)
a8, + 31%;(5{) + oeee 4 g.xu(;:) + xu(a*) ’

where each g, (x}) is the mean of the jth row x* of score matrix X*, If 7' is now
g, ! 3 o 8e =T M g

the linear compositor on number (m+l)-tuples whose value for any argument <%,...,Z41>

is 7 (51,...,%4,1) “gef 80 t A3%) t ... Y ARZ + Znty? this becomes simply
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aug‘(x* E*) = n(gu( *),...,g!‘(;;),%(!*))
T,ﬂu(l",z') ’ -

where 51 is the compound function g' = <gu°1""’su°n’ °n+1> each component

o, of which is the composition into of a sub-array selector o, that picks
.3 &,

. hj
out of score array <X*,e*> either ¢* (when ] = m+l) or the jth row of X*, "To
appreciate how the compesition of {; into g, differs from that of Hu into 7‘.

even though g g4 = T.Llu, note thlfb H, condenses the (m+l)x N element array <X* SE*>
into Just. x_n+1 mmbera unaffecte& bx parameters awv whose i,_o&-ce 1& then concentra&ed

.’urto ‘how: 7’ @&pos»ite‘af this xteduced arrsy; whereas A,“_‘Sation of <X*,e% by

2 cj\é,:ﬂ .

the sequence of operations in %Li essentially exhausts the force of parameters a

before any reduction in. array size is accomplished.ll

Given equivalences {g 55: = 7‘”11? » (23) is mathematically equivalent to
(23a) In D §&5T* = THEELENE  (1=1L...z),
which by Output Compounding is -

(24) In DN, Q(X*) = P.(E(I*,E*)) (Pa =def {d1q7°°°» rra7 ) ’

where for any tuple G = <gl,...,gr> of functions on the range of a function or
varisble 3, we continue to write G(3) “def <B1%r+++sE,7>+ To make clear what (24)
accomplishes, let ’!\" = (S‘i,...,’i!;‘] and .2" = [';i,...,g‘?] be the compound variables
over Dﬁ respectively a-derived from Y* and [X* E*] by functions G = < Byseeosky)
and § = <By,...,h1n (24). That is,

¥y Taer (BT (1=1ee0ip), B Sgee Uy [X%EY) (k=1,...,8) .
Then by Input Abstraction, (24) becomes simply

wherein molar transducer ﬂ is selected by the same parameters s as before from
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a known form £, 'l!\: is a compound pattern variable whose value for sample -”_—N is
_computable from dat;.a distribution ?(QN) , and the valué of compound molar variable
%* for gy 1s an abstraction from the unknown distribution of sceres on 2'( and E
in gy Similarly but not quite identically, equation (24) says that the value of
compound statistic G for the observed ¥-distribution in By derives from--indeed,
according to the metaprineiple of Input Abstraction, may in some sense be caused
by--the value of compound statistic H for the sample distribution on [},E] under
a transducer identifiable by the same parameters a that identify transducer §a
in model (20) for production of X—scores for single ‘individuals in D,

A very simple example of (24a) that follows from micro-model (20.1) by
applying univariate statistic g to both sides of (22.1) is

(24.1) In Qﬁ, I = gytaF t..taX +E ( given (20.1) ),

the overscores therein being standard notation for sample means on the variables
indicated. But in the most prevalent applications of (24/24a), abstractors G
and H condense sample distributions into within-sample covariances. These appli-

cations begin with multiple-output linear micro-model

(20.2) InD, Y = AX+E,

-

wherein ¥, X, and E are column vectors of scores for an arbitrary individual in D

on variables AY = [fl”"’fn]’ § = [fl""’,fm]’ and ;\: = [21,...,21,!], respectively.
(For simplicity, we suppress explicit recognition of this model's additive para-
meters. Those can be made zero by scaling conventions, or put into 3}" by including
in } a pseudo-vartable on which every D-member has a score of unity.) The transducer
in (20.2) is a linear vector function identified by a coefficient matrix '&, the
unknown elements of which instantiate generic parameter tuple a in (20). By the

generic derivation of (22) from (20), it follows from (20.2) that the Y-score

distribution in any size-N sample Sy of D-members has causal determination
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(22.2) In Df, XI* = AX*+ p* : ( given (20.2) )

wherein the generic {0, }-demarked difference between micro-transducer §; in (20) and
its maco-counterpart é: in (22) is concealed within (22.2) by the rules of matrix
multiplication. By applying Covariance abstractor Cov (see p. 28 above) to (22.2)

we derive ome of theﬁ§}hs§ically‘fgndameﬁ@gi,theo:émsr?f'linegr?data analysis, . -

-namely,

(24.2) InDf, Cyy = ACpyAl + ACys + (ACys)” + Cgp  ( given (20.2) ) ,

vherein super-T denotes matrix-transpose. Each symbol of form Cyz¢ in (24.2)
(; and %' variously being }', }\[, or §) latands for a numerical matrix, derived from
the matrices Z* and Z'* of sample scores on variables % and %' in an arbitrary 8y
whose jkth element is the covariance between the jth row of g.*(gn) and the kth row
of ;\'*(QN). It would be tedious and probably unedifying to set out in fine detail
how (24.2) instantiates generic formula (24/24a). The salient point is simply
that each matrix Cyy, Cyy, Cxg, and Cpg in this enormously powerful _equation . . oA
is just the value for an arbitrary sample 8y of a compound pattern variable ?I!’
etc., defined by applying certain abstractor functions to sample-distribution
variables Y* and [%*,E*]. ¥orever, it is natural to qlgiinwh;e_rz_'e;;ﬁhét';o}xtputf/;f;; .
covariances Cyy are in some molar sense due 1o input covariances Cyy, Cxg,
and Cpp under transduction (24.2), even though Cyy is an analytic abstraction
from the score array /Y'*(gN),vhich is caused by input distribution [},I*,%*] (gN)
without any literal causal mediation by the input covariances in this determination
sequence. |

Insomuch as molar model (249_) has the same mathematical character as micro-
model (20), we still need to consider why, for recovery of the unknown parameters
in both (20) and (24a), one is preferable to the other. Prima facie the reason
seems evident: For good-sized N, there is vastly more information available in
macro-datum [Y*;8,] or its molar summary & f;gn‘!a(i.e. (’Q(}"*);_s_N‘[) for astutely

chosen G than in any one micro-datum I'X;E']; and the G-abstractors can discern
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important pattern features 1nvF}*;gN1, notably conreiatfiigguthat have no counter-

parts at all among the properties: of any one micro-event F};§1. But - (248)'s infor-

mational enrichment on the left:-is éounterbalanced by proliferation of unknowns on

the right; so a special magic is needed to make (24a) more solvable than (20},
Sampling theory achieves this feat by interpreting orthodox sampling con-

straints on gy to imply that almost all input components in (24a) that abstract

all or in part from residual distribution E*(s ) are decently approximated by known

constants or meagerly parameterized functions of Z(sN) 8 rerainder Zl(s s 80 that

for a small, perhaps zero, number of unknown parameters b in some known function-

form‘g, Z cfeb(gl) in Dy. [For more advanced models further constrained by (22-add),

molar abstractions from the latter also contribute substantially to reduction

‘Z ﬁfab(z;) of the number of input unknowns in (24a).] Substituting this thinning

of g into (24a) then approximately determines fﬁin D¥ by a much smaller number

N
of unknowns, namely,

(25) In Dfy :Y,_ Y pa(eb(_ﬁ_'l)) ( :i:l a subtuple of ?) .

And sampling theory also assures us that these approximations become increasingly

exact, in approximately known degree, as sample size N becomes increasingly large.

Example. When G and H abstract within-sample covariances for applications
standard sampling assumptions about E imply that
of the General Linear Model Aall covariances in Cyyp and all off-diagonal ones

in Cpp converge with increasing N to zero, thereby simplifying (24.2) to

(25.2) InDyy  Cyy % ACyyAl + Dy ,

wherein Dp is the diagonal matrix of E—component variances. -

¢

¢
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Fot only is the ratio of unknouna-en-tho-right to knounl-!n—ihodldft.fir (25)
generally lower than for any of (24a), (22), or (20), it may well be low enough

(1f parameterization of (20) has been sufficiently frugal) to permit solution of
| (25) for all its righthand terms.
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That 1s, under favorable mathematical circumstances which data-analytic practice
labors mightily to arrange by its ag@pling gsgpmptions, cheice of t?ansducer feorm
® in micro-model (20), and selection of the experigéﬁi's summary statistics G,
the known form of (25)'s transducer, viewed as a function whose argument is all
of <g,Q,Zi>, will have a computable inverse. Transforming both sides of (25) by
this inverse, or by some approximation thereto designed to minimize the error
resulting from the imperfect equality in (25), then effectively estimates both
<a,b> and the:‘Hgabgtracted;ipattern properties of unobserved macro-event
F[}*,ﬁ*];gwj from the G-patterning in obsérved macro-event rf*;gnﬂ. Moreover,
if N is reasonably large, we"will"havé,regsqg;fgg confidencg,that'thehtrgef‘ el
values of these statistics are close to our so-computed estimates thereof.

[In practice, it often occurs that whatever specialization of (20) seems
most substantively attractive for particular variables X is "underdetermined"
in that its molar derivative (25) has no unique solution for <8,b> under any
choice of statistics <G,H>. This problem can always be solved superficially by
placing additional constraints on ¢g,b»; but that in effect identifies only a
class of admissible solutions for ¢a,b> corresponding to our alternatives for
those constraints. The deeper challenge of underdetermined models--importantly
i1lustrated by the factor-analytic literature on terminal positioning of factor
axes--13 to find grounds on which to consider some of these admissible solutions

more plausible than others as estimates of parameters in gaysal transducers by

which Y-data are produced. Note also that solution for all unknowns in (25)
identifies the "structural" parameters g in model (20/22/24a) without recovering

the underlying input distribution on [§,§] in sample gy, Even when @gfig_fully§:
knoun;_inféq?ﬁce of E§n,§*](QN)'ﬂroﬁ;gyigﬁiihééﬁiﬁafbwn sﬁeéiai;;ﬁnlf éeﬁi-trqcﬁable,
difficultiesvthat have likewise generated a considerable multivariate literature
under the title "factor indeterminacy."]
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Sampling theory's parting beneficence for applied data analysis/interpre-
tation is to set out with some precision the degrees of credence warranted by
(25)-based estimates of a causal model's parameters given our model's background
presumptions. Its most sophisticated ideal is to furnish Bayesian posterior
credibilities for <a,b> and E([%*,?*](gN)); but in practice we are more likely
to be offered, in order of increasing popularity and decreasing epistemic merit,
likelihood functions, confidence intervals, or null-hypothesis tests. What
sampling theory cannot yet cogently appraise, however, is the plausibility of
our choice of model form in (20) or our warrant for the flagrantly hypothetical
sanpling presumptions on which our model solution so severely depends. The
latter issues are still on the wilderness side of science's epistemological

frontier,

The micro-origins of macro-phenomena.

A perennial controversy in the philosophy of science has been the extent

to which the way things are in the large is constituted by their character in the
small, Although we have established no grounds heré for strong reductionistic
theses, we do have well in hand the main conceptual resources needed to make
these scientifically articulate. Specifically, definition of scientific
variables by compounding ~and a/t-derivatiom,. together with

derivation of laws by the assorted metaprinciples reviewed earlier, especially
Input Abstraction and Output Abstraction, gives us the machinery to assemble

basic events and the primary principles that govern them into molar
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description and explanation of‘macro-syétemss And the practical payoff of
sampling statistics demonstrates how important this construction can be for
technical science even though sampling theory is just the most transparently
simple variety of molar exvlanation. "Reduction" of macro-phenomena to their
micro-ggggjituentg'iéfmerelyggpgféfibn_of\thisrdgpi?a#%pnalrmachinery in reverse,

I have spoken freely here about "translocation" functions without saying
much about their nature. Although any relation in which genuine causal loci
participate can be used to define translocators of greater or lesser artificiality,
those locus connections that eccur most naturally in the antecedents of basic
causal laws, and = must hence be worked into translocators if manifest law-form
(8) is to prevail over (9'), are (a) excursors;.i.e. whatever displacements from
the locus of a causal event select where-and-when that cause gives rise to effects,
and (b) part/whole couplings. I shall say nothing here about the ontology of
excursive displacements, nor much abzgi:pgit/whole relations either. But since
Wwe have reason to suspect that most, perhaps all, properties of commonsense objects
derive from the properties of their parts, it is important to understand the
iogic by which such derivations afe possible.

Let us say that an entity o is a compound object of kind C iff, for some
integer n, o is an p-tuple and C is an p-ary reiation (in general, one that is

logically complex) that is exemplified by 2.15 More generally, we can let o be

15By speaking of "logically complex relations" here we expand our earlier working
presumption that basic predicates signify properties (see p. 22f.) into treatment
of any simple or complex predicate (i.e., open sentence) as _ signifying =
some abstract entity common to just those things that satisfy this predicate. Thus
from the sentence 'John likes cheesburgers, Mary is blonde, and John is older

than Mary', nominalizing the predicate that results from substitution of placeholders
for 'John' and 'Mary' therein gives us the concept of an abstract entity, The-
relation-in-which-something-that-likes-cheesburgers-is-older~than-something-that-
is-blonde. That such abstract entities really exist whenever English grammar
generates names for them merits considerable scepticism.- - But it is virtually -
impossible to run the business of technical science, mathematics, and much of
philosophy without freely nominalizing complex predicates, so we can only hope

that some future philosephical enlightenment will find a way to view these as
ontologically innocuous. Neither have we any practical way to avoid treating
tuples and other indexed sets as real objects distinct from their individual
components. But tuples, too, are grounds for ontological concern. For if
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2 T <075..-50n is an p-tuple of distinct objects and o! =‘<gi,...,g'> is is a
proper permutation of g, then the very point of conceiving ¢ and o' as "ordered"

is for o' not to be identical with o, Yet at the same time, it is hard to argue
convincingly that the reality designated e.g. by 'First John, then Mary' differs

in any language-independent way from the referent of 'First Mary, then John' or

for that matter from that of 'First John, then Mary, then John again'. One can
only hope that ontological differences created by indexing will someday soften

into harmlessly convenient figures of speech or, more felicitously perhaps, into
relations between words and things rather than just things alone. Meanwhile,

I shall say that two indexed sets containing the same elements under different indexing
or more generally having the 'same mereoclogical sum of parts, are "de re equivalent.”

any indexed collection of parts; but indexing as a finite tuple is most convenient

indexing always suffices need not concern -

for characterizing 2's object kind. (Whether.finitgwgusi(:g~\ -H§f§§~na$ roqui£e>a com-

: '?finta~;a;hg.disjoint Each component o of a kind-C compound

—

object o0 = <01,...,o > is itself generally a compound object of some kind C'

statistical k
that may or may not be the same for 811 k = 1,...,n. In the specialcase already

discussed, any size-N statistical sample is a compound object of kind 2§ for some
condition Q such that each member of the sample is of kind D; beyond that, there
is 1little more to a sample's being of kind Qﬁ than just comprising N distinct
‘ residual
kind-D parts whose respective values of certain ; Input variables have no common
- vaguely stated

sources. (This kp&rts-disconnection constraint does not fully “capture-the"
notion of "random sampling," but it does peintto the main force of requiring
a sample's members to be drawn from D “independéhtly" of one another.) In
contrast, "real" compound objects that commonsense views as the loci of macro-
phenomena-~plants and animals, machines of all complexities from levers and
pulleys to airplanes and computers, social groups from insect colonies through
: families and tribes to nations, spaceship Earthb even galaxies and beyond--

# eoneist, of parte diversified uuum.m-&om.-m lest,
Specifically, for any natural compound object whose parta-parsing is

sufficiently detailed, there generally eximt many causal laws of form (9/9')
(p. 36 sbove) whose domain preconditions P are satisfied by one or more subarrays
of o's parts. When 7" includes an appreciable excursive displacement and g is

just one stage s-at-t of an enduring subject g, it may also well occur that. parts
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of p are 7'-related to one or more parts of some successor g' = g-at-t+A of p.
Indeed, such excursive links between parts of o and parts of o's successors are
mandatory if s's stages are to be integrated by causal recursions. But the space~-
time region occupied by compound object o = s-at-t is generally no more instan-
taneous in time than it 1s pointlike in space; and although our conception of go's
temporal boundaries is in most instances unconsionably vague, its excursive width
is generally ample for many micro-events whose loci are parts of g9 to have micro-
effects whose loci are also parts of g rather than of some g-successor fully

separate from 2.16 And of course the downstream effects of events whose loci

16Even when object s-at-t is treated formally as having zero $emporal width, the
molar properties we ascribe to it are often abstracted from an ensemble of micro-
events spread in time around instant . (Cf, Obtaining-a-Wechsler-Bellevue-IQ-
score-of-132, Solving-today's-crossword-puzzle, Ordering-a-pepperoni-pizza, etec.)
Although it is customary to think of an object's successive temporal stages as
stacked 1ike slices of a salami, a more perspicuous image is that of links in a
chain. That is, the temporally aft parts of s-at-t are also generally fore-parts
of s-at-t+A for sufficiently small A. (I regret relegating this point to a
footnote; for if your thinking about causal systems implicitly presupposes the
sliced-salami model of thing-stages, you have much to gain from meditation on its
overlapping-segments alternative.)

are parts of p can generally be translocated, when formally useful to do so, into
t-derivative events manifestly located within 9. But nevermind technicalities just
yet; my prefatory point is simply that the multifarioua parts of a natural macro-
object ¢ are variously interrelated. in ways that satisfy the preconditions of
micro-laws whose ensemble abstracts into the molar behavior of o's kind. This
internal structure of compound objects is a major theme in the SLese story to

be told of macro-systems.

Structure aside, the logic by which compound objects of a particular kind
derive their causal behaviors from that of their parts is largely evident in the
sketch of this already given for statistical compounds. But we now need a genmeric ‘
way to identify specific selections of the object's parts in terms of their function

within the whole relative to its kind. The hardest work for this identification




-102-

is converting the umanalyzed whole into a collection of distinctively indexed
parts, e.g., treating John as equivalent to some ordering of his heart, lungs,
liver, kidneys, etc., or, at a finer grain, of the individual cells and conmecting
tissues therein, and from there finding a causally cogent kind-classification for
the parsed object keyed to this indexing. I have already presupposed solutions

to the initial parts-parsing problem by formalizing compound object o as an

17

p-tuple,”’ and its kind C as a-complex p~ary relation. From there, to pick out

17Technically, this amounts to owr having managed to define a mapping of some set
of pre-parsed melar objects {w} into p~tuples {o = %(w)}. Whether 3(w) 1is an
exhaustive compilation of c»'s parts, or even whether the compoments of & are strictly
parts of > at all, matters only when, in the throes of reduction/emergence controversy
we seek to equate properties of &) with those of 3 (o).

parts of kind-C objects in terms of their formal positions within the whole, we
can simply take any tuple‘&\of positive integers to define a function u(__) that
maps any n-tuple o = <gl,...,2n> of object-parts into the tuple of g's parts
indexed by’g; Thus 1f‘&|= <4,1,6> and John = < this heart, this left lung, this
right lung, this liver, this left kidney, this right kidney, this stomach, . 7
w(John) is the 3-tuple <this liver, this heart, this right kidney> [To cope
technically with cases where g'contains integers larger than p, we can treat each
obJect p-tuple g as continued by an infinite sequence of "null" parts that can
formally be picked out of o by p but which are then null extensions of the real
string of o's parts in u(g).] Meanwhile, the functional role in kind-C objects
formally identified by any such selector function w lies in what 0's being of kind
€ implies about the relational/monrelational character of 2's subarray u(p).
Specifically, if the complex of properties/relations we take to define
object-kind C is causally salient, i.e., if the assortment of conditions imposed
by C(_,...,_) on the various parts of its satisfiers o = <Qy5+++»Qp> Suitably
discriminate the micro-causal behavior of those parts, then certain selector
functions {ukz will pick out parts of o that satisfy the domain preconditions

of one or more causal laws f;k} consistently across all C-kind objects. That is,
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1f we express these laws {Lk} in canonical form (8') by embedding their locus
structures within the translocators ef t-derivative variables, object-kind C will

be characterized by principles of form
(26) For any compound object g, if o is of kind C then uy (o) € D, ,

in which D, is the domain of some causal law

(26ka) In th Ix = #k(zk) .

(It will be evident how (26) generalizes the requirement on kind-Dy statistical

samples that for each k = 1,...,N, the kth member of each N-tuple in Df is in

domain D.) For any o of kind C, any subtuple uk(g) of o for which some principle

of form, (26) holds may be viewed as a "module" of o whose causal kind is Dy. And

correspondingly, we may call any such functiOn #y 8 "module selector." Module
formall,

selection 1is a‘species of translocation even though its ontelogy is -altogether

differemt from that of excuraive tramslocation.

[Rather than stipulating that By selects subtuple uk(g) of o by indexing,
as adopted here, we could more generally allow a kind-C module selector to be
any function uy defined by a deseription of form 'The tuple of ___'s parts
satisfying conditions Qk', so long as some principle of form (26) is then
true of wy. This broadening of medule selection would make no difference
for what is done with the concept here except for waiving the requirement
that C-kind objects have been parsed as tuples., But conversely, any finite
array of so-liberalized module selectors on a class C of holistically conceived
macro-objects can be used to define a parsing of C's members as compound

objects out of which these same modules can be picked by index selectors.]]

The quality of lawfulness in structural gemeralities of form (26) can be

wonderously diverse. It can be all or in part logical necessity, by virtue of
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our including in C's definition some or all Qk-cOnditiOns as requirements on the
Hyi-subtuples of kind-C objects. It may be partly causal in that some properties
of uy(o) definitive of C cause uk(g) to have some or all of the properties that
put uy (e) in Dy- And very likely it is grounded in part on infra-causal locus
relations, notably, the geometry of space/time. We can even allow (26) to be an
"accidental" generality, since that can always be converted into a logical truth
simply by adding it to our definition of C without changing this kind's extension.
Regardless of its status in the world's explanatory order, let us call any principle
of form (26) an assembly law. The assembly laws for a given C tell how kind-C
objects are put together functionally, i.e., how they are constructed out of
parts that are variously disposed by character and commection to work together
one way rather than another.

Of course, assembly laws (26) alone do not explain the behavior of kind-C
objects; they only specify which portions thereof are modules of what causal kinds.
To complete the story, we also need the conjugate causal laws (26—;k) which govern
modules of these kinds. [Moreover, there are finer micro-structural details of
these modules and their laws that explanation of C-kind molar behavior also needs
to recognize, especially injiggg;if&aﬁ@;ﬁarmalizing module functioning by schema
(8) rather than by the more articulate (9/9'). To illustrate, suppose for each

D of a form-(8)

© in C that ¢'s modules uj(g) and p; (o) are both in the domain

law whose t-derivational analysis shows it to have embedded locus structure

Ly* . In D, Lfo = ﬁ(ﬁlyx_fzﬁﬂ) .

(For example, when each 2 in C is some society whose modules include breeding
couples {b = <by,by>} that are among the 2-tuples in dyad domain D, £;(B) and
;2(g) might be respectively the male and female component of breeding couple b,
with go(g) the couple's first c¢lild and Ly telling how parents' ?-values determine
the {-value of their first child.) Then we want to know whether micro-object

Long(2) 1s identical with fiuy(e) or with £ouy (2) for each o in C. (E.g., it
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might be a condition on societies parsed as tuples of kind C that the first child
of couple pj(g) is one of the parents in couple uk(g).) For if that is so, then
there is an auto-regression on Ly within kind-C objects by virtue of which events
[ys£105(e)7 and [y5£an1(0)T affect event [y;fqu, ()7 through the mediation of
event rz;ﬁouj(g)]. Such causal recursions among the micro-events underlying the
molar properties of kind-C objects establish regularities in C that cannot be
derived just from C's assembly laws and within-module functioning.]
Putting together these varied facets of a compound objects' micro-structure

gives us

Definition 2. A structural apalysis of compound object-kind C is any
4-tuple <P,L,R,k> in which: (1) k is an index set. (2) P and L are k-indexed
sets P = é_l_’k: gé}qc} and 414. = {-I-’k k ek} of assembly laws and causal laws.
respectively in which, for each k inlx.and some module selector s gk and

L& are of respective forms

Py For each o of kind G, u, () €D,

L In D Xy = A (Xy) .
[(3) R 1s a pair R = <Ry,Rg> wherein: (3£)‘§£ is a set
Jn = (2h25] §

of t-derivational analyses of some or all of the variables 1".%: i.e., each

fh is one of the variables in some law Iy in &; and (33) Rg 1s a set
{ For all g in C, fa hh'kk* (!_huk(_o.)) = Vh'h! kk’!'(‘ghl-(ﬂ_kt (e) )}

of locus-identity principles wherein Wy and gy are module selectors used in
g to pick out subtuples from kind-C objects, £), and £y are either Identity

functions or translocators disclosed in t-derivational analysis R, of 5? and
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’Ahh'kk' and th. k' 9re subtuple selectors that pick out (possibly null)
identical parts of fyuy (o) and fp1my (2), respectively.]]

For any o of kind G, we may say that structural analysis 4‘_1:,},5,}53 of G
alsc describes ‘the. &c_r_o«-sﬁ!ueturé,gi 'y at leve]l C whereim P-and L give g's
C-level assembly structure and micro-csusal stricture, rgapectiyéli;{:;&whﬁa
513‘5 and E"avre—’ micro-ident gtx supplements” to P ‘gndr,%{rggpaétiygi& 1

Notes:

1) Structural analysis of object-kind C is nonunique; trivially because
this can be indexed in different ways, and nontrivially because Def. 2 does not
stipulate that a structural analysis must be complete. (Structural analysis
<~}\’,~I;,§,}§‘> of C 1s complete iff, for every other structural analysis <£',£:',§" ,}‘t“')
of C and every index k! in k', there 1s an index k in 5\ such that 21': = Py and
Ll = L while R' 15 similarly embedded in f}‘.) Even so, we may speak heuristically
of the structural analysis of C with the understamding that this is complete with
some uniquely specified indexing.

2) The assembly structure of a complete structural analysis of object-
kind C is essentially the "causal nature" of C, while the assembly structure of
any incomplete structural analysis of C is a partial causal nature of C. This is
because if ‘3’},’5’5) is a complete structural analysis of C, }:\ supplemented by —EP
identifies all that is relevant in C for the causal functioning of C-kind objects.
Specifically, if P* is the comjunction of all predicates {pk(__)e Dy: 553} in P,
each object of kind C is also of kind P¥*; if <P',R'> differs from <£;,§> Just by
replacing all occurrences of C in the latter by P* then <~13",£,§'{,~1§> is a struet-
ural aralysis of P*; and any object in P* but not in C in fact shares with kind-C
objects all micro-causal properties common to the latter.

3) Def. 2 presumes that all laws and identity-claims in a structural .- ”’

analysis <£’£’§’l{n> of object-kind C are true (se that whenever ontologically




-107-

tolerable, ﬁf,&,ﬁ,k? can alternatively be viewed as comprising indexed sets of
objective facts rather than assertiona). Otherwise, if P, L, and R in Def. 2
contain merely *laws and *identities, <£,£L§,§3 is a structural *analysis of
object-kind D that merely conjectures how kind-C objects may work causally.

4) The sense in which the structural analysis of object-kind C is alse
a structural analysis of any particular g of this kind is that from g£,£,§,5>
and the information that o is of kind C, it follows for each k in Bathat o's
module uk(g) satisfies domain conditions D, and hence, from Lk’ is caused by event
r%k;uk(g)7 to have value ﬁk(§k(uk(g))) of variable T Strictly speaking it is
these latter facts specifically about g, rather than generalities_a and‘%, that
constitute the level-C assembly structure and micro-causal structure of any
particular kind-C object g.

5) When <P,L,R,k> is the structural analysis of object-kind C, and i,k
are both indices in k 1 # k does not preclude My = e Qj =D, or Ly = L. That
1s, any given level-C module of o can be of many different causal kinds D, (albeit
we may take the causal kind of u (o) to be the conjunction of all of these), and
different modules of o can be of the same kind. To make explicit the multiplicity
of causal laws that may simultaneously govern g'; module uk(g), Lk in Def. 2 can
be generalized to read L : I, = § (X, ).

6) Structural analysis of macro-phenomena is highly relative to a discretion-
ary "level" of analysis for two reasons. First of all, the parts-parsing of a
holistically conceived molar object (J that prepares it for analysis under Def, 2
can be developed at many different grains from coarse to fine. For example, if
W is de re equivalent to <27,23> 1l.e. these have the same mereoclogical sum of
parts, while o; and o, are de re equivalent to <81772;5? and <251+8757 Tespectively,
then w 1s also de re equiyalent to <2317112712502%» t9v<91,921,222>, gnd_to 4211;912’
25718572« And secondly, even after arbitration of grain has identified w with a

particular p-tuple o of its parts, structural analysis of o is still relative to
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a levelfﬁvbegaygggkiaélhgi,n~§gples for fixed p form a partial order in which some
entail others. Thus if C and C' are different p-tuple kinds, so is their union
C-or-C'. The more determinate (i.e. restrictive) is the kind C to which we assign
a given o, the richer in general is the array of structural facts about o that
follow from structural analysis of C. Any particular compound object g is theo-: .
retically of a maximally determinate kind C* such that for any other kind C to
which o belongs, the complete structural analysis of C is a fragment of the complete
structural analysis of C* However, this C* may well be unique to g and would hence
be an inauspicious domain within which to seek broadly applicable generalities

even 1f we had any practical way to recognize C* in the first place.

Molar consequences of micro-structure.
It is an immediate consequence of Def, 2 that if <P,Iu§g§’ is a structural

M A

analysis of object-~kind C, then by Domain Translocation,

(27) InC, {Zu = e (Xpn) # (kek)

is an ensemble of form-(8') causal laws whose domain is C for all k in k. {Ana
the micro-identities in R generally reveal causal recursions among laws (27) that
augment these with the products of integrable laws in (27) as well.] So by
Input Expansion and Output Compounding [as well as Mediated Composition in light

of‘gﬂ, laws (27) generate an array of supervenient micro-laws of form

(22) Ing, Y3= §(zy)
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in which each component of ¥J:qnd$53 differs only by translocation from some

variable in C's micro-causal structure‘a.
Example. Suppose that two of the fmtranslecated miero-laws in £;are

L D, 5 =AE) s I Ink, g =5 ;

with the assembly structure‘g of kind-C objects implying that My and u,

R

select modules of kind 21 and DZ’ respectively, from each 9 in C. Then
the fragment of (27) for k = 1,2 is

. e = A G = =
n L, ’
Joko = #2\(_%29'2) :
which by Inpuk-Expdfiaion-becomes
L B £101 By, Xoun) - (09 (X9,X) =3¢ %5 )
n -

Iy = By05(Xyuy,Xomy) - (0p(%9,X5) =4er X5 )

and from there, by Output Compounding, gives the instantiation of (28)

wherein }j = [zl“l’fépzl’ 25 = [§1“1’§2“23’ and Q% = <#iol;ﬂzoz>.

Any form-(28) compound law so derived from (27) is tantamount to some sub-collection
of laws in (27)'s recursive unfolding; and index j in (28) tokens that many such
selections are possible. Indeed, we can take J to range over all fimite subtuples
of the index set 5? comprising k augmented by indices for all products
of - integrable laws in (27), except that the law (28)
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output-compounded out of the input expansions of the laws piéked out of the
recursive unfolding of (27) by an arbitrary subtuple J of £+ may vielate the _
mediatien conditions under which laws derived by Input Expamsion are causal.
Derivation of (28) from (27) is illustrated by sampling theory's collection of
equations (21) into single compound equation (22).

Compound law (28) entails molar phenomena in domain C by the same principlés

of abstraction that cowvert (28)'s instance (22) into statistical regularities (25).

For any tuple Qj = (gi, Eysece? of abstractor- functions on the range of compound
variable 4Yj , let Ej = <n1,32,...> be some tuple of abstractors on the range of

%j such that gj(Qj? = \Fj(ﬂj) for some tuple Ej =<¢jl’¢j2""> of transducers

on the range of ﬂj. That is, let
gi§j = ’éjiﬂj (i=1,2,... )

be some more-or-less arbitrary mathematical reorganization of transducers

< glij,gzl‘],...h Then by Input Abstraction it follows from (28) that
(29) Ing, G(L) = ¥(H(z)) ,

or equivalently

(29a) In G, !j = g’j(ZJ) ( X:] “def QJ(XJ)’ %J “def Ej(%j) ) s

is a tuple of laws in which molar events 5!’ ;Zvj;_g']g (0eC) are prima facie responsible, a
some level of molar causality, for molar events éf?j ;Q]Z (ceC). The tilde in

g o fad = - ¥ -~ 3.2 . -
4Yj and Z, tokens that each component variable Ty = ;[gi%j-l in}j and %4 7 [Bi%j]
n

in Z'j can be viewed as some composite of the compohent variables in Y, and 4Z

3 ¥
respectively, albeit not necessarily one that is at all an "averaging" of its

constituents.” Laws of form (29a) characterize the macro-causal behavior of




-109-
object-kind C, while the comgon dependency of §utput components in ?3 upon the
same inputs ?5 induces a disﬁribﬁtional patterning of scores on the various
gj-dimensions that can be discerned in standard statistical fashion within
sufficiently large samples of kind-C objects,

The minuscule notational difference between (28) and (29a) makes insuf-
ficiently clear the large conceptual divergence intended between these formulas.
Although (28) can be subsumed as a special case under (295) by allowing gj and 35
to include scaling/rescaling functions as well as proper abstractors, ithe number
of component variables in (28)'s micro-output compound %5 is paradigmatically
enormous whgggsfgs paradigmatically comprises just one or a few holistic abstractors
that carry configurations of a molar object's module properties at microscopic
resolutions revealed e.g. by cellular/molecular biology and atomic physics into
the macroscopic features to which our commonsense conceptions of the world are
attuned. Similarly, input tuple :3 in (29a) is paradigmatically a low-dimensional
grouping into equivalence classes of what in (28) is a richly multidimensional
array %;ﬁﬁqz%%gggﬁiputs, including micro-indeterminacies that g} condenses into
a small nﬁmber of molar residuals,

The progression from Def. 2 through equations (27) and (28) to
molar behavior (29a) is logically straightforwafd. Not so straightforward,
however, is the final reduction step this schema makes possible when our original

conception of the molar variables at issue does not identify them és composites,

To complete reductive explanation of an initially unanalyzed molar regularity
In Q, i.: Q(.Z) ’

we must argue first that each object < in L1 is de re equiva}ent to a compound ob-
Jest g of 2 kind C having a certain structural analysis 45,5.,5,01&& next, that some
lav of form (29a), whose transducer ¥ is the same as ¥, follows from <P,L R, k>

j m? om? m? o

in the manner here described; and finally, that holistically conceived variables

~

v ~n
¥ and g simply are variables }5 and %J’ respectively. That is, the reduction step
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contends that for amy ¢J {n'L2'snd @ in C to which ¢ is de re equivalent, ri;m

and fﬁ;a:]\are redlly the same molar events as f§3;21 and f§3;37, respectively.19

194 this point ontological decency demands some concern for the sense in which prop-
erties of a tuple can also be viewed as properties of the mereological sum of that
tuple's components. The expedient answer is that when w is de re équivalent to a
tuple o, there must be some parsing function 3 such that o = 3(6)) while o's having
a property P 1s-equivalent to cs's having not P but rather the property sigmified

by predicate ' 7{ ) has P'. But I am not confident that this small correction to
 the equating of ¥y with ¥ and Z; with £ 1s all ve need here. :

Def, 2 and equations (27)-(29a) take no responsibility for this last conclusion.

They do, however, show how to derive molar composites of micro-property arrays that
‘may coincide with certain ordinary-thing attributes tightly enough to be plausible
candidates for the nature of the latter. Thus, statistical mechanics identifies a
molar composite, Mean-kinetic-energy (of a macro-object's particles), whose impressive
correlation with phenomenal Temperature across most manipulations of perceived
temperature after known factors of perceptual distortion are partialled out urges
identifying one wifh the other. Urges of this sort are seldom resisted: in practice;

whether- they nevertheleggxegght-te,befisrferfphilqgoppe£s~tp,ponder.

[Macro-dynamies and- problems ef structural variation.

There is, of course, much more to say about the micro-origins of macro-
phenomena than the basic theory of this just sketched. One elaboration, needed _
for issues of "hierarchical" system organization,.is formalizing how analysis of
the molar behavior of o as a composite of the behavior of its parts at a chosen
grain combines with similar reductive analysis for some or all of these parts to
derive o's behavior from that of its parts' parts, and so on for arbitrarily
many iterations of parts/whole analysis. But this is a routine extension of the
basic theory that introduces no new conceptual issues beyond the need for
hierarchical-organization theory to distinguish clearly between part/whole

analytic dependencies and master/slave causal orderings ("command structure")

that may or may not be found on a given molarity level.
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A more significant omission from present micro-molar metatheory is system
dynamics for compound objects. In principle this too should be routine, insomuch
as our previous overview of dynamics (pp. 71-79) allows its system objects to be
compounds of any complexity. Nevertheless, problems lurk within the generic
model that become obtrusive when we reflect upon the nature of molar abstraction.

Consider basic auto-regressive model (16) rewritten for compound objects

of kind C in the notation of (29a):
~ ~ N ~) ~s
(30) Ing, If= $(L2 (Y =ger GlY), Z =ger H(Z) )

wherein each molar variable in ? and ?'is some composite of the micro-variables
X and % on whose respective ranges G and H are tuples of abstractors. For this
formula to make sense, not only must each object ¢ in C be carried by some
excursive displacement f into a unique successor g' = f£(p), but also o' must be
in the domain of each component of compound variable ?. Moreover, if the auto-
regression is to continue for some subset C' of C, each o' in C' must also be

a compound object of kind C. These three conditions are straightforward to
realize if each component ¢, of each 0 = <0.,...,0 > in

i
successor g(gi)'Sﬁch thaﬁ;for*any module selector ﬂjohfg,Vu(gigl),...,ﬁ(gn))“is

1 ey C has a unique micro-
usually of the same causal kind as g(gi,{:;;gn). ‘But in fact, almost all
commonsense enduring aubjeqts’G,eﬂ;m;greaﬁbiﬁggi tgat can be parsed first ofAéI;_
vas a succession of causally linked stages) undergo stage-to-stage alterations in
their finer-grained a&sembly structures, as attested e.g. by the turnover of
membership in social communities, the frequent division or sometimes death of
»1ndivid§§i};ui¥icé11ular organisms, and the incessant interchange of atoms across
mapro-object boundaries. Real-world applications of model (30) in which
i(_ql,...,g,n) = 4;;‘_(21),...,_2:_(%_)) for most o = ¢g,...,0,> in C are simply
not to be expected.
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However, if the successor g' = f£(o) of C-kind object o is not also of
kind C, not merely cannot auto-regression (30) be iterated past o', but model (30)
may well be defeated at the very outset by failure of £(g) even to be in the

1nnfhe ff;st place. ~

domain of auto-regressive variable XK For, each micro-variable composited in 4
has t-derivational form‘?juk for some module-selector W, on C=kind objects. If
£(o) lacks some of the assembly features definitive of kind C, My may not pick’
ouéuzzzﬁﬁﬁie of £(g) at all if f(p) contains fewer components than g, and wL(2) may
not be in the domain of ?3 even if it exists, For example, suppose that <John-at-t,
Jane-at-t, Jimmy-at-1, Janet-at-t)> is the cohabiting Smith family--husband, wife,
and childrer--at time %, but that the successor, Smiths-at-t+4, of Smiths-at-}
is only (Jane-at-t+a, Jimmy-at-t+4, Janet-at-t+A) because Jane divorced John

between t and 1+A and won custody of the children. If module selector u, picks

4
out just the 4th component of tuples for which it is defined, and y is any variable
A

defined over person-stages, say IQ, ?u has a value for Smiths-at-t, namely,

4
Janet's IQ at t, but is undefined for Smiths-at-t+s because p A(Smiths-at-ym)
does not have a 4th component even though Janet still exists at t+A . Alternat-
ively, we could keep Smiths-at-t+A a A-tuple by parsing this as, e.g., <Jane-
at-§+A%£Hwa-at-§+A, Janet-above~the-navel-at-t+A, Janet-below-the-navel-at-t+A)?,
but th‘:niii(Smiths-at—§+A) would not be in the domain of y at all much less
being of the same sociological kind as uA(Smiths-at-ﬁ).

This unstable-structure preblem has ig}p?;gqéple’an*abstractly general
solution whose formalisms, unhappily, are more complicated than can be made clea;
in a few words. But since this matter is far too important to ignore, I shall
try to sketch its essence with“EEphasigfggén.a"V§?3£§§§£§§§~d9§§;ng§le?bliéitly
involve dynamics.,

The problem of structural variation arises-generiecally for the management

of molar regularity as soon as we contemplate how Def.. 2 and its abstractive

consequence (29a) might apply to everyday macro-phenomena. To illustrate,
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suppose that we hope to explain how commonsense generalities of human biology—-
effects of dietary practices upon health, principles of respiration and blood
circulation, etc.--derive from humans' constitutions as cellular organizations.,
If we start by parsing each human (read human-stage) ¢) as a tuple o of cells,

we find enormous variation in these individuals' cellular numerosities. That is,
there is no one integer p such that almost every human is the mereslogical sum of
some p-tuple of cells. Moreover, even were we to seleect one p and restrict our
study just to cellwise-parsed humans gg? = Qn that are p-tuples of cells ordered
within each p for maximal causal parallel among the p-tuples in-gn (e.g., all
bone cells are listed first in each gégn, and all cranial cells first among the
bone cells, etc.), there will still be so much structural diversity among the
uk-modules of various g in Qn for any fixed module selector Hy==€e8e) the mean
distance or total number of contact points among the cells in uk(g) may differ
greatly from one g €D, to another--that for few if any causal laws L will ui(g) be
in thefggmgih of L-for all g in Qn‘ The point here is simply that even though
there may well be a partition § QjZ of the class D of cellwise-parsed humans
within which each particular subclass Qd is a determinately structured compound-
object kind whose .tructwdimly-i. entails a satisfyingly rich array of molar
phenomena in Qj (1.e., QJ fixafes nétronlyrthe tb;;l nuherbsity of its members'
cells but also their subtype quantities, spacing, conmectivities, etg.), the
number of humans in any one of these structurally uniform subclasses Qj of Dy

is in all likelihood a vanishingly small propertion of Dx. So how might there be
molar regularities shared by all or at least a great many of them?

In abstract theory the answer is simple--except that this theory leaves a
large gap between the formal solution and its feasibility in practical applications,
Suppose that a generic class g*yof structurally diversified tuples does have a
partition into species (Sg_j: j_ei} such that for each i in index set i{’ compound

object-kind QJ has a structural analysis ﬁfj’%j’gj’§j> under which, for certain
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input and output tuples 3{3 and EJ of t-derivative micro-variables over domain C,,

and certain abstractor tuples G j and gj on the ranges of 4Yj and 4Xj respectively,

(31‘1: 16;) In gj, .’.\Y.Ij = gj(zj) (fj =def "G‘j(¥j)’ gj :def gjq(j) )

is a molar law derived from <~E" 3 ’,I;‘j ’ﬁj ,k’j) in the fashion explained earlier for (29a).
But each of these molar laws will prima facie be restricted to just one structural

specles. For if any component ;z"j of molar variables [:Y'j ,gj] is defined over C j
in a way that exploits the assembly structure specific to gj, ?j is unlikely to
include members of a structurally different species _C_k in its regular domain at

all, and may well not have the game causal import for members of Cy as it has

for gj-objects even if it does.

Illustratiop. Suppose that the assembly structure of C, includes the condition

J numerically
that for each g = <gl,...,9_nj> in Qj, the parts of g that are of a certain‘scaled
micro-type o( are exactly Qyrece2Q5g- And suppose also that for a certain
micro-variable 2 whose domain includes all object parts of type o(, the first
26 components of t-derivative micro-compound /Yd have composition gjk = [‘f“"k3~=
(k =1,...,26) where uk(.o.) picks out just the kth component o of p = <gl,..,gnj>.
Then if &5 is the function on the range of } j that abstracts the arithmetic
mean of 4Yj's first 26 components, i.e., if gjl%j = tef 26-1({31 + ... +3r126) +

2
0 (Xj27 +... +,¥jnj) = (&éfuk)/Zé, the value of molar variable ;yvjl Z3ef [‘j1¥j]
for each g in gj is the mean value of 2 over all of g's type-X parts. But
now consider any 9'e Cy Whose specific kind G, (# gj) does pot have the assembly-
structural feature just presumed for C 'k __Enj.g’éa;the,__’.'_;‘ixjfvs.t:é__é_’..-:mmpaneﬁts_:.'9;‘_A 8!
are all in the doma‘i_n_-?f,,}l g'will not be in the (regular) domain of ;3}'31 at
all, And even if it is, ?'jl(g') will still not be the mean of 2 for the type-
parts of o' unless o' contains exactly 26 of these and ‘they occur first in pg'.
To be sure, we can alterratively define ;y"jl in such fashion that its

value- for any gpe€C, having at least one type-x part is the mean value of }.

over o's type-o parts. (Details do not here matter.) But that still leaves




-115-

51 either undefined for C —objects having no type-o parts at all or--if we
A

extend yjl's domain to all of O by fiat—having anomalous values for them.

n
Even if components of [Yj,f ] are defined in terms of structural properties in Qj

not shared by objects in Cy» however, there ‘ean still be a component-by-component
_the index set j or species of genus
functional parallel between {Yj,y ] and [Yk,Xk] for all- j and k in‘C*. Specifically,
suppose for all 1,3 in J that ?5 and Xk (and similarly for }j’%k) not merely have
the same range of values and hence the same number Oy of components, but also that
for each i = 1,...,0y and each scale value ¥ in the common range of yji and yki’
the property over kind-Cj objects represented on the yji-scale by ¥ is in some
yet-to-be-clarified sense functionally equivalent to the property over k:lnd—-g_k

objects represented by ¥ on the ?ki—scale.
A

Intuitive 1llustration. Suppose that yjl abstracts for each object g in Cj
the mean %-value of o's type-o parts. .Then for any other k in i, it is =

intuitive that 7k1 has the same causal import in Sy that Jl has in Cj if ykl
abstracts the mean z-value of each Qk—object s type-« parts, even when Cj-objects
differ greatly from gj—objects in how many type-X parts they have. But if

ykl abstracts the within object variance of 2z over type-« parts, or mean z' (# 3)
over type-o parts, or mean ffoﬁer type-/3 parts, we would pot expect--though

we could be proved wrong--that ?&1 plays the same molar role for objects of

kind C, that ¥ j1 does for objects of kind C,.
A
~ ~ w
If that is so, we can define molar variables Y* = [921,...,§;myl and X = [x*l”";;mx]
over the entirety of generic domain C* to be such that for each ] in j, the restrict--

ions of Y* and X* to Cj are Y.1 and Xj’ respectively. That is,
For each g in C,, 1f(>ecj then [I,,X,](o) =qef [Y X ](Q) .

Then for each 1 in j, (31-j) is equivalent to
‘W’

~
(32-1: jej) InC, 1= {j@*) .
A J
Equations (32) still give us a different molar law for each determinately
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structured Qj within C,. But:tpese are now just species-differentiated trans-
ductions of the same input/output variables; and to unite them under a single
transducer for the genus we need only to define (a) a rangejg\"structural“ variable
S over Cy whose value for any object g identifies p's structural kind gj, and

(b) a transducer ‘J, over the range of [g*,§] whose restriction to any particular
value ] of § is just q%. That is,

For each o in C,, if Qeg.j then §(2) “def l ’

For each value [2’,,;_] of [’}}’*,§], \I’*(g,j,) =def \Pj(g*) .

(More flexibly, we let each value of $ demark the»diéjunetian'ofsﬂliﬁéj that are equi-
valent as input to Y,. And in practice we would seek a multidimensional scaling
of § that cogently reflects the multiplicity of ways in which assembly structures

{§jz differ.) Then equations (32) and hence (31) are equivalent to the single

mclar law
(33) In g*, ;\Y:* = ?*(2:*’_8.)

whose domain is the entirety of genus C

% and which copes with structural variation
within C, by treating this as an additional dimension (or dimensions) of input.
Each of species-laws (31-j) 1s related to (33) as L? is to Lf’on p. 82, above;

and if we desregard qualms about the ontological status of the variables and
transducer in (33), we can claim that (31-j) derives from and is explained by (33)
under the metaprinciple of Strong Domain Constriction.

Elementary but important examples of collating structure-specific mclar
laws i(Bl-i)} into a single generic law (33) are pandemic in statistical sampling
theory. When statisticians deduce formulas for the behavior of sample statistics,
these are always relative to a fixed sample size N. (Cf. p. 90ff., above.) And

transducers of the molar laws so derived are indeed usually conditional on a

particular N. Yet by matching suitably chosen statistics across sample size
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--notably, for any measure 9 pYer the individual sample members, defining EN to
be the variable on domain QN of size—ﬂ samples whose value for each Sy in QN is
the sum of q-scores in gy divided by N, and then collating j—iNz over {QN? to
yield g*: §ggplg¢g§gg—gg-§ without restriction to a particular sample size--we
find that these N-specific statistical laws can usually be subsumed by tolerably
well-behaved generic functions in which N is a parameter but whose inputs are
otherwise sample statistics and population measures prima facie conceived
independently of sample size. If you think of [g*,g*] in (33) as an assortment
of sample statistics, and structural variable § as the dimension of sample size,
you will grasp the essence of how SLese overcomes structural diversity, albeit

molar systems more integrated than statistical aggregates have vastly more assembly

structure to be reckened with than Just numerosity of homogeneous parts.

To extend this conetruction to thé dynemics of macro-systems with umetable
assembly structures, we start with C, partitioned among structuraslly determinate
subclasses fgj: 162%2 as before, but add that for some excursor £, each o in Cy
has a unique f-successor that often differs from g in assembly structure even
though it usually remains in Cx. We also envision arrays 5[23'?3]"1"§§ of
micro-variables respectively defined over these_various subclasses jgj} of Cy in
such fashion that whenever a C,-object o is in QJ while its f-successor is in G, .
(not necessarily k # j), some or all components of compound event T[¥J,%j];g1
are major sources of the various components of compound event r}k;i(g)T. Under

a sufficiently finer partition {ijuf of Cy wherein gjk“ comprises just those
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2 in C, for which g 18 in C,, its f-successor is in Cy» and <0,£(g)> satisfies
additional structural conditions « as relevant (e.g., X may impose certain
spatiotemporal proximities between components of p and £(g) that are not entailed

just by gegj and £(o) €C,), we should have that for each g-jk« in this partition

there is some compound micro-law

In ij,,(, If = §5k“(st.Z.j’E3kx)

wherein Ejkx is a tuple of residual inputs in principle specific to the assembly
structure of C ~jk .- From there, judicious applications of molar abstractors to
these micro-laws,followed by the same formal tricks that synthesize (33) out of

(31), gives us a molar auto-regression

(34) In C,, ?* *,_*,_*,S )

wherein Sy is a structural variable whose value for any g in C, identifies the
(or better, an equivalence class thereof)
Tk to which o belongs{ Moreover, while S,(e) codes the assembly

particular C
structure not merely of o but of g's developmentallﬁfexﬁggagxﬁfw{(gj{(g)),;if
structural change throughout the development of enduring C,-things occurs lawfully,
r§*;27 is determined in C, by the assembly structure i(g) just of g together with
other. conditions in or near g prior to the coming about of f£(g)'s structuring.
That is, variable §* should be replaceable in (34) by a function just of § and
other factors that, unlike %,, do not translocate the structure of po's f-successor
into a pretend property of o.

I fear that this sketch of molar dynamics is far too compressed to be
very perspicuous, but its technicalities do not really matter here. The important
point is that causal recursions among molar properties of coarsely classified
macro-objects appear feasible so long as (a) we can establish abstract trans-

structural equivalences under which certain local variables {¥J¥ respectively

defined over disjoint assembly structures ggj? become usefully collated as
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domain restrictions of a global varisble x over the union of ?gj},and (b) we can
treat features of local assembly structures as causal properties whose groupings
into variables . act 1like additional input/output dimensions in molar causal
laws, Accordingly, it is noteworthy that commonsense conceptions of macro-properties
are indeed often fraught with eoncern for their bearers' micro-structures, either
positively by requiring particuiar assembly features for their correct ascription:
as in (b), or negatively by combining properties that are constituted in part
by a determinate assembly structure into structure-liberated disjunctions as in
(a). Conceptions of the sizes, shapes, and spatial locations of molar objects
nicely illustrate the first case; conceptions of statistical properties that
cut across sample size--i.e., our being able to think about sample means, variances,
correlations, etc. without explicitly conditionalizing these on a particular N—
are paradigm examples of the second. Even so, these practices raise deeply
challenging questions for at least the philosophy of science and perhaps for
its applied methodolegy as well.

Regarding (b), insomuch as the structural relations among input/output
loci in miero-causal laws appear to play a very different role in the ontology
of causal determination than do those micro-properties of the input loci that
make the output event come out one way rather than another, molar predicates
whose significance is appreciably but not entirely structural may greatly complicate
if not confute eofforts to develop theories of molar causality that are formally
isomorphic to models that seem appropriate for the bottom level (if there be such)
of micro~causality. Similarly it is unclear whether we can always tell coherent
causal stories in which variables whose values are features of assembly structure
(e.g. size and shape) are treated as though they are causal inputs/outputs. But
an articulate theory of molar explanatery ordering 1s needed to give these
apprehensions purchase. For now, the salient admonition is that when we seek to

analyze what it is for u@pyjsé&; molar object ¢ to have some holistieally
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conceived property P, we must expeet that o¢'s P-hocd may be as much a matter
of o¢'s having a certain organization of parts as it is of these parts having
one array of local properties rather than another.

As for (a), the very poverty of preconditions under which equations
(32) follow from equations (31) signals that molar models (33) and (34) must

have
have practicality complications not §et ackn%wledged. For although I ‘tried to make
(and similarly {X Finto

collation of ijj into Y l}ntuitlvely palatable by declaring that for each

scale-value X common to local variables %J and ¥k’ gaving—value-x-gg-Y is to

AJ
be in some sense the same property-tuple over gj-kind objects that having-value-
z;gg-?k is over objects of kind Cy, this heurism plays no role in construction
of (32/33) from (31). Rather, the construction's formal nature is simply the
following: Iet XyseeesXy be any variables whose respective domains Ql,...,Qm
are disjoint and whose respective ranges have all been put into one-one corres-—
pondence by some index set g’\, i.e., for each i =1,...,n, f;_t,iq: geg‘g is a
listing of the alternative values possible on variable X; . Then we can fuse
XyreeesXp into a single range-&lvariable X whose domain D, is the union of
21,...,D simply by stipulating that for each value g of X 9 bhaving-value-g-
of- Xe “3ef having- value—zlq—of—xl—or—ggzigg—value x2q-of-x2-or—...-or—ggg;gg-
!él!g'th-Df-{hv This disjunctive collation works for any choice of domain-
disjoint lccal variables with isomorphic ranges under any index coordinations
thereof, and so can be expected to yleld a scientifically useful variable Xy
only under special constraints to which the abstract collation is blind.
Clearly, . the- practical effectiveness of molar models (33) and (34) cannot
be indifferent to which local abstractions we choose to eqﬁate-pyer_gifferéﬁt
assembly structures. But how these choices matter, and what rational should
guide them, still want ajudication.

In abstract generality, the collation constraint needed for (33/34) to

. be practical seems straightforward enough: The transducer P, under which the
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collated input dimensionms ¥, of confectured gemeric law (33) determine its
collated output g* must be inductively accessible., (Similarly for (34).) That

is, by observing scores on enough components of [?*,;f*é] (or on sufficiently
good estimators of them) in humanly finite samples of objects drawn from generic
domain C,, we must be able to estimate &, with enough accuracy that Est(¥)
applied to our knowledge or decent estimate of [:):('*,f](g) for additional objects
o in C, will yield a useful estimate of ;f*(g) even when g's values on ;i* and §
are at some remove from any. input combinations that occur in the samples from
which we have inferred Est(¥s). Such inductive accessibility is above all the
operational essence of a genuime functional law (see p. 31f., a’tlgve).‘ - It seems
evident that were the micro-variables [¥j,2‘(j] and abstractors <G j’gj> generating
molar regularity (31-]) for gj-structured objects to be chosen independently for
Qﬁ?h,, Pl 6;} only by an extraoidinary i:luke* could array g (31-1):_;’_1&%% of local
phenomena have any trans-species_pa:hterning under which our identifying the
local transducers ; @j: Je 3‘ '} in some subset :'}“ ' of i ;hel},s”usanming E

~about @ - f":?i any kX in the remainder of ',1\ . But conversely, regardless
of hcw our conception of collated variables [?*,2(;] may have arisen, if we do
seem able to learn the entirety of EP* by induction from finite sample data
(nevermind how we judge our prospects at this), then we can have no better
reason for taking the compound molar property Mg_i_gg—ﬂ]_.ge_-cf,zhgg-[;fj ,gj]sl:i};gne";a
gy-species gy by [g*,g*]—value <Z¥’_,Z> to be component-by-component causally
equivalent to the compound property w-m«i,i»-gg-[fk,gk] scaled by
<§,'_l‘(:> in any other C,-species Cy.
Ofﬂcourse, this epistemic induction criterion for trans-structural equi-

valence of molar properties offers little operational advice for initiating
such collations. But free choices in this respect seldom arise in practice.

In those special cases where we begin with known or conjectured micro-laws and

seek to infer molar behavior from their compoundings, notably, in data-analytic
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applications of sampling thquy, it is usually evident what must be put with what
in order to write conceptually wéii—behaved generic functiens in which assembly
structure sets parameters. (F.g., no one at all familiar with elementary statistics
would dream of collating the mean of variable X in odd-sized samples with %'s
variance in even-sized samples.) And in those far-more-prevalent research
situations where molar events unparsed for micro-composition are what we most direct-
ly perceive or infer from our instrument readings, causally equivalent properties
are already collated for us across structural kinds by interface mechanisms through
whose mediation these act ‘as input-te our cognitions. Thus in the vastly oversimp-
lified but philosophically étandard example of inference to dispositions, when
we ldentify @-ability as whatever property enables certain objects to react
R-wise when tested on input I, only at more advanced stages of inquiry into I/R
couplings are we sometimes able to conclude that the structural cohposition of
P-ability in objects of one kind differs from its composition in certain other
objects that are also Q-able.

This doing-what-comes-naturally selection of micro-variables §¥3’§5},and
abstractors fgj,gjg to constitute molar variables [g*,g*] in laws that generalize
over structural kinds largely obviates our need to craft an applied methodology
for this, It does not, however, insure that thése nafural selections work -
well. - Even if molar variables %; and %; cannot be improved upon in the
epistemic cogency of their micro-constitutions and trans-structural collations

in generic domain C

xs this may still not give us inductive access to generic
particular ‘
transducer ¥, in (33) over the entirety of C,. Thusfar«qgkaggeies Cyy some com-

ponentv§5’of.§5 may encorporate assembly features of gj that have no signifiéaﬁt
X
counterpart in the assembly structures = of - other .Gy -species Cy, therepy

thwarting collation of ?j with any molar dimension'%k over gk whose sample-

estimated behavior in Qy ‘is 1nductively-,diagnoéti§4ﬁgfﬂ'§53§f‘ﬁéﬁﬁyﬁiﬁ:j;

iﬁg j',";?f';;_;;;r;,(E;ig:‘.-‘, A ? g is  the mean of - type- X components within




~122-

each o0 in C 3? there may well be no useful counterpart of :\;{J over objects having

no type-& components.) We can always extend any such :\:’r'j into an ;i'* whose domain
includes all of Cy simply by creating an anomolous 'g*—value that holds for any
object lacking assembly features required for 'inclu'sion/‘ in é\c‘fj“s reguiai'fgoma%n,
But then what we learn- about generic transducer W, in (33) from _Q*-saminles
that inclu&e only regular values on 3'{* will inductively imply little or nothing
about what \I/,,(_)?_'*,§) may be for inputs in which X* contains the anomolous %*—value.

“Thus, . while construction of (33) from (31) is always formally possible,

(33)'s practicalities are best captured by its fractionation into"
(35-k: kek) InGf  Ip = $p(EES)

wherein {Qﬁ: k egg is a partition of C, into structural regions, coarser than
fgj: ieé} (i.e. each Q_l’: generally includes many different specific structural
kinds gj), under which each [g;,g;] contains only components of [:Y,*,;f*} whose
xiélues in 9_; are all regulsr and, for as many 1-‘3,}.2 as possible, regicnal trans-
ducer ?; 1s inductively accessible.from feasible sampling of Q_;.
Were partition 2 c_:;g of C, to comprise only a small number of regions whose
molar reg}ﬂarities ‘can ‘be discerned separately. with equal ease, the difference
between array (35) and its formal unification in (33) would be only a minor
technicality. But in practice, regional laws {(35—_1_(,)? may vary enormously in the
success with which we can learn them: For some k in }5{’ \2; may be a mathematically
docile function connecting molar variables [?ﬁ,gﬁ] that comprise a small number
of components readily identifiable (excepting residuals) by trained perception
or standard instrument interpretations. Whereas for other k in ~l§ (in all like-
1ihood the far more prevalent ones), \Izl*: may be so disorderly that we could

~

scarcely make sense of it even were the components of [?1‘(‘,3(1:] not so esoteric

in their abstractive derivations and collations that we can scarcely conceive

them in the first place. This point has already been well-illustrated by our
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Shadows example (p. 45ff.). For enclosure-stages f¥-at-17 whose assembly structures

such as
insure that descriptors [ 'the point-like major light source in __', 'the shadow
of the protrusive object contained in ;__', and '___'s opaque bounding planes'

have = well-defined referents when applied to v-at-t, it is relatively straight-
forward to work out laws relating dimensions of shadow size to light-source
positioning and other commonsensically ascertainable features of enclosure y at
time 1. But let falter the structural preconditions for these descriptors to
succeed, and not only doour molar shadow laws fail, we are left with little notion
of what variables might effectly describe and explain the patterning of light

and darkness within enclosures of uncontrolled contents.

A somber practical corollary here is that when we seek t; work out molar
regularities within and between developmental stages of enduring macro-thig§§~
with evelving assembly structures, we are fortunate indeed if we can find mﬁéh‘
stability (see p. 48f.) therein. For in (35)'s counterpart for molar dynamics,
even if the f-successors of most Cy-objects are also in C,, we may still have that
when o is in cne structural region g;, f(o) often shifts to another within which
molar regularity is most naturally characterized by a rather different selection

As a result,
of abstracta, [ whereas disclosure of system dynamics is a standard and feasible
aim of advanced research in the more molecular sciences, the prospect of success
at this becomes increasingly precarious as we ascend into higher levels of molar
abstraction unless--as is true of computers and many other engineered systems
but not of most natural ones--our enduring subjects have essentially invariant

assembly structures., ]

The future of reduction-SLese.
The theory of micro-molar explanation sketched above is just that--a
theory. More precisely, Def. 2 and equations (27)-(35) exhibit a framework for
reductive explanation of macro-phenomena that derives with deductive immediacy

from modern science's standard formalisms for expressing lawfulness. But
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formalisms need to be fleshed out with some determinate semantic content before
they actually say anything, and the history of ideas is littered with conceptual
schemata that have gone nowhere. How often, or in what ways, can we expect this
framework--call it "reduction-SLese"--to have useful payoff in real applications?
I suggest that its current prospects are at least sixfold:

First of all, as already emphasized, modern sampling theory and multi-
variate data analysis are built upon instantiations of reduction-SLese that for
better or worse have become pandemic in the behavioral and biological sciences.
Adrittedly, these methodologies have evolved in part under their own inner urges,
with resulting relevance for empirical research often more tenuosus than is
entirely defensible. But that is a powerful practical reason for seeking to tease
out, with perspicuity and depth, just what views of mathematics and nature shape
current data—analjsis methodology, how well these are aligned with prevailing
goals of substantive research in the sciences they serve, and whether consan-
guinity within the methodology/substance marriage cannot be enhanced by a clearer
delineation of each partner's compatible but imperfectly coincident positions in
a common space of Slese concerns. For example, data of the sort treated by
Multidimensional Scaling research generally have a formal organization that
cannot happily be subsumed under the classical Variables-by-Subjects or Variables-
by-Subjects-by-Occasions design formats to which almost all the multivariate-
methodology literature has remained restricted. Mhltidimensional scaling modeks
do, however, fit nicely into SLese's more general micro-molar framework in a
fashion that makes evident their essential continuity with older orthodoxies.

Secondly, applied physics, chemistry, and engineering have demonstrated
remarkable success in deriving the macro-properties of well-structured compound
objects from those of their parts. Most artifacts of modern living--automobiles,
radios, calculators, etc., not to mention numerous crafted materials of which

most of us are scarcely aware--work in the consumer-relevant ways they do mainly
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because someone knowledgeable.of certain micro-causal regularities designed a

felicitous assembly of parts locally governed by those laws. (Not all the relevant

micro-laws, or their macro-consequences under a particular assembly design, are

known in advance, however--which is why applied engineering includes a large

dollup of cut-and-try.) I am insufficiently conversant with engineering tech-
practices

nologies to claim with confidence that all or even many of*theseAcan be effectively

verbalized in SLese; but if not, then surely it will be instructive to identify

respects in which they find reduction-SLese wanting.

Thirdly, the working contents of sciences such as sociology, economics,
and macro-blology, whose primary objects of concern are evidently local groups of
some sort, abound in large fragments of reduction-SLese. For, most of these
disciplines' basic variables are explicitly conceived as composites of micro-
properties distributed within each macro-object (local group) in the_variable's
domain. So any lawful relation proposed to govern these variables realizes the
molar side (i.e. (29a), (33), or (34)) of SLese's micro-molar model. Usually
absent from these accounts, however, is the articulate micro-story envisioned by -
Def. 2. Sometimes this may be because the micro-laws at issue seem too common-
sensical to need detailing. Thus in studies of predator/prey population dynamics,
there is prima facle little mystery in how, for any living mammal s at time t,

8's wellbeing at time t+A 1s determined inter alia by g's species, ambient
temperature, quantities of nearby water and vegetation, and encounters between
Yrand t+4 with-sother animals: of - various species. . (Even then, common-
sensical as this may seem, actually writing out micro-laws of local survival is
" a task of great challenge.) But for whatever reason, the micro-events from which
group phenomena . .. abstract .  are seldom conceived in terms precise enough for
their lawfulness to be characterized in SLese. For example, in sociological study
of how Homocide Rate is affected by Handgun Incidence in a macro-domain of urban

communities, it is easy to operationalize indices of Homocide Rate in terms of
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documents avallable in police files; but what are the micro-variables over what
micro-domains whose values are supposedly diagnosed by these fecords? Presumably,
certain human interactions count as "homocides." But is Homocide then a binary
variable over the domain of all person-stage pairs such that for each <person—§h-
at—time-gi, person—gj—at—time-§k>, gh-at-gi either kills or does not kill gj-at—gk,
while Handgun Incidence abstracts from the Smallarmedness variable that sees
each g-at-1 as either possessing or not possessing a handgun? Or are there
better ways to defire the relevant micro-variables? The point here is not that
working out a micro-model of homocide should be especially difficult, but simply
that not until we have worked this out can we embed the molar dependency of
Homocide Rate on Handgun Incidence in a full-blooded SLese reduction that explains
the molar patterning.

There is, of course, no obligation for local-group studies to accompany
their molar findings with explicit miero-reductions for these. We know in
general from sampling theory how molar compositing manages to abstraet order
from the seeming chaos of micro-events; and if we are content with regularities
already identified in congenial macro-terms, wallowing in their underlying micro-
complexities may seem pointlessly masochistic. Even so, there can be little doubt
that the group properties studied by sociology, economics, etc. do indeed analy=.
tically abstract in reduction-SLese fashion from properties and relations among
individual group members. Explicating these particular reductions should be
relatiﬁely straightforward; and learning how to cope with the unanticipated
difficulties that will arise if we actually attempt to carry some of these
through should greatly enhance our capability for reductive analysis of molar
phenomena whose variables' a-derivational character is far more obscure.

Fourthly, there are areas of scientific inquiry wherein, for a given
class C, of macro-objects, much has been learned or conjectured about the local

behavior of Cy-object modules at a fine grain of parts-parsing while a consider-
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able holistic lore of G ~things aleo exists, yet significant linkage between
these two outlooks on C, has yet to be achieved. In such cases, the reduction-
SLese framework provides guidance for exploring alternatives in which aspects
of the one approach may or may not reduce to the other. Psychology's paramount
instance of such double vision is human neurophysiology vs, classical and . neo-i
cléssical (cognitive-science) -acéeunts of mentatioﬁ, 8ﬁd in Part II we shall
i“examine the Slese prospects of,bringing these tbgsﬁher;r,'il‘;;r

Fifthly, recent philosophy of mind has given increasing prbminence to
the thesis of psychological functionalism. Under the slogan that mental attributes
re "functional states," this contends roughly that mental predicates
signify roles in higher organisms' inner causal processes at the abstraction
level of "machine-table states" in computational systems. The literature on
this theme has advanced to a level of considerable technicality (see Block, 1980)
--which is as it should be, except that its sophistication is misshapenly
unbalanced. Its philosophical esoterica are legitimate enough, but have been
grounded upon conceptions of causal mechanism so primitive that these premises/
arguments/conclusions have dubious relevance to more realistic models of how
machines and organisms work. Although there is much to commend in the function-.
alist outlook, none of its proposals can be taken seriously until its explication
of "functional state" recognizes the causal/compositional complexity of macro-
systems in at least the detail here formalized by Def, 2 and equations (29a)-(35).

Functionalism's need is not merely to appreciate the SLese-articulated
structure of natural systems; even more crucial is sensitivity to the ontological
puzzles that protrude from this at almost every turn. Especially germane are
issues of moiar causality, notably, whether it is possible to tell coherent

causal stories in which abstracta and their bases figure jointly or, if not,fhdﬁ ‘

systems of causal, lawa can be stratified into mola:;iy levels-Within each’ ef

- ':_,—'/.\.——x"

which.the antibgymmq§ry of éxplahation is preserved. . Simllarly salient are the
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differences, or lack therecﬂ;“ggg¢batween an event r%;g'1 and its translocation
E¥g;27 when o' = £(o) (see Note 3 p.84a), (b) between the properties of an unparsed
molar object (G and of a tuple o de re equivalent to & (see fns. 15 & 19), and
(¢) between a molar variable ?3 over some structurally determinate domain gj
and the restriction to gj of the generic molar variable ?; defined by collation
of;fr'j with more-or-less-comparable local variables §§3'3 over assembly structures
{ ij } alternative to § y (see p. 119f.). Theff&nﬁif{g};ﬁiﬁ%é gggst.iqrﬁa‘s;'zwbiqh all
] evoke the ¢cnc;£¢ ﬁ;bblon of what supervenient causal roles we can usefully con-
celve as played by what constructed entities, are ceﬁtral to psychological function-
alism; and although reduction-Slese does mot reveal their answers, it does make
them accessible in the context of hard science doing real work., ,

Finally, reduction-Slese establishes an advanced base camp for philosophie
exploration of reduction/emergence. It is a matter of deductive logic that if
L = <Qyyeeerlp> 1s any tuple of an object (u's parts, and o is of compound-object
kind C, then gome properties and behaviors of (J are supervenient upori ¢'s miero-
structure in the fashion formalized by equations (27)-(29). But whether everything
worth saying about < can be so analyzed is another question altogether. It has
often been argued that wholes are more than mere aggregates of their parts; and
it is certainly true that listing the elementwise properties of cu's proper parts
does not suffice to entail the entirety of w's holistic character. But compound
object o 1= not just an aggregate; it also has an assembly structure in which its
part/part relations are just as essential to 2's causal kind as are its parts!'

nonrelational properties. For example, if o = ‘21""’2n> is a disassembled

]

furniture kit at time t whose successor £(g) 4§(21),...,§(gn)> at time t+A
has been reorganized into a chair, the kit-at-t and chair-at-t+A are nothing
more, as objects, than p-tuples o and f(p), respectively; and moreover each part

g(gi) of chair f(p) has essentially the same nonrelational properties as its
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predecessor o in the kit. Bgt g(%){ unlike o, 1s an actualized chair--not through
some emergentist miracle but‘siggiy‘because the spatial relations of £(g)'s parts
. glve it a stable assembly structure with useful melar properties that the kit lacks.
I am myself still far from convinced that all properties of macro-objects,
in particular all that are in some sense "structured," can be equated with abstracta
from stfuctural analyses of tuples to which the object is de re equivalent. But

provisionally, lacking any clear evidence to the contrary, that's the way to bet.




