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I have progress to announce on a classic problem of Exploratory Factor Analysis. For those
of you who favor Structural Equations Modelling for multivariate analysis, this may seem rather
like advising computer engineers of new developments in slide rule design. But someday our
methodology pendulum will swing back to a more seemly appreciation for inductivist science; and
when that occurs you will be pleased to find that the art of EFA has moved far beyond the
constricted routines for factor analysis now tendered by commercial data-analysis packages.

Background.

The EFA problem here addressed is rotation to simple structure when the best solution is
considerably more complex than the independent-clusters ideal on which so much past study of
common-factoring performance has focused. Rather than positioning this specifically in the context
of psychometric research, I will put it in abstract terms that apply to any application of linear
algebra wherein interpretable decompositions of Gramian matrices is an issue: Suppose we have a
mmerically identified symmetric real ma:;rix G of order p whose rank m is less than p. nost—7"
psychometric applications, G trix of covariances among the common parts H of p data
variables Y, estimated by finding an order-p diagonal matrix D, of uniquenesses such that Gy + D,
well-approximates the Y-variables’ covariances Gy, while m is the mmber of common factors
seemingly sufficient to explain the Y-covariances. él-low optimal this reduction of Cyy to Gy, may
be does not concern us here.) Then so long as G, has no negative eigenvalues, as we posit, it can
be decomposed as a matrix product

1) Cup, = A*CgeA’

where A and G are real, m-by-m G is well-conditioned symmetric with standardized diagonal
(unities), and p-by-m matrix A has full column rank. Interpretively, factor pattern A estimates
the coefficients by which m conjectured common factors F, whose correlations are C;, determine
scores on the H-components of variables Y; but again that doesn’t concern us here except to explain
our interest in what comes next.
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When we hope — as factor analysts often do — to interptet the numbers in (1)’s factor pattern®
as manifesting the assorted degrees to which the Y-variables are differentially influenced by m
common sources F, we must reckon with the algebraic complication that whenever G has an m-factors
decomposition of form (1) it has infinitely many others as well, namely,

(2) Cin = B*Cgg*B’ (B =AWl Gy = WeGyW' )

for any invertable m-by-m real matrix W scaled to leave unities on the diagonal of WeCgpW’'.
(Later, I will refer to the set of all Bs into which A can be transformed by some W in (2) as
Rot[A].) Choosing to replace an initial solution for A by B = A*W™! for some choice of W other
than W=1I is known for familiar geometric reasons as a "rotation" of A; and its problem for EFA
is how to find Ws yielding the most intriguing configurations of coefficients in B.

What we aim to disclose by pattern rotation is a matter of taste. But there is considerable
inductivist agreement that most interpretively provocative is for B-Cg,+B’' to fit G, - D, tightly
with low m/p ratio and a much higher proportion of zero in practice, near-zero) elements in
B than can be produced by rotations of randomly created matrices of A's order. Most classically
ideal — the "independent clusters" pattern — is for each row of B to contain just one salient
loading, that is, one too large to view as nearly zero. But that is far too extreme to be our
exclusive target of rotation; more complicated patterns can be just as interpretively significant
if not more so, and we want the ability to detect those whether they please us or not.
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To discuss this situation, let each row of a factor pattern be called an "item" (more
precisely, the "items" are whatever entities correspond to the pattern rows, in psychometric
practice usually data variables), and say that the “complexity" of item i in a factor pattern B,
however rotated, is the mumber of salient loadings (coefficients) in row i of B. (We leave open
how large a loading should be to count as salient, and disregard that in practice the boundary
between clearly salient and clearly nonsalient will be broadly fuzzy.) Then the factor
"complexity" of an item in rotated pattern B is the mumber of salient loadings in its row, and
rotation to achieve "simple structure" can be defined as attempting to minimize overall item
complexity in the rotated pattern subject to constraints that may be imposed, notably factor
orthogonality Cg = I or, more wisely, some less extreme limit on solution obliquity.

But finding simple structure in EFA is still an imperfect art. For in huge contrast to
structural modelling, which posits in advance where the pattern zeros should go, exploratory
factoring would like to search the entire rotation space Rot[A] of a received A to discover
patterns in which item complexities are so low and provocatively configured that we cannot help
but suspect that this positioning of factor axes aligns with the causal grain of these items’
common sources. And since we can’t inspect many patterns in Rot[A] individually, we need to search
out a few most worthy of interpretive consideration by algorithms that optimize functions on Rot[A]
which we take to measure overall pattern simplicity.

Distressingly, as Michael Browne addressed here last fall, rotation algorithms that can
dependably find simple structure appreciably more complex than independent clusters are still in
their infancy. Given a to-be-rotated pattern A, let us say that a pattern T in Rot[A] so
simple-structuredly appealing that we would like to study it is a "target" for rotation of A.
(Never mind that if one pattern in Rot[A] is provocative enough to qualify as a rotation target
there will be a range of others that also qualify.) When a target T in Rot[A] contains several
complexity-1 markers for each factor (that is, for each pattern colum, several items with salient
loading in that column only) and few items of higher complexity, it can pretty well be guaranteed
that most currently standard oblique rotation algorithms, especially direct Oblimin and Promax,
will retrieve a decent approximation to T from Rot[A]. But the quality of that approximation
deteriorates if increasingly many pure indicators in the target are converted to higher complexity,
especially complexity-2; and not many complexity increases are needed before the patterns these
algorithms wrest from A scarcely hint at T. Indeed, I recently found to my dismay that this has
also been true of my Hyball rotation procedures despite their exceptional proficiency at recovery
of complex simple structure. But happily, I now also find that a simple adaptive weighting
technique £ we may as well call it "Comp2 weighting" &-Dcan substantially mitigate the
complexity-2 problem in Hyball, and there is no evident reason why other rotation procedures cannot
similarly profit from it. Before describing the computational nature of Comp2 weighting, I'll
first try to convince you that this is well worth your attention.

Recovery of target patterns wherein Complexity-2 is prominent

For study of Comp2 weighting’'s effectiveness, consider the template in Table 1 for
semi-random creation of target patterns with stipulated item complexities. Each ’x' in this
template is a salient loading initially randomized in size between stipulated medium-to-large
bounds while the remaining unmarked coefficients are randomized within a small stipulated interval
around zero. Subsequent constrained-random assigrment of commmalities and factor correlations
modifies these initial pattern elements somewhat, but preserves the contrast between large-to-
medium salient and modest-to-negligible nonsalient loadings. The Table 1 template is for patterns
that realize all different ways to assign complexities 1, 2, and 3 to the loadings of 25 items on
5 factors. Table 2a gives an instance of this schema, which for easy comprehension is shown in
Table 2b rounded to one decimal with decimal points and zeros omitted. I will now show you
assorted successes and failures in rotational recovery first of target 2a, and next of the 20-item
pattern derived from 2a by deleting its complexity-1 items.

It has long been known, though still not adequately appreciated, that what a rotation
algorithm retrieves from Rot[A] may well be not the pattern that globally optimizes its
solution-quality measure but only a local optimm most accessible to the pattern in Rot[A] on which
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the algorithm is started. And its start pattern needn’t be the received A; it can just as well
be a previous rotation of A by another method, by the same method with altered parameter settings,
or by random rotation of some pattern in Rot[A] already in hand. To test the upper limit of a
rotation method’s ability to recover a target pattern T that a simulation study knows at outset,
we can give it T as input and observe the extent to which its output diverges from that. The
rotations returned when the Table 2a pattern — hereafter the specific referent of "T'y\is rotated
respectively by the Quartimin variant of direct Oblimin and Hyball’s default indigenous procedure
are shown as lst-digit schemata in Tables 3a,b and with greater detail in Table 3-alternate. The
Hyball rotation of T differs only trivially from T itself apart from yielding slightly cleaner
zeros, and Oblimin rotation too preserves T decently though clearly not as well as Hyball. And
in this particular instance, both Oblimin and default Hyball also get pretty much these same
respective target recoveries under random sampling of other start positions.

Note. Table 3-alternate is included with Tables 3a-3c here partly to exhibit the
perspicuous pattern comparisons afforded by Hyball (any two factor patterns, not
necessarily with the same number of factors or items, can be so juxtaposed if they have
some rawdata items in common), but also to show you mumerical examples of pattern
similarity measure Divergence (Div) in comparison to the more familiar but less
standardized RMS difference (RMSd) measure of agreement between pattern colums. Div and
RMSd both increase as pattern match deteriorates in approximately linear proportion to
one other; but the constant of proportionality is influenced by the shape and variability
of terms in the vectors compared. You need some understanding of Div to appreciate
Tables 5ff. below.

But as increasingly many complexity-l markers are deleted from pattern T, target recovery
diminishes with increasing severity, especially for Oblimin. Since there isn’t time to take you
through all steps in this progressive descent into rotation Hell, I will dive directly to bottom
for results from the 20-by-5 target pattern — call it "TT" for "tough target" — derived from Table
2a by deleting the five T items assigned complexity-1 by its production template. In Table 4 you
see the counterpart of Table 3 for TT, namely, easy-to-grasp roundings of TT and its rotations by
default-style Hyball (Table 4b) and direct Oblimin (Table 4c). Hyball's recovery of TT from this
ideal start is still excellent, but Oblimin’s is largely a failure except in its column 5 and
fairly decent column 4. aptitative details are given in Table 5.) It now remains to show you
how these methods perform (g) from practical start positions, and (b) when Comp2 weighting is put

into play. '
o D 'LLL»C’»—/'{J-';’»«""‘C /

First, however, I had better clarify what happens on Hyball runs. When Hyball starts
its interactive work on a new input pattern (alternatively it can reload the log of a
prior run to resume that) it conducts an open-ended sequence of rotations, pausing at end
of each to log or maybe delete the latest result and allow, among other continuation
options, a revised choice of solution style and control parameters (some of which affect
the algorithm’s to-be-optimized measure of hyperplane fit) as well as retrieval of a
prior rotation in this run’s log store (the list can be exhibited on screen with
hyperplane appraisals and divergences among them) to serve as the next start position.
And one of the continuation options is Spin search, which carries out a series of "Trys"
— each a rotation from randomized start seeking to optimize the currently selected
hyperplane-fit criterion — which are ranked in current-criterion quality, filtered to
delete Trys closely matching ones of higher quality, and saved in a temporary buffer
pending user decision on how many of the top-ranked Trys (the "Cream" of this Spin
series) to log. (Deleting one or more of the rotations logged most recently is always
a continuation option, so you can temporarily save more of a Spin search’'s Cream than you
expect to want and make a final cut after comparing these along with previously logged
patterns for hyperplane strengths and divergences.) Finally, after termination of this
rotation run, Hyball-supplement programs can print appraisals of its logged rotations on
various measures of pattern character (none shown here) along with detailed divergence
comparisons such as their edited output excerpts in Table 3-alternate and Table 5 next
to be discussed. (Square-bracketed words therein are edit additionms.)

&
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Table 5 reports on a log of rotations in Rot[TT] by various Hyball procedures from assorted
start positions. Since rotations of extraction patterns often begin in practice with Varimax or
less commonly Equamax, an orthogonalization of TT was rotated by Varimax and again by Equamax to
be records No. 2 and No. 3 in this Hyball log starting with TT (No. 1). (Note that Equamax
approximated TT substantially better than did Varimax, a superiority that has appeared consistently
in my simulation studies with complex targets though not for simple ones.) The next three
rotations in Table 5a from TT start hold no great interest beyond showing, after we average footers
in Table 3-alternate, that whereas loss of Table 2a's complexity-1 items degrades best-possible
target recovery by SCAN/P from 6.1° to 9.2° Divergence (still quite good), Oblimin’s best-possible
goes from 14.8° (decent) to 35.8° (worthless), and STEP/P too does badly. (STEP/P's severe
inferiority in No. 5 is atypical — as illustrated by the <7,8> comparison in Table 5b, seldom does
same-start STEP veer far from SCAN — and some data bearing on the disparity in this case will
surface in Part II.) Even so, rotation No. 4 by SCAN/P demonstrates that from a good start
position Hyball's default rotation style can indeed recover TT quite well.

But what of success when rotation starts from a position available in practice, notably
Varimax or better Equamax? Oblimin reaches almost exactly the same result from Equamax as it gets
from ideal start (see Table 5b) or indeed from most positions in Rot[TT] (more evidence later) —
which however has little value when, for higher-complexity targets, that recovery is so wretched.
But neither are Hyball’'s rotations from Equamax start (Nos. 7,8) any better than Oblimin’'s in this
difficult case.

However, what I have previously described as the "spin agenda"! — procedures for pamning gold
from the gravel of local optima when rotating for simple structure — is not merely practical but
has great prowess in recovering elusively complex simple structure, especially when refined by
Comp2 weighting. As already mentioned, Spin search is a series of rotations by any selected method
variant (style and misfit measure) from random start positions from which the ranked and
repetition-filtered Cream (best by criterion) are logged for further study. Table 5a exhibits the
match to TT of Cream from six Spin searches of Rot[TT]. These prove little, since Spin scarcely
ever replicates a search exactly; but they illustrate tendencies that Table 6 in Part II will make
more perspicuous. And don’'t fret that you don’t know what "Comp2 = .8" and "Comp2 = 1.8" mean —
these are variants of Complexity-2 weighting now at brink of explanation. The salient tendencies:

a) Almost all returns of Spin search by Oblimin (cf. Nos. 10-12) are virtually identical (see the
divergences among Nos. 6,9,10,12 in Table 5b and Part II's data on default Oblimin in Table
7); and the occasional deviant (cf. No. 11) matches TT just as worthlessly as the others.

b) Nos. 13-15: The best patterns in Spin's Cream under SCAN/P (Hyball's default style) without
Comp2 weighting match TT rather nicely, nearly as good as SCAN/P from TT start (No. &4); but
none of these — not even the TT start — recover all five target factors well.

c) Nos. 18-21: One Try in the top Cream of Spin this search by SCAN/P using strong Comp2 weighting
without KS-norming (Comp2 = .8), matches TT excellently on all five factors. But it is ranked
lower in criterion quality than three pronouncedly inferior matches to TT.

d) No. 22: The rank-1 return of STEP/P Spin search using strong Comp2 weighting without KS-norming,
recovered only three axes of TT decently, and no other patterns in the Cream of this Spin
series were any more accurate.

e) Nos. 23-30: The rank-1 return of Spin search by both SCAN/P and STEP/P under strong Comp?2
weighting with KS-norming (Comp2 = 1.8) is an excellent match to TT on all factors. (A BEST
BUY)

1 Rozeboom, W. W. (1992). The glory of suboptimal factor rotation: Why local
minima in analytic optimization of simple structure are more blessing than curse.
Multivariate Behavioral Research, 27, 585-599.
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In the pr cess’"df'agveloping this presentation, I discovered having had at my fingertips an
enormously erful way to ascertain Spin-search tendencies not just in Hyball rotation but for
any method of mumerical analysis that seeks to optimize a loss-function having many local minima.
Before detdiling that, however, I had better give you specifics on Comp2 weighting before my
presentation time runs out.

Complexity-2 items cause trouble for rotation to simple structure by any algorithm that
converges to its solution through an iteration of planar rotations because any item with large
loadings on both factors defining the plane in which simple structure is currently under
improvement is a powerful magnet for attracting a hyperplane. Other items that load strongly on
one but not the other pre-shift axis of this plane may suffice to anchor the hyperplanes their way;
but lacking those, items that for best simple structure should remain at complexity-2 are apt to
take control of hyperplanes over which by rights they should have no say. In principle, there is
a simple answer to this problem: If, when rotating plane <j,k> during an iteration of planar
rotations, we don’t care how a particular item i’s loadings should be apportioned between this
plane’s axes, then our rotation algorithm should disregard item i during this plane’s rotation
adjustments. And if i’'s loadings are large on both pre-shifted axes of plane <j,k> but tiny on
all the other factors, then we may well have no objection to its remaining at complexity-2 in this
plane after axis repositioning — which recommends assigning a weight to i that temporarily shrinks
its loadings during <j,i> rotation to an extent proportionate to how strongly we want i’s vote
on axis positioning in this plane to be discounted. But care is needed in this lest markers for
the axes we want in this plane also get emasculated.

Here is the weighting recipe with which I have tested this idea, with low startup expectations
giving way to delight at how well it seemed to work on patterns having the full Table 1 layout:

Comp2 theory: For each item i, let 52 be the sum of i’'s squared loadings over all factors in the
current pattern A while £? ; is their sum only on factors j and k. Then Py =y E3, 3/%7 measures
the prominence of factor plane jk in i, while Ry =gr Min(l Al ,1 Ayl ) /Max(l A1, Aj;l) reflects the
degree to which these two factors are equally prominent in item i. So Comp2(i) =4¢¢ P;'R; equals
1.0 when i lies entirely in plane jk with the same weight on both factors while decreasing to zero
as either P or R decreases. Finally, with parameter Q set in the unit interval, item weight
W, =g¢ 1 - Q*Comp2(i) diminishes i’s effect on the rotation in plane jk with intensity of diminution
damped by Q. Full rotation influence (W; =1) of this weight occurs when one of i’'s loadings in
this plane jk is zero; from there, its influence decreases linearly with increasing Comp2(i) to
a minimm of W; = Q when Comp2(i) =1. [Note: In Table 5, "Comp2" gives just the Q-level thereof.]

However, my initial elation over this apparent breakthrough on rotation to complex simple structure
was rudely deflated when I tested its recovery of tough target TT. As noted above as tendency (c),
although Spin search under Comp2 weights did indeed find near-perfect matches to TT, they were
recovered unreliably and seldom in top Cream. But then I noticed that the production parameters I had
chosen to make T more difficult than my previous tests had put large variation into the item
comumalities. For reasons unimportant here, I surmised that such inequalities might work to drag down
the benefit of Comp2 weighting. And if so, that should be rectified by what I will call "KS-norming"
(since it was popularizized by Kaiser but first proposed, Bob-Pruzek-informs me, by Saunders), namely,
rescaling all the items to have unit variance (amy other positive constant would serve as well) in
common-factor space. So KS-norming is now an additional option when Hyball does Comp2 weighting,
currently activated (efficienly even if ungainly) by adding 1 to the chosen value of parameter Q. We
shouldn’t expect that KS-norming will always enhance Comp2 prowess when commmalities vary (that should
depend on which items get juiced); but as tendercy (e) points out above, it is certainly a wirmer in
this particular application. J A (;‘:_;U‘W_‘,_{/

In PART II, I will confirm tendencies (a)-(e) using a powerful way to exploit Spin search —
megaSpin — whose full potential I had previously underappreciated. More broadly, I will urge that
megaSpin should be a valuable addition to the toolbox of multivariate analysts who, when solving for
model parameters by minimizing a function over parameter space that measures the quality of model
fit,must deal with issues of local optima. [End of PART I}



TABLE 1. A template for generating common-factor patterns of 25 items on 5 factors
realizing all item complexities at levels 1, 2, and 3. Locations of salient loadings
are marked "x" and nonsalients by "."

Complexity-1 Complexity-2 Complexity-3
1. x . . . . 6: x x . . . 16: x x X
2: X . . . 7: x X . . 17: x x . x .
3: X . 8: X X 18: X X . . X
4: X 9: X . X 19 X X X
5: X 10: X X 20: X X . X
11: X X 21: X X X
12: X X 22: X X X
13: X X 23: X X X
14: X X 24 X X X
15 X X 25 X X X
TABLE 2.
Table 2a Table 2b
A target pattern with Table-1l structure, Loadings over .10 in pattern 2a
item communalities in parentheses rounded to one decimal
1. (.72) .87 .04 -.05 .02 -.01 1:[1] 9 . . . .
2. (.46) -.10 .63 .06 .0 -.1l4 2:[2] . 6 . . -1
3. (.38) .17 .09 .45 -.03 -.14 3:[3] 2 . 4 . -1
4, (.33) -.11 .11 .08 .54 -.06 4:[4] -1 1 . 5 .
5. (.74) .02 -.06 -.01 -.04 .85 5:[5] .. . .9
6. (.72) .51 .62 .09 -.05 .08 6:[6] 5 6 .
7. (.29) .14 .0 .46 .02 .02 7:[7] 1 5
8. (.35) .42 .01 -.04 .41 -.02 8:[8] 4 4
9. (.54) .49 .05 -.06 .01 .55 9:(9] 5 . . 6
10. (.58) -.04 .38 .60 -.03 .02 10:[10]) - . 4 6
11. (.62) -.11 .36 .11 .71 -.04 11:[11] -1 41 7 .
12. (.36) .04 .31 .07 .05 .54 12:[12] .3 . . 5
13. (.67) .07 .06 .57 .31 -.05 13:[13] . . 6 3 .
14, (.68) .04 -.07 .43 .09 .83 14:[14] . . 4 . 8
15. (.70) -.04 -.02 -.03 .62 .56 15:[15] . . . 6 6
16. (.61) .41 .15 .47 -.04 -.02 16:[16] 4 2 5
17. (.75) .58 .48 .07 .37 .03 17:[17] 6 5 4
18. (.47) .27 .45 -.08 -.02 .47 18:[18] 3 4 . 5
19. (.64) .46 -.03 .38 .18 -.04 19:(19] 5 4 2 .
20. (.27) .36 .0 .16 -.01 .31 20:[20] 4 2 3
21. (.50) .30 .05 .01 .41 .47 21:[21] 3 . . 4 5
22. (.46) -.06 .16 .29 .49 -.02 22:([22] . 2 3 5 .
23. (.65) .02 .25 .45 -.01 .77 23:[23] . 3 4 8
24, (.66) -.01 .52 -.01 .58 .46 24:(24) . 5 . 6 5
25. (.30) .04 .03 .34 .29 .17 25:[25] . . 3 3 2

with factor correlations
Factor 1. 1.00

Factor 2 .0 1.00

Factor 3. 45 .26 1.00

Factor 4. .10 -.21 .47 1.00
Factor 5 .0 -.06 -.36 .0 1.00



TABLE 3.
Table 3a Table 3b Table 3¢
l-decimal schema of l-decimal schema of the l-decimal schema of the
target pattern 2b target’s Hyball rotation | target’s Oblimin rotation
1:[1] 9 . . . . 1:[1] 9 . . . . 1:(1] 9 . . -1 .
2:(2] . 6 . . -1 2:[2] . 6 . . -1 2:[2) -2 6 1 -2
3:[3] 2 . 4 . -1 3:[3] 1 . 5 .-1 3:[3] 2 . 5 .
4:(4] -11 . 5 . 4:[4] . . . 5 . 4:[4] . . 1 5-1
5:[5] .. . .9 5:[5] .. .9 5:[5] . . -3 8
6:[6] 5 6 . . 6:(6] 5 6 . 6:(6] 4 6 1
7:17) 1 5 . 7:(7] . . 5 7:(7] 2 4
8:[8] 4 4 8:(8] 5 . . 4 8:(8] 5-2 . 3
9:[9] 5 . . . 6 9:[9] 5 . . . 5 9:(9] 4 . -2 5
10:[10] .4 6 . . 10:([10] . 4 6 . 10:[10] . 4 6
11:(11]) -1 &4 1 7 . 11:[11] 3 7 . 11:[11] 1 2 7 -1
12:[12] .3 . . 5 12:[12] .3 . . 6 12:[12] .3 . . 5
13:[13] . . 6 3 . 13:[13] . . 6 3 13:[13] 2 . 6 3 .
14:[14] . . 4 . 8 14:[14] . .. 5 .9 14:[14] .-1 2 . 8
15:[15] . . . 6 6 15:[15] . . . 6 6 15:[15] . -2 -2 6 4
16:[16] 4 2 5 . . 16:[16] 4 1 5 16:(16] 4 1 5 .
17:[17] 6 5 4 17:[(17] 6 4 . 4 17:[17] 6 3 1 3
18:[18] 3 4 5 18:[18] 3 5 -1 5 18:[18] 2 4 -2 . 4
19:(19] 5 4 2 . 19:[19] 4 -1 4 1 . 19:[19] 5-1 4 1 .
20:{20]) 4 2 3 20:{20] 3 2 3 20:[20] 3 3
21:[21] 3 . . 4 5 21:[21] 3 . 4 5 21:[21) 3 -1 . 3 4
22:[22] 2 3 5 . 22:[22] . 3 5 . 22:[22] . 3 5 .
23:[23) . 3 4 ., 8 23:[23] 3 5 . 8 23:[23]) 2 2 . 7
24:[24] .5 . 6 5 24:[24] . 5 . 6 5 24:[24]) .3 . 6 3
25:[25] . . 3 3 2 25:[25] . . 4 3 2 25:[25] . . 3 3 2
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Table 3-alternate

[On left, juxtaposed colums of the target pattern (f#2) and its Hyball rotation (#1).]
[On right, juxtaposed columns of the target pattern (#2) and its Oblimin rotation (#1).]

Each vertical cell of the table headed 'M N’ comprises colum M of #1 followed by its
Pattern loadings are given to 2 decimals with point omitted;
values larger than .99 are rounded down; and paired values both smaller than parameter CUT
[here .10] are blanked. At the table’s foot, Div is the colum-pair’s congruence divergence

best-matching colum N of #2.

vhile RMSd is the root-mean-square difference (x100) of their corresponding elements.

paired factors are negatively congruent as received, #1 is reflected when computing Div and
BRMSd. (Reminder. The "divergence" of two conforming real vectors is the angle in degrees whose

cosine is their unsigned congruence coefficient.)

NOTE: The variables’ sourcefile indices are substituted for their unavailable names.

Hyball rotation (#1) of Target (#2)

Oblimin rotation (#1) of Target (j2)

el 11 2 2] 33] 44 55| g 11 22 33 44 55
[ 1| 87 87| . . .. [1)ss87|. .. . |12 2[. .
[21l . . |ese3|. . -13-14 [ 2][-17-10| 63 63| 11 6 -15-14
[3]]| 12217] . . |s04s5f. . |-13-14 [3)] 2017 . . |a845| . .| -8-14
[4]] -6-11] 4 11| . . |s4s4]. . [ 4] -4-11| -8 11| 12 8| 54 54]-11 -6
L S S o 87 85 (51 . . f._. [-26 -1 79 85
1 61| 55 51| 62 62| ~—"] . [ 6] 41 51| 61 62| 1279

[ 711 814 52 46| . . [7)] 1818] . . |asas| . .

[ 8]| 46 42 40 41| . . [ 8] 47 42|15 1 . . |31a41f. .
[ 9] 4849 . .| .~ 55 55 [ 9] &349] . . |-16 -4 51 55
(0] . .| 3538 6460 . . o) . . |3738/s760] . .|. .
[11][ -2-11| 28 36| 6 11| 72 71| . . (1) -s-11| 10 36| 16 11| 73 71|-12 -4
] I I I T A ) . .| 283|. .|. . |48
[13] 62 57| 29 31| . . (3] 15 7| . .| 5857|331 . .
[14] . .| s243]. . |8783 [14] 413 -7| 1843| . . | 8083
sy . . @@ 61 62| 59 56 (51l . . |-25 €&f-16 <3| 57 62| 44 56
[16]] 35 41 .. [16]] 42 41| 13 15| 48 47| . .

[17]|| 65 58| 42 48| . . | 38 37| . . [17]] 56 s8] 32 48| 14 7| 3137 . .
(18] 31 27| 49 45|-10 -8| . . | 47 47 (18]] 16 27| 44 45|-18 -8| . . | 41 47
[19]]l 41 46[-10 -3| 43 38{ 16 18| . . [29]] 52 46]-13 -3| 41 38| 13 18] . .
[20)f 3236| . .|2016] . . |323 [20)| 36| . .| 916/ . . |3131
[21] 3230@. .| 40 41| 49 47 [21]| 31 30|-12 5| . . | 33 41| 39 47
221 . . 6| 29 29| 49 49| . . [22] -2 16| 31 29| s1 49| . .
[23] 28 25| 51 45| . . | 8177 (23] 2225 2245) . .| 7477
[24] 50 52| . . | 60 58| 49 46 [24] 30 52 . | 59 58| 33 46
[25] 37 34| 28 29| 20 17 [25] 29 34| 29 29| 16 17
piv | 9.0°| 9.7°| s5.5°| 2.8°| 2.6°| Div | 10.3°| 25.3°| 21.3°| 10.4°| 6.8°
RMsd | 5.0| 48| 43| 1.5] 2.3 RMSd | 5.7 |12.1]10.7 | 5.6 | 5.6

Qualitative interpretation of Div:

Over 35°; forget it

Under 5°; near-perfect match
Circa 10°; excellent match

Circa 20°; decent but not great match
Circa 30°; poor match




-9 -

z D Fa— A/ A
! Z/M/ Ay i’f%:. l/dK{ " drand WM&ME.’L{,/.{:(- 7 ,."-/ DY e ;%h %’M\ WL i

TABLE 4. .t
Table 4a Table 4b Table 4c
1-decimal schema of 1-decimal schema of TT's | 1-decimal schema of TT's
target pattern TT SCAN/P Hyball rotation Oblimin rotation

1:(6] 5 6 1:[6] 5 6 1:[6] 8

2:(7] X .5 2:[7] . 5 . 2:(7] 5

3:(8] 4 4 3:[8] 5 4 3:(8] 3 V5 . .
4:[9] 5 . 6 4:19] 5 . 6 4:19] 33 ..-2 5
5:[10] 4 6 . 5:[10] 4 6 5:[10] -5 2 3
6:[11] > 4 7 . 6:[11] . 7 . 6:(11) . . . 7 .
7:(12) . 3 . . 5 7:[12] 4 ., . 5 7:[12) ¥ 3 -2 . 4
8:[13) 6 3 . 8:[13] 6 3 . 8:[13] 6 3 .
9:[14] 4 . 8 9:[14] 5 .9 9:(14) . . . . 8
10:[15] 6 6 10:[15] 6 6 10:[15] 3 -2 -. 4 5
11:[16] 4 . 5 . 11:[16] 4 . 5 . 11:[16] 3 6 .
12:[17) 6 5 4 12:[17] 6 4 4 12:(17) 5 4 2 .
13:(18) 3 4 . 5 13:]18) 2 5 . 4 13:[18] 5 -2 3
14:[(19] S . & . 14:(19] 5 . 4 . 14:[19] <. 8 .
15:(20] 4 3 15:[20] 3 3 15:[20] 3 3
16:[21] 3 . 45 16:[21] 3 . 4 5 16:[21] 3-. 2 . &4
17:[22] .35 . 17:[22] . 35 . 17:[22] 3 5 .
18: (23] 34 . 8 18:[23] 35 . 8 18:[23] . . 7
19:{24] 5 . 65 19:[24] 4 . 6 5 19:[24] 3 .6 3
20:[25] 3 3 20:[25] 4 3 2 20:[25] 32 2
TABLE 5a

PATTERN DIVERGENCES

In each row M of the congruence report for a pattern pair <L,M>, entry J is the angle in
degrees of congruence divergence between the Jth colum of pattern L and its counterpart in the
best-matching permutation of pattern M.

[Notes: SCAN/P, STEP/P, SCAN/S, and STEP/S are different Hyball algorithms for optimizing its
selected hyperplane-misfit measure by iterating planar rotations. (SCAN differs from STEP in
within-plane procedure; P vs. S are alternative ways to package planar shifts.) Each
bar-cormnected block of consecutive solutions reported below comprises the leading Trys in a Spin
series ordered by hyperplane quality as rated by the currently-selected measure ("criterion")
of this. More specifically, each Spin series initially ranked the 99 best-by-criterion of 500
Trys, followed by final choice of how many leaders to log after pruning ocut ones nearly
identical to better ones. For brevity, all but one of the present Spin series have been cropped
after the first or second good recovery of TT. No. 22 is the only one logged from its series
because no lower-ranked Try therein matched TT appreciably better.

[ Good or at least decent matches to TT are marked >> or > ]

Congruence match (degrees divergence) of pattern No. 1 [target TT] to pattern

2: (Av=34.1) 34.4 45.2 48.928.2 13.9
3: (Av=24.6) 36.8 29.6 28.1 22.4 6.1

[Best possible without Comp2 weights: ]

Varimax rotation of orth’'d TT
Equamax rotation of orth’d TT

> 4: (Av= 9.2) 8.320.0 5.8 7.1 5.0 SCAN/P rotation of TT (No. 1)
5: (Av = 30.7) 46.4 24.2 36.6 41.9 4.5 STEP/P rotation of TT (No. 1)
6: (Av=35.8) 70.2 31.8 41.8 24.3 10.8 OBIMIN rotation of TT (No. 1)
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[Recovery from standard start without Comp2 weights:]

7: (Av = 35.6) 46.8 45.9 39.6 41.2 4.7
8: (Av = 35.3) 47.0 47.5 36.8 40.7 4.6
9: (Av = 33.6) 62.7 32.2 37.4 24.9 10.7

[Recovery by Spin search without Comp2 weighting:]

SCAN/P rotation of Equamax (No. 3)
STEP/P rotation of Equamax (No. 3)
OBIMIN rotation of Equamax (No. 3)

OBIMIN Spin

[Same Spin series,
[ n 11 [ ]

2rd best]
3ra " ]

SCAN/P Spin, Comp2 = nil

[Same Spin series,

[ " u "
[ " n "

[I' n w

but no KS-norming: ]

2rd best]
3rd " ]
4th " )
5th " ]

SCAN/P Spin, Comp2 = .8

[Same Spin series,

[ " 1] ”

[ " " L1}

STEP/P Spin, Comp2

2rd best]
3rd " ]
4th " ]

.8

SCAN/P Spin, Comp2 = 1.8

[Same Spin series,
[ 11} L] n

[ll

2rd best]
3ra " ]
4th " ]

STEP/P Spin, Comp2 = 1.8

[Same Spin series,
[ " n” [ {

[ (1] " "

10; (Av = 34.6) 65.3 31.7 39.4 26.0 10.4
11: (Av = 36.4) 25.3 56.1 62.4 29.6 8.7
12: (Av = 33.2) 61.4 32.1 37.5 24.2 10.9
>113: (Av = 10.0) 16.3 15.1 4.9 8.2 5.7
14: (Av=13.8) 9.7 40.3 5.6 8.5 5.1
>[15: (Av = 11.1) 14.921.0 4.6 8.8 6.0
16: (Av =22.1) 8.147.1 8.841.8 4.8
17: (Av = 23.6) 7.3 39.9 37.1 27.9 5.9
[Recovery by Spin search with Comp2 weighting
18: (Av = 36.3) 61.0 43.7 38.4 35,5 2.9
19: (Av = 38.1) 64.6 43.9 39.1 39.1 4.1
20: (Av = 21.5) &44.2 447 6.7 8.7 3.2
>|21: (av= 6.8) 7.4 9.4 5.8 7.1 4.1
|22: (av = 23.7) 47.549.2 7.310.0 4.7
[Recovery by Spin search with Comp2 weighting and KS-norming 1]
>>|23: (Av= 6.6) 9.4 8.0 6.2 4.8 4.4
24: (Av = 22.4) 45,6 48.8 7.2 6.4 4.1
25: (Av = 32.0) 50.149.6 6.9 5.6 47.6
26: (Av=14.8) 9.547.2 6.7 5.1 5.6
>>[27: (av= 6.9) 10.1 8.2 5.5 5.6 5.0
28: (Av =29.4) 10.7 77.6 7.0 4.8 46.7
29: (Av=22.9) 47.849.2 7.2 6.1 4.3
30; (av=13.0) 8.7 9.134.4 8.5 4.5
TABLE S5b.

2rd best]
3rd

n ]
" ]

Congruence Summary [an illustrative excerpt of information available]:
For each pair of these rotations, average divergence of their matched colums

10:
11:
12:

13:
14:
15:

oW WN =

O 0~

.0

.1 .0

24.6 25.1 .0
9.2 34.4 25.7
30.7 40.2 26.8
35.8 38.2 25.6
35.6 34.1 26.2
35.3 33.5 26.4
33.6 40.1 22.6
34.6 39.0 23.7
36.4 34.7 37.9
33.2 40.0 22.5
10.0 34.0 25.9
13.8 39.0 36.7
11.1 33.5 24.5
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3.4 35.8 23.3  28.
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3.2 24.0 31.3  30.
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