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Abstract
Attentional subsetting theory (Caplan, 2023) posits that only a small subset
of item features are attended in episodic recognition tasks. This explained
a pivotal finding for the development of recognition models: the near-null
list-strength effect, where encoding strength influences recognition similarly
in mixed-strength lists and pure-strength lists. Most research uses spaced
repetition to manipulate encoding strength. However, the origin of the null
list-strength effect was a more unusual manipulation of stimulus duration
(1 s versus 2 s)— and reported an inverted list-strength effect. We present
an attentional subsetting theory of duration that produces inversions— and
explains why they are uncommon: Earlier-attended features dwell within a
lower-dimensional feature subspace, which participants can sometimes disre-
gard during test trials of pure-strong lists, giving strong-pure items an extra
advantage. The model previously only solved for d′. We extend it to generate
realistic hit and false-alarm rates by deriving the criterion from attention to
each probe. Supporting the theory, two pre-registered experimental manipu-
lations of stimulus-duration reproduced robust inverted list-strength effects,
suggesting this type of finding is unlikely due to sampling error. This ac-
count of stimulus-duration, explaining inverted, as well as upright and null,
list-strength effects, could be incorporated in most models with vector rep-
resentations.

Keywords: Stimulus duration, presentation rate, selective attention, list-
strength effect, recognition memory, mirror effect, matched filter model

Introduction

At the core of research on episodic memory is the nature of our working repre-
sentations of items (such as words). Episodic old/new recognition distills this question.
Having studied a list of items, discriminating which probe items were on the list (targets)
versus those that were not (lures) is in large part interrogating the similarity of working
representations to one another. High similarity between list items and lures makes the task
more challenging, whereas distinctiveness makes the task easier. Because similarity drives
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memory behaviour in more complex tasks, a firm understanding of episodic recognition has
implications far beyond recognition behaviour, itself.

The development of models of old/new episodic recognition has been substantially
driven by two highly replicated findings, the null list-strength effect and the strength-
based mirror effect. Both regard what happens to recognition performance when encoding
strength is manipulated. Most of the research in this tradition have manipulated strength
through spaced repetitions (and sometimes levels of processing; e.g., Ensor et al., 2021;
Kiliç et al., 2017; Ratcliff et al., 1990). Data from spaced repetition studies also drove
attentional subsetting theory (Caplan, 2023), the theory we expand upon here. However,
as we elaborate below, the impetus for that line of research started with a manipulation of
stimulus duration— namely, “weak” items: 1 s versus “strong” items: 2 s of study time per
word— which produced a list-strength effect that differed from the standard findings. We
saw this as potentially offering an interesting boundary condition on theory, and sought to
develop a theory of stimulus duration that can explain why duration might produce such
different results. Our main focus in this manuscript is therefore to directly apply attentional
subsetting theory to manipulations of stimulus duration during the study phase.

List-strength effects. “Strength” experiments start with an experimental manip-
ulation that is thought to modulate encoding strength, resulting in better recognition of a
strong-encoded item than a weak-encoded item. The null list-strength effect refers to the
finding that recognition of a strong item is better than recognition of a weak item— but
that strength benefit is about the same size when items are mixed in the same list versus
segregated to different lists, namely, pure lists of only strong items or only weak items.
This was surprising because one would expect the strong items to have an advantage in
mixed lists, because they should experience less competition from the half of the items that
were weak; conversely, weak items should suffer in mixed, compared to pure lists, due to
additional competition from the strong items that are present on mixed lists.

The finding was first noted by Ratcliff et al. (1990), who quantified it with their
ratio-of-ratios (RoR) measure,

RoR = d′(D mixed)/d′(S mixed)
d′(D pure)/d′(S pure) , (1)

where we use “D” to denote the strong condition (e.g., long stimulus duration) and “S”
to denote the weak condition (e.g., short stimulus duration) with reference to deep and
shallow levels of processing (Craik & Lockhart, 1972). This is meant to emphasize our
contention, which shall become clear shortly, that weaker strength conditions often result
primarily in processing (and encoding) of shallow features whereas stronger conditions result
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in processing and encoding of additional deeper features. The typical measure of memory,
d′, is the difference in hit rate minus false-alarm rate after z-transforming each. A person
with no memory would make hits and false-alarms at the same rate, so d′ = 0, whereas
person who can discriminate targets from lures would make hits at a greater rather than
false alarms, making d′ positive. Thus, a list-strength effect would produce RoR> 1.

The specific way in which RoR> 1 is predicted is model-dependent, but one of the
easiest ways to understand this is to consider the assumption that recognition is inversely
proportional to the amount of competition from other list-items. Consider a fixed list
length L, and pure lists of D items or S items, with a strength effect such that d′(D pure) >
d′(S pure). Each D item is subject to strength-based competition from (L − 1) D items,
whereas each S item is subject to competition from (L−1) S items. If competition is indeed
dependent on strength, then for pure lists, each D probe is subject to more competition
than each S probe. In a mixed list, each D item is subject to competition from L/2 S
items and (L/2 − 1) D items and each S item is subject to copmetition from L/2 D items
and (L/2 − 1) S items. The total strength-based competition is thus greater in pure D
lists than in mixed lists, because (L − 1)D > (L/2)S + (L/2 − 1)D. The opposite holds
for S items: (L − 1)S < (L/2)D + (L/2 − 1)S. As long as false alarms do not neutralize
these effects, d′(D pure) < d′(D mixed) but d′(S pure) < d′(S mixed). Thus, Ratcliff and
colleagues found it curious that their experiments produced RoR values close to 1. These
findings presented challenges to existing models, both local-trace models, where a separate
image (usually a vector) is stored for each element of a list (e.g., a word or a pair) and
global-matching memory models, where memories are summated within a single memory
structure. This inspired the development new models including a particular class of local-
trace models that incorporated differentiation (Shiffrin & Steyvers, 1997; Shiffrin et al.,
1990) and other models assuming strict orthogonality of item representations, elaborated
below.

Inverted list-strength effects. Ratcliff et al. (1990) noted that their first exper-
iment (1 s versus 2 s duration) in fact produced a significant inverted1 list-strength effect,
with RoR<1. Ratcliff and colleagues acknowledged this, but they were most struck by the
absence of an “upright” list-strength effect. The inversion could be due an underlying null
list-strength effect, with sampling error accounting for the apparent inversion. This was
also understandable given that their second experiment, using longer durations, produced
a RoR slightly above 1, but still smaller than one intuitively would have expected. Ratcliff
et al. (1994) in fact found another statistically significant inversion (RoR=0.7) in a manip-
ulation of duration (although very short durations: 50 ms versus 200 ms) but this was one
of nine RoRs across the experiments they reported in that paper (see their Table 7). These
RoRs could indeed have reflected measurement variability around an underlying RoR=1.
Also worth mentioning, Sahakyan (2019) found inverted (but non-significant) list-strength
effects with repeated presentations and 1.25 s/item, although the method was unique in

1Note that Ratcliff, Shiffrin and others have used the terms “positive” and “negative” describing list-
strength effects corresponding to RoR > 1 and RoR < 1, respectively. This terminology would directly
describe log(RoR). But because some people use “negative” to describe non-significant statistical outcomes,
we prefer the terms “upright” and “inverted,” respectively. The latter terminology is theoretically loaded,
but by design. It reflects the perspective Ratcliff et al. (1990) had going into their list-strength studies,
where RoR > 1 was expected.
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that it compared massed (“weak”) and spaced (“strong”) repetition. Given the occasional
inverted list-strength effect produced by attentional subsetting theory (Caplan, 2023), we
wondered if their results were not simply due to random noise but a legitimate inverted
list-strength effect. In that case, a formal account of inverted list-strength effects at short
durations might also tell us why the inverted list-strength effect might go away when all
durations are longer.

Strength-based mirror effects. The strength-based mirror effect refers to the
often replicated finding that while hits (calling a target item old) increase in pure-strong
versus pure-weak lists, this is accompanied by a comparable decrease in false alarms (calling
a lure item old), of similar magnitude (Kim & Glanzer, 1993; Stretch & Wixted, 1998). A
mirror effect did not emerge from older models, and thus demanded additional mechanisms,
such as differentiation or a variable strength threshold (response criterion), which we de-
scribe below. Attentional subsetting theory dealt only with d′ (Caplan, 2023). Because of
the importance of the strength-based mirror effect to theory, we develop the theory further
to estimate hit rate and false-alarm rate. Attentional subsetting is compatible with mod-
els that incorporate either existing approach (differentiation or criterion adjusted based on
knowledge of the statistics of encoding strengths) to produce mirror effects. But in extend-
ing the theory, we found a third approach afforded by the subsetting concept. Although we
present proof of principle and do not support our approach over the other two, we suggest
this approach be considered as a possible way of side-stepping the ongoing debate about
the cause of strength-based mirror effects.

Attentional subsetting theory. Addressing only d′, Caplan (2023) proposed a
novel continuum account, capable of explaining near-null as well as positive and inverted
list-strength effects. The key assumptions were (Figure 1):

1) Subsetting: a) Only a small subset of the features of a stimulus are attended during
the study phase— and thus, encoded. b) Just like during the study phase of an
experiment, at test, only a small subset of the features of the probe stimulus are
attended— and thus, available to be compared to memory.

2) Item-specificity of subsetting: Due to prior knowledge, each item has its own idiosyn-
cratic subset of features that tend to be attended (although the feature-subset may
be modulated by factors like task set and proximal stimuli).

3) Reiteration: When a stimulus is encountered a second time, it is highly likely that the
same or similar subset of features will be attended at both times (assuming task set
and contextual factors have not changed too much). Consequently, for probe items,
often the same subset of features are attended at test (and compared to memory).

For example, when viewing the word CHEESE, a participant might think of a yellow wedge
of Swiss cheese with holes in it, about the size of one’s hand— a handful of features (as-
sumption 1) that are item-specific (assumption 2). When encountering the word CHEESE
a second time, such as a recognition probe, it is likely that the participant will think again
of the same features: yellow, wedge-shaped, containing holes and hand-sized (assumption
3). Some support for assumptions 2 and 3, that features are relatively (albeit not perfectly)
stable across encounters comes from experiments that asked participants to overtly gener-
ate features of stimuli. Wu and Barsalou (2009) found reliable item-specific influences of
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task-set on generated features and Medin and Shoben (1988) found reliable item-specific
effects of task-context information on judgements of prototypicality and similarity. If these
effects are reliable across participants, it is plausible that they would also be fairly stable
across trials within an experimental session.

Among other things, subsetting can be seen as a way to deal with the paradox
of similarity: typical experimental stimuli are really almost entirely composed of common
features (for words: the font, size, colour of the text, etc.) so clearly participants are
successful in disregarding most of these. If one turns this around and assumes that only a
small number (a handful) of features are attended, and those are particular to each item, one
can obtain representations with far fewer common features. When the subset is sparse (a
small number of attended features within a high-dimensional feature-space), there is almost
no confusion due to common features across items. This enabled even the very simple
matched filter model (Anderson, 1970), which is just a sum of item vectors evaluated with
the dot product as a measure of the strength of match to memory, to produce a near-null
list-strength effect (Caplan, 2023). Given the simplicity of the matched filter model, this
also suggested that attentional subsetting could have similar effects in many, if not all,
models that assume a vector representation of items.

As a continuum account, the theory could also explain why other experimental
manipulations do not produce a null list-strength effect. For example, the production effect
(reading aloud or typing produces a memory advantage over reading silently) exhibits a
list-strength effect, a bigger advantage for produced over non-produced words in mixed
lists than in pure lists (Bodner et al., 2016; MacLeod et al., 2010). Attentional subsetting
theory provides a simple account of production effects (Caplan, 2023), as elaborated by
Caplan and Guitard (2024). Production strengthens items through additional processing of
phonological features, which are presumed not to be sparsely subsetted, so those features
produce substantial overlapping features across list items, producing sizeable list-strength
effects. As we describe shortly, the theory also produced inverted list-strength effects,
suggesting they should be expected under certain conditions.

Objectives

Attentional subsetting theory thus far provides an alternative theoretical account of
list-strength effects as quantified by d′, including predicting legitimate (not due to sampling
error) inversions of the list-strength effect. Here we test if such inversions of the list-
strength effect can be confirmed, given their scarceness in published research. We present
two experiments with this as their primary goal.

But first, it is important to go beyond d′. Caplan (2023) only derived the model to
solve for d′, because it can be derived based on the forms of the expected distribution of
matching strengths for old items and the distribution for new items. One wonders whether
the model can even produce realistic hit and false-alarm rates. The next question is whether
the model could produce a strength-based mirror effect, given that the mirror effect has been
a contentious area of debate between groups of modellers (differentiation accounts versus
variable criterion), as we elaborate below. The idea of subsetting could be incorporated
in any model with a vector representation of items. For this reason, the theory could
piggyback on a model like REM and produce mirror effects based on differentiation, or it
could piggyback on models that incorporate processes for variable criterion and produce
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mirror effects for that reason. But attentional subsetting makes possible a third account:
We add to attentional subsetting theory a mathematically simple way in which the model
can derive a criterion that is reasonably close to optimal, based on immediate processing
of the probe item, itself, during the test trial— in other words, setting the criterion based
on task-relevant attentional processing of the current probe item. Different than current
variable-criterion accounts, this does not require the participant to have any knowledge of
the statistical properties of encoded items.

In the remainder of the introduction, we describe attentional subsetting theory as
applied to stimulus duration, specifically. We then review list-strength effect findings and
theories, delineating how our own theory differs. We describe theories of the strength-
based mirror effect and describe how our new extension of attentional subsetting theory
can produce a mirror effect but with a new mechanism. We then present a replication
attempt of Experiment 1 of Ratcliff et al. (1990), which in fact produced both an inverted
list-strength effect, where weak items were studied for 1000 ms and strong items, for 2000 ms.
Because that procedure produced very small effects of duration (as in the original study), we
followed this with a slight modification of the experiment, where weak items were presented
for 500 ms. Our hope was to produce a bigger difference in performance for the strong and
weak condition and reduce the number of participants who nominally exhibited the reverse
effect, which is problematic for interpreting the results. After reporting some additional
exploratory findings that speak to the theory, we conclude with a discussion of implications
for experimental manipulations of strength, and for models of recognition memory.

A theory of stimulus-duration

Attentional subsetting theory can be adapted specifically to model the special case
of stimulus duration with the following assumptions, illustrated in Figure 1:

1. Feature types. We distinguish two classes of stimulus features (see Craik and Tulving,
1975 for a related view about the importance of such distinctions). First, shallow
features, such as the phonology or orthography of a word, are considered to be rela-
tively small in number, so these features will repeat a lot across stimuli and introduce
considerable similarity-based confusion. Second, deeper features, such as those related
to the meaning of a word (semantic features) or related to imagery, are considered to
dwell within a very large feature space.2 The attended subset of deeper features will
tend to be sparse and introduce very little similarity-based confusion across items.

2. Short duration. For such “weak” items, shallow features are attended. These features
are drawn from a low-dimensional subspace, which cannot be sparsely subsetted.

3. Long duration. For such “strong” items, the shallow features are also processed, but as
study time continues to unfold, additional deeper features will be processed. Because
deeper features are drawn from a high-dimensional subspace, they are sparsely subset-
ted. Thus, strong and weak items include shallow features that introduce similarity-
based confusion but strong items also have features that largely avoid such confusion.

2These distinctions, such as perceptual versus semantic, are only meant to make the point; the dimen-
sionality of the feature space is more important to the argument, as we elaborate in the General Discussion.
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4. Disregarding. Finally, in some cases participants may be able to disregard the shallow
features during the test phase. Specifically, when tested on a pure-strong list, shallow
features have little diagnosticity compared to the deeper features, if these are plentiful
in the strong condition. Thus, metacognitive knowledge of the list composition may
enable participants to disregard shallow features in this condition (just as participants
evidently can disregard other non-diagnostic features such as the fact that all stimuli
are words, printed in the same font, etc., as noted earlier). Importantly, this would
not be feasible in mixed lists where one does not know the strength-status of a probe.

The idea of distinguishing perceptual from semantic features has many precedents (e.g.,
Burgess & Hitch, 1999; Seidenberg & McClelland, 1989), and Malmberg and Nelson (2003)
and Criss and Malmberg (2008) proposed further that perceptual features tend to be pro-
cessed earlier than semantic features and features accessed through controlled processing.
The inversion of the list-strength effect (illustrated in Figure 2) was found by Caplan (2023)
when disregarding shallow features during tests of pure-strong lists was feasible, as we elab-
orate below.

Theories of the list-strength effect in recognition

The null list-strength effect in recognition memory has been replicated numerous
times, with strength usually operationalized with a manipulation of the number of spaced
repetitions of an item, but sometimes stimulus duration, as we consider here and occasionally
levels of processing (e.g., Ensor et al., 2020, 2021; Ratcliff et al., 1990). Ratcliff et al. (1990)
and Shiffrin et al. (1990) viewed the lack of a sizeable positive list-strength effect (RoR>1)
as face-value evidence that items do not compete with one another, which was especially
puzzling due to the stable finding of reduced recognition as list length increases.

Differentiation accounts of the null list-strength effect. This led Ratcliff et
al. (1990) and Shiffrin et al. (1990) to propose that each item is stored in its own local
memory trace and the match of a probe to memory would be computed for each trace
individually, before aggregating matching-evidence across traces. This motivated the devel-
opment of influential local-trace, differentiation-based models (e.g., McClelland & Chappell,
1998; Shiffrin & Steyvers, 1997; Shiffrin et al., 1990). A strong item will have more encoded
features. A strong item will provide more evidence of having been on the list but each
strong-item trace will also provide more evidence of mismatching a lure probe. Mixed lists
include more weak items than pure-strong lists, so mixed lists will produce a higher false-
alarm rate than pure-strong lists. Similarly, compared to pure-weak lists, mixed lists include
more strong items , which will lead to a lower false-alarm rate. The net effect can be a
greater difference in d′ between pure lists than between strong and weak items on mixed
lists. The frequent near-null list-strength effect arises in REM because of an approximate
balance between an underlying positive list-strength effect and this cause of an inverted
list-strength effect.

Other accounts. Murdock and Kahana (1993) produced near-null list-strength
effects by assuming competition accumulates over multiple lists and thus saturates after the
first few lists in an experimental session. Still other modellers viewed the null list-strength
effect as indicating that item representations are approximately orthogonal. If items are
orthogonal, they will not be confused with one another, so they would be evaluated with
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little influence of other studied items. By design, some models therefore constructed item
representations deliberately to be orthogonal to one another (e.g., Chappell & Humphreys,
1994; Dennis & Humphreys, 2001), appealing to item–context associations as the cause of
list-length effects.

Caplan (2023) noted that null list-strength effects may not be as general as sug-
gested, including upright list-strength effects with the production effect, mentioned above,
and the observation that experiments manipulating duration, spaced repetition or levels of
processing typically do show RoR values above 1, just not significantly so, including the
second experiment reported by Ratcliff et al. (1990).

Attentional subsetting account. Caplan (2023) showed how nearly null list-
strength effects could be produced without assuming local traces and without assuming
strict orthogonality of item representations. Briefly, it was assumed that the participant
attends only to a small subset (a handful) of features of a given item (illustrated in Figure 1),
but those will often be the same small subset of features attended upon a repeat presentation
as happens during the test phase. When viewing the word Squirrel, the participant may
think of a bushy tail and the chattering voice. When Squirrel is repeated (for example, as a
recognition probe), by virtue of those features having come to mind rapidly and with little
effort, the participant is likely to think again of the bushy tail and the chattering voice. As
elaborated by Caplan (2023), task demands and contextual factors could modulate those
subsetted features in interesting ways. The reiteration of the attentional subset does not
need to be perfect; the assumption is simply that, aside from factors that modulate attention
or feature-relevance, the subset will tend to be similar during repeated exposures to an item.

There are usually a very large number of “deep” features such as many features
related to meaning and imagery. If one assumes only a handful of features are attended on
an item, when this item-specific attentional subsetting approximates sparse representations,
explaining why items did not seem to compete with one another. Sparse vectors (mostly
zeroes) produce very little overlap-based confusion between themselves, so the strengths
of other items within a list will exert very little influence on judging a probe item. If
the stronger condition adds sparsely subsetted features, a RoR very close to 1 is obtained
(Figure 2, as derived by Caplan, 2023).

In this view, orthogonality is not an invariant feature of item representations (cf.
Chappell and Humphreys, 1994) but can be approximated by sparse subsetting. Because the
sparse subset of one item can consist of different features than the sparse subset of another
item, even items that are extremely similar to one another (same values of a given feature)
can be functionally dissimilar. This account also suggests situations that might deviate
from orthogonality. For “shallower” features like phonological or orthographic features, the
feature space is smaller and more compact; phonemes and letters recur across words at a
high rate. When features are drawn from a compact feature space, attentional subsetting
cannot be sparse (corresponding to the regime toward the right of Figure 2) and list-strength
effects become pronounced, as when memory is improved by reading aloud (the production
effect, MacLeod et al., 2010 and see Caplan and Guitard, 2024). In this non-sparse regime,
two items with similar features will most likely have some of those similar features attended
on both items.

Attentional subsetting account of inverted list-strength effects. Finally,
the list-strength effect inverts as follows. Start with a regime in which the weak condition
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a Lexicon b Shallow subset c Deep subset

Figure 1

Schematic depiction of how attentional subsetting could work in a model of stimulus du-
ration, where the “shallow” condition is nested within the “deep” condition. Grey unfilled
circles denote features that are not attended (and thus not encoded). We assume that the
shallow features are dense, not sparsely subsetted, whereas the deep features are sparsely
subsetted. The horizontal line separates the shallow feature-subspace (above) from the deep
feature-subspace (below). a) The full vector representation of five items (i.e., lexicon or
knowledge). b) The attended subset of features when studied in the shallow condition. The
example list here consists of items A through D, where the memory is their sum, A+B+C+D.
E is an example of a lure probe, also shallowly attended, as assumed for pure shallow lists.
c) The same as (b) but for the deep condition; in addition to the shallow features attended
during both study and test, additional sparsely subsetted features from the deep subspace.
Sparseness would be more pronounced if the deep subspace were greater; it is kept small
here for illustration only.
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Figure 2

The attentional subsetting account of list-strength effects. The plots show the output of an
example model of a manipulation of stimulus duration such as Experiment 1 of Ratcliff
et al. (1990). Here, condition S=short duration and condition D = long duration. List
length, L = 32. ns = 64 “superficial” features. nS =16 features subsetted per item and is
fixed. nd = 512 “deep” features. nD, the proportion subsetted per long-duration item, varies
parametrically. (a) d′ as a function of item type, list type and nD. (b) Ratio-of-ratios (RoR)
as a function of nD. The dashed line denotes a null list-strength effect (RoR=1) and pink
denotes where the list-strength effect is inverted. Bear in mind that this figure is designed
to illustrate the sensitivity of list-strength effect to the number of deep features while holding
constant the dimensionality of the deep feature subspace. Consequently, in this graph, the
left-hand values correspond to the sparse regime for and the right-hand values correspond to
the dense regime, respectively. In contrast, the way we think about strengthening by adding
sparse features (such as with stimulus duration, the focus of this manuscript) versus adding
dense features (such as with production, investigated in Caplan and Guitard, 2024), we
assume the dimensionality of the feature subspace is what primarily drives the difference.

(short duration) has only enough time to attend and encode shallow features, whereas the
strong condition (long duration) has additional time to process and encode deep, sparsely
subsetted features. Pure-weak lists contain items that only have shallow features, which
introduce overlap-based confusion. In mixed lists, shallow features cannot be disregarded
(because some probes might be weak), so the weak items are susceptible to interference
due to the shallow features from the strong items as well as the weak items. Strong items
fare better than weak items in mixed lists, because they benefit from having additional,
sparsely subsetted features that are more distinctive than the shallow features. But in
pure-strong lists, if shallow features can be safely disregarded, judgements will be based on
fewer features, but those features will be the more diagnostic, sparse features rather than
the more confusing, densely subsetted shallow features. This comes at a cost of reduced
functional vector length. So if the strong condition is not strong enough, in that strong
items do not have very many additional sparsely subsetted features attended, there may no
longer be a net benefit for pure-strong items.
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Theories of the strength-based mirror effect

Glanzer and Adams (1985) reported what they termed the Mirror Effect, where items
that are better recognized as belonging to a studied list are also better ruled out when they
appear as lures. This pattern was found for a large number of manipulations of stimulus
characteristics (most notably, word frequency), and was robust across various experimental
conditions (Glanzer & Adams, 1985, 1990). They posed this as a challenge to existing
models of item recognition. In most models, studying items would tend to increase their
strengths, right-shifting their distribution (and often increasing their variance). However,
this would have no effect on the distribution of matching strengths to lure items that were
not encoded in memory;3 the “new” distribution would remain where it was. As the hit
rate increases, there is no a priori reason to expect any effect on lure items.

However, mirror effects produced by comparing two different stimulus pools are hard
to interpret, as one can never run out of hypothetical properties that might not be equated
between the stimuli. When one takes concerted efforts to control such characteristics, the
mirror effect can go away; when disentangled, Neath et al. (2021) found that more pure
manipulations of a stimulus property largely affected either hit rate or false alarm rate
(associative recognition produced similar dissociations; MacMillan et al., 2022). Consistent
with this, Cortese et al. (2010) and Cortese et al. (2017) failed to find mirror effects at
the level of individual words, in item analyses we shall follow up. Stimulus-based mirror
effects might be explained by dual-factor (or more) accounts rather than a single factor
simultaneously increasing hit rate while decreasing false alarms.

The Strength-Based Mirror Effect (Criss, 2006, 2010; Hockley & Niewiadomski, 2007;
Kim & Glanzer, 1993; Starns et al., 2012; Stretch & Wixted, 1998) manipulates encoding
conditions between sets of stimuli drawn from the same overall stimulus pool, avoiding all
possible stimulus-characteristic confounds. As already noted, strength is most commonly
manipulated with spaced repetitions (but also stimulus duration and levels of processing).
Because a manipulation of strength is at least unitary as an experimental factor (unlike
stimulus-based mirror effects), the strength-based mirror effect does remain a challenge to
models of the form proposed by Glanzer and Adams (1985).4

Differentiation accounts of the strength-based mirror effect. In differenti-
ation models, strengthening a particular local memory trace both increases the subsequent

3In models with vector representations of items, this is the case if vectors are mean-centered, which is
typically done. Otherwise, in some models, the strength of the lure distribution can even increase, producing
the opposite of a mirror effect.

4There are accounts of mirror effects based on signal-detection theory (DeCarlo, 2007, 2010), which may
be instructive here. Such models focus on characterizing the forms of the distributions of strength values.
They do not explain where those strengths come from, but for example, DeCarlo (2007) proposes participants
encode items in several discrete ways, each of which is associated with a mean encoding strength plus some
variance (where the variance is equivalent across these distributions). This kind of mixture model can produce
net strength distributions that resemble unequal-variance models with just two strength distributions (one
for unstudied items and one for studied items). Our model does not directly include encoding-strength
variability, but the number of encoded features has consequences similar to encoding strength. As can
be seen in Equations A3 and A4 and shown by Caplan (2023), the variance of target strengths is greater
than that for lure strengths (although the variances come closer as the list length increases). It would be
interesting to explore a mixture model where the nD = nS but attentional subsetting has a higher probability
of (all-or-none) succeeding both at study and test in the D than the S condition, or some more complex
mixture.
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match of a target probe to the trace and increases the degree to which lure probes would
mismatch the trace (e.g., Criss, 2006, 2009, 2010; McClelland & Chappell, 1998; Shiffrin
& Steyvers, 1997; Shiffrin et al., 1990). For example, Retrieving Effectively from Memory
(REM; Shiffrin and Steyvers, 1997) not only often produces a null list-strength effect, it can
also produce a mirror effect. Different than earlier local-trace models (such as Hintzman,
1988), REM uses the number of features that match between the probe and each encoded
trace, but also the number of mismatching features to estimate the likelihood that the item
was studied. If a strength manipulation results in more features (accurately) encoded into
the trace, the strengthened trace will lead to higher (log) likelihood that the item was stud-
ied, but also higher likelihood that a lure item was not studied. The (correct) mismatches
increase as the matches increase, comprising a mirror effect. Elegantly, a mirror effect
emerges from the core calculations of the model, without needing further assumptions.

Criterion-shift accounts of the strength-based mirror effect. The major
alternative theoretical account of the strength-based mirror effect is the one proposed by
Glanzer and Adams (1985) and their descendants, including Cary and Reder (2003) and
Stretch and Wixted (1998). They proposed that a model could compute a log-likelihood of
an item with a given strength having been produced by the strong versus weak expected
strength distribution (Hirshman, 1995, proposed the idea of using the range of expected
strengths to derive a criterion without any log-likelihood calculation). Having studied a
pure-strong list, the model could thus safely increase the criterion with little cost to the
hit rate, since the strong items will easily exceed a higher strength threshold, but with the
advantage that lure items with chance strengths that are somewhat higher would be rejected,
reducing the number of false alarms. In other words, if the expected strength distributions
are known, the criterion could be optimally adjusted. One asset of the criterion-shift account
is that it can be attached to any model that produces strength distributions, with or without
local traces. Some support for such adjustments in criterion has been found (e.g., Starns
et al., 2012). The main weak point of such models is that they arguably demand too much
knowledge on the part of the participant about the expected strength distributions (but see
Dubé et al., 2019; Tong and Dubé, 2022a, 2022b; Tong et al., 2019 for evidence in defense of
people having this kind of knowledge). Koop et al. (2019) showed that the mirror effect is
found under conditions in which they argued criterion-shifts are not plausible, after either
very few test trials or in conditions in which the need to change criterion would not be
blatantly obvious to participants.

In the next section, we extend attentional subsetting theory to produce separate
hit and false-alarm rates. In doing so, we propose a principle by which participants could
derive a good criterion based purely on immediate processing of the current probe item,
influenced only by meta-knowledge of the task. We check if the model can produce realistic
values of hit and false-alarm rates, as well as being able to produce mirror effects.

Attentional subsetting theory

The basic idea of feature-subsetting has been around for a while. The original
log-likelihood/criterion-based account dates to Glanzer and Adams (1985) who proposed
two conditions might differ in the number of features stored, and the number of features
extracted at test. This meta-knowledge can be used to evaluate the match and could produce
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a mirror effect, computing likelihood ratios in their attention/likelihood theory (Glanzer &
Adams, 1990). Similar to the later Glanzer et al. (1993) model, they assumed that a subset
of features are “marked” and those features also have values. The main differences are that
in our account, attentional subsets are in many circumstances quite sparse, and respectively,
sparseness is practical only because we also assume the same subset will tend to reiterate
itself similarly at test (in contrast to Glanzer et al., 1993 who assumed a random re-sampling
upon each exposure). Also, Glanzer et al. (1993) assumed the set of marked features is
evaluated, rather than their values; here we assume the values, themselves, are compared,
and the markedness (which we call attentional subset) gates which values propagate through
the comparison process.

Introducing some notation for attentional subsetting, let nC,i denote the small num-
ber of attended features of a given item, where C can denote a particular experimental
condition and i denotes a given item (Caplan, 2023; Caplan et al., 2022). When imple-
mented in the matched filter model (Anderson, 1970),5 the memory is a simple sum over
the L list items,6

m =
L∑

i=1
wC,i ⊗ fi, (2)

where (column) vectors are denoted in boldface, i indexes distinct items, items are n-
dimensional, with independent (aside from when we consider similarity across items), iden-
tically distributed values drawn from N(0, 1/

√
n) (approximately, but not strictly, normal-

ized and mean-centered), and ⊗ denotes elementwise multiplication. As discussed in Caplan
(2023), n could be arbitrarily large, we assume that the extremely large number of task-
irrelevant features are disregarded, so n can be thought of as the full potential functional
feature-space in a given task-setting. The wC,i vectors are attentional masks, with value 1
for attended features and 0 otherwise. Thus, selective attention zeroes-out any unattended
features and lets the attended features pass through. Importantly, w are indexed by both
item and condition, expressing the idea that the specific subset of features attended will
tend to vary across items, i, but be relatively stable across presentations of a given item,
although they can be substantially modulated by task-conditions, C.

Since this is meant to correspond closely to actual attention, it is plausible that
the participant has a good estimate of nC,i for a given item at the time the stimulus is
presented as a probe (perhaps even as a consciously accessible count of numbers of features
processed). At first we assume for a target item, i, the attentional subset applied at test
is the same as that applied at study. But in general, the subsets can differ, and we will

5It is important to note our choice to formulate the idea within the matched-filter model is chiefly for
clarity of exposition and to build our intuition. We are not suggesting this is a complete model of recognition.
The matched-filter model stores a list of items as a sum of the corresponding item vectors, and probe items
are evaluated by computing dot products of the probe vector with the memory vector. The model has serious
limitations, but its simplicity allows us to see how attentional subsetting may function in a model. Because
of its simplicity, it is also easy to see how the same principles could be embedded within well developed
memory models that have been able to address problems with the matched-filter model. We are in no way
endorsing the matched-filter model as a “best” or “complete” model of recognition memory, although it may
be instructive to note that such a simple model is sufficient to produce the phenomena of interest here.

6We use the term “item” loosely, but it always refers to a putative vector in a knowledge “lexicon”
corresponding to one discrete stimulus such as a single word.
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introduce one particular such deviation shortly. For now, the judgement is based on the
matching strength of a probe item, x, to the stored memory m, their dot product

sx = (wC,x ⊗ fx) · m. (3)

If fx were stored (attentionally masked) in m, then sx will tend to be greater than if the
item were not stored. Thus, the response is based on whether or not sx exceeds a criterion,
θ: {

“Old” sx > θC,i

“New” sx ≤ θC,i
(4)

As with other models, the value of θC,i is important. If θC,i is extremely low, the model
will call everything “Old,” producing lots of hits but also lots of false alarms. If θ is too
high, the model will call everything “New.” If the model were to have access to the full
expected distributions of strengths for target and lure items, it could choose an optimal value
for θC,i. But note that the mean matching strength is directly related to this attentional
subset size, µtarget = nC,i/n. For non-presented items, µlure=0. Stretch and Wixted (1998)
(for example) defined “optimal” criterion placement, as “the point that maximizes the
proportion of correct responses,” which for symmetric reward conditions is halfway between
the two means, thus θC,i = .5nC,i/n.

Let us pause to emphasize that we assume the model (participant) has direct access
to the approximate number of features it has just processed of a given probe item. The
unbiased threshold is then simply what one expects if half those attended features match
memory. The participant does not need to remember anything else about the list, nor to
keep track of criteria used during other trials. All that is relevant is current processing of the
probe item. The number of features attended will in turn be influenced by the participant’s
meta-knowledge of the task, so attention will be driven by characteristics of the list, but at
the level of the list as a whole, not varying across items. On the other hand, the threshold
derived for each item will be specific to the item, itself, since we have allowed for nC,i to
differ as a function of both condition, C, and item, i. The threshold will change from one
item to the next, but the meta-cognitive rule dictating that threshold is assumed to be
relatively fixed over the course of a set of test trials.

Whereas it may seem implausible that participants can accurately enough estimate
the full expected strength distributions (but there is support for the idea that participants
have knowledge of the statistical properties of encoded stimuli; Dubé et al., 2019; Tong
and Dubé, 2022a, 2022b; Tong et al., 2019), it is plausible that the participant has access
to the approximate number of features attended on the probe item they are currently
processing. However, this assumption remains to be tested in future research. Without
knowing anything about any other probe items (nor even, at this stage, anything about
their memory for the list, itself), the participant could plausibly select a criterion that
is close to optimal. This heuristic only makes sense once we assume feature-subsetting.
Without subsetting, there is no meaning to the idea of a particular number of features
processed. This heuristic results in a criterion-shift, but unlike the prior criterion-shift
models, the model needs absolutely no information about either the expected target or lure
strength distributions. If the number of attended features varies across items (nC = nC,i),
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then so will the threshold, θ = θC,i, but this is due to immediate processing (attentional
subsetting) of the current stimulus, not due to cumulative knowledge of the studied list or
even of the probe set (Starns et al., 2010), consistent with a mirror effect emerging even on
the first test trial (Koop et al., 2019).

Next we derive the hit and false alarm rates with a main focus on the model of stim-
ulus duration, where the strong items include weak-item features plus additional features
subsetted from a much larger-dimensional feature space.

Extension of attentional subsetting theory to hit rate and false alarm rate

Previous authors have proposed participants can make use of characteristics of the
probe item to adjust their response criterion, for example, when considering high- versus
low-frequency words (e.g., Gillund & Shiffrin, 1984; Stretch & Wixted, 1998). Here we
make this process quite specific to the item. For a given item, we assume the participant
is aware of how many features they readily extract from the item. For now, let us drop the
index i and assume that this number is nC and is constant for a set of stimuli. But note
first, that we retain the index, C, because the number of attended features could vary as a
function of condition, and second, the nC specific features, themselves, will still tend to be
different for each item. Moreover, we start with the simplest assumption that participants
will tend to process items at test similarly to how they did so during study, so the same nC

is applied at test as at study for the case of pure lists (but we will amend this for mixed
lists and in the nested model). For all models considered by Caplan (2023), µtarget = nC/n
and µlure = 0. The criterion is simply

θC = 1
2

nC

n
. (5)

Next we let C ∈ {S, D}, where condition S represents something like a shallow level
of processing and D represents something like a deep level of processing or short versus
long stimulus durations.7 In typical strength-based mirror effect experiments, hits and false
alarms are compared between pure lists, so θS/θD = nS/nD. In other words, the criterion
will be set higher when it can be— when the expected distribution of matching strengths
is greater. This acts a bit against the increased hit rate for strong (D) versus weak (S)
items, but not entirely. And in exchange, it reduces the false-alarm rate because the higher
criterion will not be as often duped by high-strength lure items.

Given µtarget, µlure, σtarget and σlure, the hit rate is the proportion of strengths from
the target distribution that will fall above the threshold, θ. The false-alarm rate is the same
for the lure distribution. The use of d′ implies a normal distribution, so we use the error
function, erf(), to integrate strength from the thereshold to infinity. Thus:

7Hintzman (1994) proposed that the participant tests the probe item for learnability or memorability and
then it essentially rescales itself; that mini-test gives the participant the information needed to customize
their threshold. We are proposing something similar but arguably asking even less of the participant because
we are not suggesting participants do any learning test. Rather, they simply use meta-knowledge of the
information they have just extracted about the stimulus.



ATTENTIONAL SUBSETTING 16

P (hit) =
∫ ∞

θC

N(µtarget, σtarget) = 1 −
(

0.5 + 0.5 erf
(

θC − µtarget√
2σtarget

))
(6)

P (false alarm) =
∫ ∞

θC

N(µlure, σlure) = 1 −
(

0.5 + 0.5 erf
(

θC − µlure√
2σlure

))
(7)

where erf(x) = 2√
π

∫ x

0
e−t2

dt.

Our primary focus in this manuscript is the nested model, applied to stimulus-
duration, where the D condition includes the S condition feature subspace, and the latter
is more compact than the additional deep subspace. However, in the Appendix we consider
two different model variants considered by Caplan (2023), where the two conditions are
assumed to dwell within the same feature subspace and both are sparse. This deepens our
mathematical intuition, and those models may describe other experimental manipulations.

The full model of strength as duration

Caplan (2023) proposed that when an item is studied, the earliest features attended
occupy a low-dimensional subspace, such as orthographic or phonological features. This
builds on a suggestion by Tulving (1968) and Lewis (1979) that the order of retrieval of
features from superficial to semantic (and see Criss and Malmberg, 2008; Malmberg and
Nelson, 2003), although they did not suggest any differences in feature-space dimensionality.
With more processing time (and perhaps also with repeated presentations of an item), the
extracted features are sparsely subsetted from a much higher-dimensional subspace, such
as semantic or imagery-based features.8 Thus, in strength manipulations, it may often be
the case that the S condition is in the non-sparse regime whereas the D condition includes
both those S features plus additional features that are in the sparse regime. Consistent
with the former assumption, Yonelinas et al. (1992) observed a large list-strength effect
when duration was manipulated between 50 ms and 200 ms for weak and strong conditions,
respectively; in our framework, this corresponds to a non-sparse regime. Even when RoR=1,
the so-called “null list-strength effect” may be a misnomer. The account proposed by Caplan
(2023) implies that there in fact is an influence of other studied items, which can be seen
when list-strength is manipulated around the strength levels of what is usually called the
“weak” condition— due to non-sparse subsetting (as reported by Yonelinas et al., 1992).
The null effect of typical list-strength manipulations is because “strong” items add sparsely
subsetted additional features, and thus do not introduce any more non-negligible noise due
to feature overlap with other items.

This arrangement can also produce a mirror effect. The mirror effect produced
by the full-probe model in the Appendix (although arguably cognitively implausible) is
lost with masked probes because the terms due to feature overlap became negligibly small
(O(n2

C/n3) rather than O(nC/n2), where we use “big-O” notation to summarize terms of
a particular order or higher, emphasizing the term that dominates in the limit). This is
because with sparse subsetting, the chance of overlap of attended feature-subsets is quite

8This echoes Ratcliff and McKoon (1989) who showed that associative information is retrieved later than
item or feature-matching information.
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small. But if the nS subspace were low-dimensional, and not sparsely subsetted, the O(nC)
terms are reintroduced. In this model, the false-alarm rate is reduced when the thresh-
old is increased proportionally to nC because similarity amongst weakly encoded items is
substantial.

Disregarding. In a pure list, we can consider two cases, illustrated in Figure 3a
and b, respectively: First, we could assume the participant intuits that it is better to disre-
gard the S features, since they produce similarity-based confusion between items, including
between targets and lures, thus θ = (1/2)nD/n and θ = (1/2)nS/n for conditions D and S,
respectively. Alternatively, the participant might be unable to ignore those early-attended
features, in which case θ = (1/2)(nS + nD) for both conditions. Note that for simplicity,
we are assuming the S and D feature spaces are strictly segregated, but if they are not,
additional cross-terms would be added. Unlike the fully sparse regime considered in the
masked probe model (Appendix), the lure distribution of strengths does not have a negli-
gible variance, so reducing the threshold will substantially increase the false-alarm rate in
condition S versus D.

In the first model version, where participants can successfully ignore the S features
when judging a pure-D list, each cross-term contributes Vxy = (ΩCC/nC)/n2 (defined in
the Appendix) but now the overlaps will differ. Overlap arises from choosing nC features
out of nc, where the lowercase index refers to the size of the feature subspace specific to
condition C, if

(n
k

)
denotes n choose k: ΩCC =

(nc

nC

)2
/nc, which will be large for small nc

and small for large nc. For the second model version, where participants cannot selectively
ignore the S features, the pure-S lists are unchanged but for the pure-D lists, Vxy is the
sum of Vxy for S and D conditions in the first version.

When the model can disregard the S features during pure-D lists, the hit rate
increases but the false-alarm rate is constant as the “D” condition increases in strength,
increasing nD (Figure 3a). When nD is small, the hit rate for the so-called “deep” condition
suffers, which makes sense, because when nD < nS , the “deep” items have fewer features
encoded, and the advantage due to the sparseness of the deep feature space is insufficient
to compensate for that. But the sparseness increasingly benefits the “D” hit rate as more
features are attended and soon shows an advantage over the “S” condition. Meanwhile, the
false-alarm rate is not just invariant to nD, it is quite small due to the sparseness. Assuming
a handful of “deep” features are attended in the strong condition (to the right of nD = 5 for
this parameter set), the D condition produces a mirror effect compared to the S condition.

The idea that a participant might be 100% successful in disregarding superficial
features may be unrealistic— and likewise for the assumption that a participant might be
absolutely unable to disregard any superficial features. A more realistic model might be
in between the two models in Figure 3: some superficial features might be successfully
disregarded and some other portion not (or if the S and D feature spaces are not strictly
segregated, the overlapping features may not be disregarded).

Discussion of the model

The heuristic for deriving the criterion item-by-item can produce strength-based
mirror effects, without differentiation and without a good estimate of the expected distri-
bution of null strengths. This stands as proof of principle, although we do not present any
evidence ruling out the other accounts. Two arrangements produced a fairly symmetric
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a S features can be selectively disregarded b S features cannot be disregarded
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Figure 3

The nested model of stimulus duration with the ability to selectively ignore S features when
tested on a pure D list (a) or not (b). Keeping with Caplan (2023) and sticking close to the
experimental design of Ratcliff et al. (1990), Experiment 1, list length is set to 32. ns = 64
“superficial” features. nS = 16 features subsetted per item. The dashed line plots the hit
rate and false alarm rate for pure-S lists, which was not varied. nd was fixed at 512. The
solid lines plot hit and false-alarm rate for pure-D lists as a function of the number of
(additional) D features encoded per item.

mirror effect. could be explained by immediate processing of the probe alone. The first
is the full-probe model (Appendix). This model produced a substantial list-strength effect
(Caplan, 2023), inconsistent with many list-strength findings, so it may provide insight into
mirror effects in situations in which list-strength effects are sizeable (e.g., the production
effect, Bodner et al., 2016; Hopkins and Edwards, 1972; MacLeod et al., 2010 and short
presentation durations, Yonelinas et al., 1992). We chose the (1/2)µtarget/n value because it
marks the midpoint between the two distribution means and is an optimal placement of the
threshold. It is also robust; a threshold too high will produce 0% false alarms but 0% hits
and a threshold too low will produce 100% hits but 100% false alarms. A participant who
has a vastly miscalibrated threshold would thus not even be able to express the information
they do have in memory. One half the expected target distribution keeps the participant
close to the comfortable middle, reducing the risk of a drastically miscalibrated threshold.
That said, it is clear that the expressions in Equations A5–A6 would still produce a mirror
effect if the 1/2 were replaced with some other coefficient, although the further one deviated
from 1/2, the more asymmetric the mirror effect would become. The threshold does not
need to be perfectly tuned to produce a mirror effect, speaking to its plausibility.

The second account works with a model appropriate for stimulus-duration that was
found to produce small list-strength effects and even inverted list-strength effects (Caplan,
2023). The important assumption was that the weak condition drew attention to features
that occupy a low-dimensional subspace and are thus not sparse, leading to confusion due
to feature-overlap.

In both cases, nC need not be estimated accurately. In fact, we suggest it is plausible
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that the participant processes the probe in much the same way as during the study phase
(particularly for short study–test intervals). It then seems plausible that nC should be
immediately accessible. A more realistic model would include variability in nC . This would
produce largely the same effects, including a mirror effect, with a cost of adding variability
across probes (easily confirmed with a simulation, replacing nC with nC,i ∼ N(nC , σC)).
The implication would be that probe stimuli that draw attention to a larger number of
features (Figure 7) would be subject to a higher evidence criterion as probes (higher θC,i),
leading to fewer hits and fewer false alarms. However, this might be offset by factors that
separately influence false alarms, such as the overlap of the shallow features (or even some
deep features) with other studied items.

However, mirror effects are typically asymmetric, often with far less effect on false
alarms than on hits. It is noteworthy that the other two model variants we explored in fact
produce this type of result, where hit rate is influenced by strength but false-alarms not.
Importantly, one of those conditions was found for the model of duration when features
producing confusion due to feature-overlap can be disregarded in pure-strong but not in
pure-weak lists, coinciding with conditions that produce an inverted list-strength effect.

Our theoretical account of stimulus duration can produce null list-strength effects
and substantial mirror effects. But it specifically predicts true (not sampling error) inverted
list-strength effects when shallow features can be at least partially disregarded in tests of
pure long-duration lists. Next we report two new experiments aimed to test this result.

Experiment 1: A replication attempt of an inverted list-strength effect and
asymmetric mirror effect

We conducted a pre-registered replication attempt of experiment 1 of Ratcliff et al.
(1990), which produced a significantly inverted list-strength effect along with an asymmetric
mirror effect (a large effect on hit rate but a small effect on false-alarm rate).

Rationale and goals. The theory can explain how the list-strength effect can
sometimes invert, as in the first experiment of Ratcliff et al. (1990). This novel predic-
tion distinguishes the theory from other accounts of the list-strength effect, which have
been more focused on explaining the null (or near-null) effect. Some (accounts relying on
orthogonal representations) have not suggested why it inverts. Others (accounts relying
on differentiation) explain near-null list-strength effects by in fact assuming a cause of an
inversion (differentiation) that nonetheless is often well offset by a source of upright list-
strength effect. Models like REM, that function this way, have many ways in which this
balance might be weighted toward a net inversion. But all accounts of list-strength effects
would be justified in disregarding inversions if the scarce reports of inversion are not real,
but perhaps a statistical fluke due to variability around a true null list-strength effect. If
we can replicate the inverted list-strength effect, that would emphasize that the inversion,
itself, needs to be explained. If we observe inverted list-strength effects under the kinds of
conditions attentional subsetting theory implies they might be observed, that would rein-
force our continuum account of list-strength effects. It would also provide data that could
inform the conditions under which differentiation models might be expected to produce net
inverted list-strength effects.

Second, we test for a mirror effect, where hits and false alarms both differ between
strength levels. Also, we produced an inverted list-strength effect in the model that assumed
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that disregarding shallow features was possible in pure-strong lists; this assumption also
produced a very pronounced asymmetric mirror effect, where hits vary considerably with
strength but false alarms change very little (Figure 3a). Granted, there are numerous ways
a mirror effect can become asymmetric, but out of curiosity, we sought to test whether the
same individuals who produced an inverted list-strength effect also show the asymmetry.

Third, exploratory analyses tested how response times varied across conditions,
potentially speaking to the timecourse of retrieval of shallow versus deep features, and
whether the correct rejection rate exceeded the hit rate, as produced by the model.

Fourth, we wondered whether the conclusions of Neath et al. (2021), that mirror
effects are due to more than one separable underlying factor, is also seen at the item
level, following Cortese et al. (2010, 2017). Within a condition, we sought to test whether
individual items show a mirror effect: a word that is better identified as a target is also
better ruled out as a lure. As evident in the theory (and the word-pool manipulations
by Neath et al., 2021), hit rate and false alarm rate can be influenced by different, often
independent factors, so this was far more exploratory and reported for both experiments
together.

The stopping rule was to collect sets of 10 participants until the critical Bayes
Factor for the Pure/Mixed×Strength interaction was conclusive (>3:1 or <1:3). However,
after collecting 100 participants (after exclusions), although the p value was (just) under
0.05, the Bayes Factor was around 1.5, still quite inconclusive. Rather than spend more
money collecting more data, we analyzed the data. We had not anticipated this prior to the
pre-registration, but a considerable number of participants failed the basic manipulation-
check— that is, if the 2 s duration produces “stronger” encoding than the 1 s condition,
then performance should be better for strong than for weak items. We therefore follow
up with unregistered exploratory analyses broken down into participants who passed that
manipulation check (both for pure lists and for mixed lists) compared to those that do
not. For the subset who passed both manipulation checks, the interaction indicating an
inverted list-strength effect was clearly significant and clearly conclusive; thus, although
one should not forget that this was post-hoc, for those “valid” participants, the stopping
rule was already surpassed, despite being under our initial target sample size.

Data availability. Data, materials and scripts can be found at https://osf.io/
39cz8.

Methods

This experiment was a pre-registered (pre-registration available at https://osf.io/
rx9jb and data at https://osf.io/39cz8) replication of Experiment 1 of Ratcliff et al. (1990).
Deviating from the pre-registration, we planned to check for a recency confound. Because
plots of d′ as a function of serial position and of test position produced no suggestion of such
confounds, we did not pursue this further. Additional analyses that were not pre-registered
are denoted as “exploratory.” The procedures were approved by a University of Alberta
ethical review board.

Participants. Participants were recruited via Prolific (prolific.co), (a) were native
speakers of English, (b) were of British, American or Canadian nationality, (c) had normal
or corrected-to-normal vision, (d) had no cognitive impairment or dementia, (e) had no
language-related disorders, (f) were of ages between 18 and 30 years, and (g) had an approval

https://osf.io/39cz8
https://osf.io/39cz8
https://osf.io/rx9jb
https://osf.io/rx9jb
https://osf.io/39cz8
prolific.co
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rating of at least 90% on prior submissions at Prolific. Demographic information (Questions
1 through 6) from Prolific is self-reported by the participants and the approval rating is
computed by Prolific. Participants were paid £7 for their participation in a session lasting
around 30–45 minutes.

To keep the sample uniform, participants were excluded if they took more than a
ten-minute break. Participants were also excluded if their overall d′ (collapsed across list
and item type, but excluding practice trials) was below 0 (chance), which would suggest they
misunderstood the task or the response mapping or were not able to perform the task at
the very basic level. On this basis, one participant was excluded for taking a break longer
than 10 minutes and 4 because their overall d′ < 0, leaving N = 101. We had planned
to exclude any participant who responded with the same key (either “old” or “new”) to
more than 90% of the trials were to be entirely excluded, on suspicion of mindlessly pacing
through the experiment, but there were no such participants.

Sample size and stopping rule. The original experiment (Ratcliff et al., 1990)
had 5 participants with 6–9 sessions each for a total of 37 subject-sessions. This makes it
tricky to estimate required power. Our first target sample size was 70, about double the
number of subject-sessions, partly to take into account the fact that we expected having
more subject-contributed variance. Due to the differences that should, in principle, be im-
material to the effect (different stimuli, one session/participant, randomly mixed lists; these
are detailed below), it was conceivable that our sensitivity differs. As already mentioned,
we deviated from our pre-registration, stopping at N = 100.

Materials. Stimuli were the 1000 words from the Toronto Word Pool (Friendly
et al., 1982), displayed in 40 point size Times font in the centre of the screen. Each
list was composed of 32 nouns for study, followed by 64 old/new recognition probes, half
of which were just studied (targets) and the other half of which were never seen in the
experiment (lures). Words were drawn at random, anew for each participant. Strong words
were presented for 2 s and weak words for 1 s, with no inter-stimulus interval. Pure lists
were composed of all strong items (pure-strong) or all weak items (pure-weak). Mixed lists
were composed of half strong and half weak items, with strength order drawn at random.
Following Ratcliff and colleagues, each counterbalance set of four lists included one pure-
strong and one pure-weak list, but two mixed lists to equate data collection rates for all
item types (Item Strength[strong, weak] × List Type[Mixed, Pure]). Condition-order was
random within each counterbalance set of four lists.

Procedure. The online experimental session was controlled via PsyToolkit (Stoet,
2010, 2017). Each session started with one 10-word mixed practice list with interleaved
instructions, excluded from analyses. The test phase was self-paced. Responses faster than
100 ms were trapped and a 5-s message displayed the message “Too Fast!” to prevent
participants from speeding through the experiment.9

9Due to a programming oversight, such trials were presented again to all participants except the last 10
participants and were sometimes still below 100 ms if the participant held the key down the throughout the
too-fast message. There is presumably some contamination of the data from those participants, where some
trials were immediate repeats of the prior probe. However for the final 10 participants, the implementation
was fixed and the number of such trapped trials was low (9 experimental trials out of a total of 7680 trials
across the 10 participants), so we think the effect on the overall results is minimal. This remained corrected
for Experiment 2.
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Data analyses. Single trials that were signalled “Too Fast!” (or under 100 ms)
were excluded trial-wise. Participants were excluded entirely from any analysis for which
they had missing data after trial-exclusions.

Our primary measure was d′, with the log-linear correction favoured by Hautus
(1995), adding 0.5 observation correction to hits, false alarms, misses and correct rejec-
tions,10 computed for each participant and each of the four conditions separately. Be-
cause this correction can sometimes distort the results, in the pre-registration we planned
to analyze hit and false-alarm rates separately, which we do. We also had planned to
check the results with hits minus false alarms to check for complications to the inter-
pretation of the results; this we have not done because the results were clear-cut in this
regard and did not seem to warrant a separate analysis of hits–false alarms. The ratio-
of-ratios was computed [d′(mixed strong)/d′(mixed-weak)]/[d′(pure-strong)/d′(pure-weak)]
and was log-transformed prior to statistical tests and correlation across participants.
The pre-registration stated that an interaction, where hits increase and false alarms de-
crease in strong, compared to weak, lists would be considered support for the mirror
effect. This seemed unnecessary; we report strength effects for hits and false-alarms in-
dividually and evaluate the difference of those differences, computing the index11 ω =
[HR(pure strong) − HR(pure weak)]−[CR(pure strong) − CR(pure weak)]. If hits and false
alarms move to the same degree in opposite directions, this index will be zero. If hits move
more than false alarms, the index will be positive, indicating the predicted form of the
asymmetry. The pre-registration erroneously stated that asymmetry of the mirror effect
would be quantified with hit rate-(1–false alarm rate) for each participant. It is this, but
the difference between strengths for hit rate and false alarm rate, respectively. We do report
this within list-type analysis anyway, because while it may not strictly test the theory, at
least our specific simulations lead to a clear prediction. In Experiment 2, we report this
analysis as exploratory.

Our main analysis of interest for the list-strength effect was a repeated-measures
ANOVA on d′ with design Item Strength [Strong, Weak] × List Type[Mixed, Pure]. An
interaction was considered evidence of deviation from the null list-strength effect.

To test whether the inversion of the list-strength effect roughly co-occurs with the
asymmetry of the mirror effect, we compared the mirror effect asymmetry index, ω, between
participants with RoR<1 versus RoR≥1 (there were in fact no participants with RoR=1).

Statistical tests are reported with both Classical and Bayesian approaches. Signif-
icance is assessed with α = 0.05 but p values near-threshold are interpreted with caution.
Bayes Factors are considered to provide support for the null hypothesis if BF10 < 1/3 or for
the hypothesis if BF10 > 3/1 (Kass & Raftery, 1995). Analyses of false alarm rate using the
three-level factor have the Greenhouse-Geisser correction applied to correct for violations
of sphericity and post-hoc pairwise comparisons are Holm-corrected t tests.

Deviations from the original study. Because this was a replication attempt,
here we list all elements we pre-registered that deviated from the original study. These

10We had this incorrect in our pre-registrations, where we had mistakenly stated the correction was to
hits and false alarms only.

11This index is not perfect, but rather, a quick-and-dirty measure we can use for exploratory purposes. In
evaluating data and model output, it is also important to examines hits and correct rejections individually
to obtain a full picture, which we will do.
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were deviations that we felt were superficial and should not reduce our expectation to
replicate the original findings. Ratcliff and colleagues collected data from a small number
of participants who each performed several sessions; we had more participants but only
one session each. The original study was conducted in person whereas ours was conducted
online, with no direct interaction between participant and researcher. The original study
excluded trials shorter than 200 ms and greater than 2500 ms; we chose more inclusive
criteria, excluding trials shorter than 100 ms and longer than 10,000 ms. The original study
had 14 lists per session; we had 12. The original study had no practice list; we included
a short 10-word mixed practice list. The original study blocked strength within the mixed
lists; we constructed lists with a random shuffle of mixed/strong. Finally, we added the
“Too Fast!” deterrent.

Results

Before manipulation checks

List-strength effect. A repeated-measures ANOVA on d′ (Table 1 and Figure 5)
with design Mixed/Pure × Item Strength [Strong/Weak] revealed a significant main effect of
Item Strength, F (1, 100) = 45.15, MSE = 0.055, p < 0.001, η2

p = 0.31, BFinclusion > 1000.
The main effect of Mixed/Pure was not significant, F (1, 100) = 0.52, MSE = 0.08, p = 0.47,
η2

p = .005, BFinclusion = 0.18. Our effect of interest, speaking to the nature of the list-
strength effect, was the interaction. It was significant, F (1, 100) = 4.40, MSE = 0.05,
p = 0.038, η2

p = 0.04, but the Bayesian ANOVA was not conclusive, BFinclusion = 1.54. At
face-value, this is consistent with our previous prediction: a reliable but small interaction.
The Bayes Factor is biased against small-magnitude effects.

We next disentangled the effects on d′ by analyzing hit rates and false alarms sep-
arately. For Hit Rate, the main effect of Item Strength was significant, F (1, 100) = 58.95,
MSE = 0.003, p < 0.001, η2

p = 0.37, BFinclusion > 1000. The main effect of Mixed/Pure was
not significant, F (1, 100) = 2.85, MSE = 0.003, p = 0.095, η2

p = 0.03, BFinclusion = 0.39
(nearly a supported null, although just inside the “inconclusive” range). The interaction was
not significant, F (1, 100) = 1.29, MSE = 0.002, p = 0.26, η2

p = 0.013, BFinclusion = 0.38,
nearly favouring a null interaction. For the false alarm rate, now a one-way ANOVA on
a factor with three levels (to avoid duplicating false alarms for “strong” and “weak” items
in mixed lists): Mixed/Pure-Strong/Pure-Weak produced a non-significant main effect,
F (1.8, 176) = 0.90, MSE = 0.003, p = 0.40, η2

p = 0.009, BFinclusion = 0.079.
The ratio of ratios (RoR), which is based on d′, was slightly above 1 on average

(mean) but the median was slightly below 1 (Table 1). A t test of the log(RoR) against
zero was not significant, t(98) = −0.51, p = 0.61, BF10 = 0.13. Comparing the RoR to
0.88, the value reported by Ratcliff and colleagues, BF10 = 0.12, also favouring the null.
This is, of course, a naïve application of Bayes Factors but tells us that we do not have the
resolution to differentiate between RoR=1 and RoR=0.88.

Mirror effect. To evaluate the mirror effect, we turn to the pure lists only. The
hit rate was greater in pure-strong than pure-weak lists, t(100) = 6.36, p < 0.0001, BF10 >
1000. If there were a perfect mirror effect, this would be paralleled by an equal effect in
the opposite direction in the false-alarm rate but the difference for false alarms was not
significant, t(100) = −1.16, p = 0.25, BF10 = 0.21. To be more direct, the change in the hit
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a Before the manipulation-checks
Mixed-Long Mixed-Short Pure-Long Pure-Short

Hit Rate 0.66 (0.63, 0.69) 0.63 (0.60, 0.66) 0.66 (0.63, 0.69) 0.61 (0.58, 0.64)
False Alarm Rate 0.24 (0.21, 0.28) 0.24 (0.21, 0.28) 0.24 (0.21, 0.27) 0.25 (0.22, 0.28)
d′ 1.25 (1.10, 1.40) 1.14 (1.00, 1.28) 1.28 (1.11, 1.44) 1.07 (0.95, 1.20)

Mean Ratio of Ratios: 1.12 (0.87, 1.37) Median: 0.97

b Participants who failed a manipulation-check
Mixed-Long Mixed-Short Pure-Long Pure-Short

Hit Rate 0.64 (0.59, 0.68) 0.62 (0.58, 0.66) 0.63 (0.59, 0.67) 0.61 (0.58, 0.65)
False Alarm Rate 0.29 (0.25, 0.34) 0.29 (0.25, 0.34) 0.30 (0.25, 0.35) 0.29 (0.25, 0.33)
d′ 0.99 (0.82, 1.15) 0.95 (0.79, 1.10) 0.96 (0.79, 1.12) 0.95 (0.79, 1.11)

Mean Ratio of Ratios: 1.22 (0.79, 1.65) Median: 1.10

c Participants who pass both manipulation-checks
Mixed-Long Mixed-Short Pure-Long Pure-Short

Hit Rate 0.70 (0.65, 0.74) 0.63 (0.59, 0.68) 0.70 (0.65, 0.74) 0.61 (0.57, 0.65)
False Alarm Rate 0.18 (0.14, 0.22) 0.18 (0.14, 0.22) 0.16 (0.13, 0.19) 0.20 (0.16, 0.23)
d′ 1.59 (1.37, 1.82) 1.39 (1.17, 1.61) 1.69 (1.43, 1.96) 1.24 (1.05, 1.43)

Mean Ratio of Ratios: 0.99 (0.83, 1.15) Median: 0.89

d Ratcliff et al. (1990) Experiment 1
Mixed-Long Mixed-Short Pure-Long Pure-Short

Hit Rate 0.705 0.646 0.740 0.646
False Alarm Rate 0.227 0.227 0.202 0.228
d′ 1.30 1.12 1.48 1.12

Ratio of Ratios (computed from the averaged d′ values): 0.88
Table 1

Experiment 1: Hit rates, false alarm rates and d′ as a function of List (Mixed, Pure) and
Item type (Long: 2000 ms, Short: 1000 ms ≡ Strong, Weak), as well as the ratio-of-ratios.
Note that false alarms for mixed lists are simply repeated under the mixed-strong and
mixed-weak columns, as lure items are not identified with one or the other duration in
mixed lists. In parentheses are the 95% confidence interval based on standard error of the
mean. a) Before the manipulation-checks. b) Participants failing one or both of the
manipulation-checks: d′(Pure-Long)> d′(Pure-Short) and
d′(Mixed-Long)> d′(Mixed-Short). c) Participants passing both manipulation-checks. d)
The original values reported by Ratcliff et al. (1990), Experiment 1.
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a Experiment 1 b Experiment 2
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Figure 4

Cumulative proportion distribution functions of the two measures that were used as strength
manipulation checks, for mixed lists and pure lists, respectively. a) Experiment 1. b) Ex-
periment 2. Each point represents one participant and the proportion is the cumulative
proportion of participants.

rate was significantly greater than the change in false-alarm rate, t(100) = 3.53, p < 0.001,
BF10 = 33.80, resembling the model with feature-disregarding (Figure 3a).

With manipulation checks

The following analyses were not anticipated in our pre-registration and should be
read as exploratory. Figure 4a plots the cumulative distribution functions of the item-
strength effect, d′(Pure-Strong)−d′(Pure-Weak) and d′(Mixed-Strong)−d′(Mixed-Weak),
respectively. If the manipulation of duration influences encoding strength as intended,
both of these measures should be greater than zero. In fact, for each check, about one third
of the participants failed; duration did not produce an overall increase in d′. Interestingly,
the distribution of strength effects is broader for pure than for mixed lists, with both more
big positive strength effects and more big negative strength effects than mixed lists. This
may be due to the fact that for mixed lists, a single false-alarm rate went into the difference
measure, whereas for pure lists, each list type had its own false-alarm measure, adding more
measurement variance to the calculation.

If the additional duration is not helping those participants, the premise of measuring
a list-strength effect is undermined. For those participants, one might even view the 1 s
duration as the “strong” condition and the 2 s duration as the “weak” condition. This seems
irrational; in fact, the duration conditions must be functioning differently than Ratcliff and
colleagues had in mind, at least for some participants, but possibly for all participants. This
echoes the theme of Caplan (2023), that the word “strength” has been overloaded, and may
refer to a collection of different processes and effects, each of which should be understood
in its own right. No participants had strict equivalence between pure-weak and pure-strong
lists. We return to this in the General Discussion.

The implication of calling it the “null list-strength effect” is that list-strength has
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no effect. Taking this literally, the pure and mixed lists are essentially within-experiment
replications of one another. The prediction is that the benefit of strong over weak items in
pure lists (d′) should covary with the benefit of strong over weak items in mixed lists, across
participants. This is contradicted by the correlation we observed, r(99) = 0.065, p = 0.52,
BF10 = 0.10.

The same outcome results if we correlate the difference in hit rate, r(99) = 0.14,
p = 0.15, BF10 = 0.22. The near-equivalence of the strength effect in mixed and pure lists
may not occur at the level of single subjects, but rather, differently, due to independent
sources of variability in pure than in mixed lists. Alternatively, the data acquired with the
1 s versus 2 s comparison might be too subtle and swamped by noise.

Table 1b and 1c report results for the subset of participants who failed at least
one, or passed both manipulation checks, respectively. The former performed worse than
the latter. But closer inspections suggests the major difference, at least for the group as a
whole, was that those who failed the manipulation check had higher false-alarm rates.

List-strength effect. Illustrated in Figure 5a, for the 54 participants who failed
at least one manipulation check, analysis of d′ produced only non-significant effects, with
BFinclusion < 0.32, favouring null effects. For hit rate, only the main effect of Item Strength
was significant (p = 0.026) but with an inconclusive BFinclusion = 0.93. For false alarms,
the main effect was non-significant (p = 0.43) and a favoured null (BFinclusion = 0.12).

More to the point, for the 44 participants who passed both manipulations checks
and thus for whom the manipulation of duration was arguably influencing strength in the
intended direction, a more robust picture emerged. For d′, the main effect of Item Strength
was significant, F (1, 43) = 94.61, MSE = 0.05, p < 0.001, η2

p = 0.69, BFinclusion > 1000.
This is of course unsurprising, because the effect was robust in the full sample and this
subsample was selected based on the individual strength effects. The Mixed/Pure main
effect was not significant, F (1, 43) = 0.40, MSE = 0.09, p = 0.53, η2

p = 0.009, BFinclusion =
0.26.

The effect of interest, the interaction, was now quite robust, F (1, 43) = 17.03,
MSE = 0.04, p < 0.001, η2

p = 0.28, BFinclusion = 513.
Breaking this down, for hit rates, the main effect of Item Strength was significant,

F (1, 43) = 151.05, MSE = 0.003, p < 0.001, η2
p = 0.78, BFinclusion > 1000. The main effect

of Mixed/Pure was not significant but also inconclusive, F (1, 43) = 2.01, MSE = 0.003,
p = 0.16, η2

p = 0.04, BFinclusion = 0.57. Finally, the interaction was also not significant nor
conclusive, F (1, 43) = 2.12, MSE = 0.002, p = 0.152, η2

p = 0.05, BFinclusion = 0.99.
For false alarms, the main effect of the three-level factor was significant, F (1.8, 79) =

8.63, MSE = 0.003, p < 0.001, η2
p = 0.17, BFinclusion = 66, suggesting the effects on d′ are

more driven by false alarms than by hits. Post-hoc pairwise comparisons with the Holm
correction revealed significantly more false alarms for Pure-Weak than Pure-Strong lists
(p < 0.001, BF10 > 1000), but both other comparisons fell just short of significant (Mixed
> Pure-Strong, p = 0.056, BF10 = 2.93; Mixed < Pure-Weak, p = 0.059, BF10 = 0.90.

The log of the ratio of ratios was nearly significantly different than zero (i.e., log(1)),
based on a t test, t(43) = −1.31, p = 0.11 and significant based on a Wilcoxon test
(p = 0.011) although with an inconclusive BF10 = 0.57. Comparing the raw RoR to 0.88
was non-significant based on a t test and a nearly favoured null BF10 = 0.34. BF10 = 0.36.
In other words, in the subsample that passed the manipulation check, our findings are
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Experiment 1 (all participants)
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Experiment 1 (participants passing manipulation checks)
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Experiment 2 (all participants)
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Experiment 2 (participants passing manipulation checks)
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Figure 5

Accuracy data for both experiments, plotting sensitivity (d′), hit rate and false alarm rate
(note that for mixed lists, lures are not tied to a particular item-strength). Top two rows:
Experiment 1. Bottom two rows: Experiment 2. First and third rows plot data for all
participants; second and fourth rows plot data for participants who passed both manipulation
checks: long duration > than short duration in mixed lists and in pure lists, respectively.
Error bars plot 95% confidence intervals based on standard error of the mean.
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consistent with those of Ratcliff and colleagues: a robust interaction and a ratio of ratios
clearly under 1.

As a final check, the benefit of strong over weak items in pure lists still did not
covary with the benefit of strong over weak items in mixed lists, across participants for
the subset who passed the manipulation checks. This was the case for d′, r(42) = 0.15,
p = 0.33, BF10 = 0.19 and for hit rate, r(42) = −0.136, p = 0.38, BF10 = 0.17.

Mirror effect. The hit rate was still greater in pure-strong than pure-weak lists,
t(45) = 7.77, p < 0.001, BF10 > 1000 and the false-alarm rate exhibited the opposite
change, now significant, t(45) = −3.97, p < 0.001, BF10 = 100.83, confirming a basic
mirror effect. Next we asked if the asymmetry is still present, which it was. The change
in the hit rate was significantly greater than the change in false-alarm rate, t(45) = 3.18,
p = 0.0027, BF10 = 12.16.

Response times and deep processing

Our account of the manipulation of duration rests upon the assumption that deeper
features take longer to process, resulting in more deep features encoded for long-duration
(strong) items. We assume the participant attentionally subsets the probe similarly. This
implies a speed-accuracy tradeoff at test. If deep features are available, they should afford
more diagnostic evidence but the cost is that they take longer to process. This leads to
the prediction that for pure-strong lists, there should be longer correct responses than for
pure-weak lists. Hits and correct rejections are therefore expected to have longer mean
response times in pure-strong than in pure-weak lists. That said, if participants have some
metaknowledge, they might seek that speed-accuracy tradeoff in general in pure-strong lists
and less so in pure-weak lists, so error responses may show the same response-time difference.
For mixed lists, it is harder to derive predictions, but to the degree that participants seek
a speed-accuracy tradeoff (due to the presence of strong items on the list), there should
be some excess hits with long response-times (note that lures are not tied to an encoding
strength in mixed lists). The following analyses were not pre-registered and should be read
as exploratory.

Figure 6 plots the response times (median for each participant in each trial type) for
participants who passed the manipulation checks. Aligning with the predictions, response
times on pure-strong lists were longer for all response types, significantly for all but correct
rejections and supported by a Bayes factor for misses and false alarms (Hits: t(43) = 2.48,
p = 0.017, BF10 = 2.50; Misses: t(43) = 2.76, p = 0.009, BF10 = 4.51; False alarms: t(42) =
2.90, p = 0.006, BF10 = 6.25; Correct rejections: t(43) = 1.69, p = 0.098, BF10 = 0.61).
This was somewhat corroborated when all participants were analyzed, apart from false
alarm times which were inconclusive here (Hits: t(100) = 3.01, p = 0.003, BF10 = 7.46;
Misses: t(100) = 1.81, p = 0.073, BF10 = 0.53; False alarms: t(98) = 2.42, p = 0.018,
BF10 = 1.76; Correct rejections: t(100) = 1.01, p = 0.32, BF10 = 0.18).

Overlap between asymmetric mirror effects and inverted list-strength effects

With the subset of participants who passed both manipulation-checks, we examined
the asymmetry of the mirror effect (ω, defined in the methods) in pure lists only, for
participants depending on whether their RoR was above or below 1. Mean asymmetry
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Experiment 1 (participants passing the manipulation checks)
a Hits b Misses

Mixed Lists Pure Lists
0

500

1000

1500

R
e

s
p

o
n

s
e

 T
im

e
 [

m
s
]

Strong Item

Weak Item

Mixed Lists Pure Lists
0

500

1000

1500

R
e

s
p

o
n

s
e

 T
im

e
 [

m
s
]

Strong Item

Weak Item

c False Alarms d Correct Rejections

Mixed Lists Pure Lists
0

500

1000

1500

R
e

s
p

o
n

s
e

 T
im

e
 [

m
s
]

Mixed Lists Pure Lists
0

500

1000

1500

R
e

s
p

o
n

s
e

 T
im

e
 [

m
s
]

Experiment 2 (participants passing the manipulation checks)
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Figure 6

Response times for both experiments for participants who passed the manipulation checks.
The median was computed for each participant. Note that one participant was excluded from
the false-alarm analyses for having no false alarms. Also note that for lure probes (false
alarms and correct rejections), item-strength is only meaningful on pure lists. Error bars
plot 95% confidence intervals based on standard error of the mean.
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was 0.061 (95% CI=[0.0230, 0.0995]) and 0.026 (95% CI=[–0.0238, 0.0767]) for RoR<1
and RoR> 1, respectively. Although this is in the expected direction, the difference was
not significant, t(42) = 1.08, p = 0.29, BF10 = 0.50. This may be due to the small
(sub)sample size of the RoR> 1 group (N = 13) versus N = 31 with inverted RoRs).
Individually, for the RoR<1 group, the mirror effect index was significantly asymmetric,
t(30) = 3.14, p = 0.0038, BF10 = 10.16 but not for the RoR> 1 group, t(12) = 1.03,
p = 0.32, BF10 = 0.44.

Single-condition symmetry

While not a strong prediction, the simulations we presented produced approximately
equal hit and correct-rejection rates as can be seen in Figure 3b, when the shallow features
could not be disregarded as well as in Figure 3a, where the model can disregard the shal-
low features on pure-strong lists when there were a lot of sparse features attended. This
symmetry breaks down when the model attends to only a small number of deep, sparsely
subsetted features, which can be seen toward the left of Figure 3a. In these figures, the “S”
condition was simulated as though it comprised only attended shallow features and no deep
features. Our 1 s and 2 s conditions are probably a mix of “S” features attended plus some
number of “D” features. So the weak condition should be more like a “D” condition (solid
lines) with parameters toward left of the figure and the strong condition relatively more
toward the right. For both conditions, we expect the correct-rejection rate to be greater
than the hit rate. The prediction is that for the strong condition, the hit rate will be closer
to the correct-rejection rate than for the weak condition. As pre-registered for Experi-
ment 1, the hit rate was less than the correct-rejection rate for all participants, pure-strong
lists, t(100) = −4.37, p < 0.0001, BF10 = 555.43 and for pure-weak lists, t(100) = −6.10,
p < 0.0001, BF10 > 1000 and the difference was significantly smaller for pure-strong than
for pure-weak lists, t(100) = −3.53, p = 0.0006, BF10 = 33.80, consistent with the simu-
lations. An exploratory follow-up with only participants passing both manipulation checks
produced the same pattern; pure-strong, t(43) = −5.52, p < 0.0001, BF10 = 9718.71;
pure-weak t(43) = −7.02, p < 0.0001, BF10 > 1000; and the difference, t(43) = −3.24,
p = 0.0023, BF10 = 14.07.

Discussion of Experiment 1

Comparing Table 1b and 1c to 1d, it is evident that despite some minor differences
in the materials and procedures, our accuracy values come close to those of Ratcliff et al.
(1990). Our data are clearly noisier, which may be due to the motivation of the partici-
pants. Our participants were recruited online and participated in a single session with no
social pressure (i.e., no direct interaction with a human researcher). Ratcliff and colleagues
collected data from a smaller number of participants, but in person, and notably, each
participant did several sessions. These factors may have provided added incentive for the
participants to engage earnestly in the task, and may also have selected for participants
who were interested in performing well. The noisiness of our data is evident in the high
number of participants with chance or below chance performance overall. More seriously:
more than half of our participants showed nominally reverse effects of stimulus duration in
either pure lists or mixed lists or both! The premise of a list-strength effect or strength-
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based mirror effect experiment is that one is manipulating encoding “strength.” Although
that may be arguable, at minimum the stronger condition should produce better memory
than the weaker condition. The central question, whether there is an interaction between
item-strength and list composition, is noised up if participants are included who did not
respond to the intended strength manipulation or confounded by participants who showed
a reverse effect. This may very well be entirely due to noise, which was the main moti-
vation for running Experiment 2. This is indeed our view, having examined the results of
Experiment 2, which follows.

Despite the noisiness of the data, Experiment 1 did produce a small-but-significant
(also small through the lens of the inconclusive Bayes Factor) inversion of the list-strength
effect. When restricted to participants passing both manipulation checks, the inverted list-
strength effect became extremely robust. The inversion was driven more by false alarms than
by hits, consistent with the simulations (Figure 3). Finally, consistent with an assumption
of our attentional subsetting theory of how stimulus duration works, there was some post-
hoc evidence that response times were longer in pure-strong lists, which may be due to the
deeper, more diagnostic features taking longer to process.

Experiment 2: A larger manipulation of strength

Experiment 1 replicated the inverted list-strength effect, which our attentional sub-
setting model of duration manipulations can explain. However, given the noisiness of the
data, we conducted a second experiment with the aim of making the manipulation of
strength more pronounced, to see if we could obtain an inverted list-strength effect un-
der conditions that differed from those of Ratcliff and colleagues’. We looked to attentional
subsetting theory as a guide. First, we note that the model figures already show that the
inversion (RoR<1) is a fickle result that is only produced in sweet-spots of the parame-
ter space. If the weak condition were too much weaker, or the strong condition too much
stronger, a near-null or even upright list-strength effect would be expected. In fact, Ratcliff
et al. (1990) designed their second experiment with the same goal: to make the manipulation
of strength more pronounced. But they made both the weak and strong condition longer;
the short duration was 2000 ms and the long duration was 6000 ms. Our example model
output (Figure 2) makes it clear that this would likely produce an upright list-strength ef-
fect, which their experiment did (RoR=1.10). To elaborate, if the 2000 ms duration already
allows participants to process a number of deep, sparsely subsetted features, then both the
short and long duration conditions are now squarely within that deep, sparse regime. There
should be very little feature overlap. Although not zero, the false-alarm rates reduced from
around 0.22 in their first experiment down to around 0.16 in their second experiment. If
participants were able to disregard shallow features in their first experiment in 2000 ms
pure lists, they would presumably be disregarding those features in all list types in the
2000 ms/6000 ms experiment. That experiment may have moved away from the regime
that produces inverted list-strength effects.

Rather, if we keep the 2000 ms condition, which presumably provides a mix of
shallow and deep features, but reduce the duration of the short condition to 500 ms, we
thought that might reduce the number of deep/sparse features encoded during the short-
duration items but leave relatively intact their shallow features. We thus predicted not only
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that the strength effect should be larger in both pure and mixed lists, but the inversion of
the list-strength effect should be more robust.

This experiment was pre-registered (pre-registration available at https://osf.io/
y9dbj and data at https://osf.io/39cz8). Analyses that were not pre-registered are de-
noted as exploratory. All materials and procedures were identical to those of Experiment 1
apart from the short duration (500 ms in place of 1000 ms) and the “Too Fast!” bug was
corrected.

Data availability. Data, materials and scripts can be found at https://osf.io/
39cz8.

Methods

Methods were identical to Experiment 1 except the 1000 ms condition was replaced
with 500 ms duration.

Participants. Our initial target sample size was N = 70, on the same basis as
Experiment 1, but now with an upper limit of N = 100 to avoid high cost. We had
planned to collect batches of 10 participants until the Bayes Factor for the critical interaction
(Item Strength×List Type) moved outside the range (1:3, 3:1) but it already was after 73
included participants (a few extra participants were obtained due to some extra posted
slots), so we stopped. To save money, we also implemented an early stopping rule to
ensure that our manipulation of strength was successful. More exactly, if d′(pure-strong) −
d′(pure-weak) > 0.4 (about twice as large as in Experiment 1) after 20 participants (no
manipulation checks but after the basic exclusions based on chance performance, extra-long
breaks and speed-through) data collection would be continued. This criterion was satisfied.

Results

Before manipulation checks

List-strength effect. A repeated-measures ANOVA on d′ (Table 2 and Figure 5)
with design Mixed/Pure × Item Strength[Strong/Weak] revealed a significant main effect
of Item Strength, F (1, 72) = 59.00, MSE = 0.13, p < 0.001, η2

p = 0.45, BFinclusion > 1000.
F (1, 72) = 1.10, MSE = 0.044, p = 0.30, η2

p = .015, although BFinclusion = 1134. Speaking
to the list-strength effect, the interaction was significant and quite robust, F (1, 72) = 18.79,
MSE = 0.068, p < 0.001, η2

p = 0.21, BFinclusion > 1000.
Following up, for Hit Rate, the main effect of Item Strength was significant,

F (1, 72) = 106.17, MSE = 0.005, p < 0.001, η2
p = 0.60, BFinclusion > 1000. The main

effect of Mixed/Pure was not significant, F (1, 72) = 1.80, MSE = 0.003, p = 0.18,
η2

p = 0.02, although BFinclusion = 85.67. The interaction was significant, F (1, 72) = 15.98,
MSE = 0.003, p < 0.001, η2

p = 0.18, BFinclusion = 391.38. For the false alarm rate, now a
one-way ANOVA on a factor with three levels (to avoid duplicating false alarms for “strong”
and “weak” items in mixed lists): Mixed/Pure-Strong/Pure-Weak produced a significant
main effect, F (1.6, 117) = 5.26, MSE = 0.003, p = 0.011, η2

p = 0.068, BFinclusion = 4.42.
Holm-corrected post-hoc t tests found a significant advantage of Pure-Strong over Pure-
Weak lists (p = 0.006, BF10 = 2.86), a nearly significant advantage of Mixed over Pure-
Weak lists (p = 0.055, BF10 = 2.42) and no difference between Pure-Strong and Mixed lists
(p = 0.35, BF10 = 0.23).

https://osf.io/y9dbj
https://osf.io/y9dbj
https://osf.io/39cz8
https://osf.io/39cz8
https://osf.io/39cz8
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a Before the manipulation-checks
Mixed-Long Mixed-Short Pure-Long Pure-Short

Hit Rate 0.69 (0.66, 0.73) 0.63 (0.60, 0.66) 0.71 (0.68, 0.74) 0.60 (0.57, 0.63)
False Alarm Rate 0.28 (0.25, 0.31) 0.28 (0.25, 0.31) 0.27 (0.23, 0.31) 0.30 (0.27, 0.34)
d′ 1.19 (1.03, 1.35) 1.00 (0.87, 1.13) 1.30 (1.11, 1.49) 0.84 (0.71, 0.97)

Mean Ratio of Ratios: 0.68 (0.44, 0.93) Median: 0.71

b Participants who failed a manipulation-check
Mixed-Long Mixed-Short Pure-Long Pure-Short

Hit Rate 0.66 (0.61, 0.71) 0.66 (0.61, 0.71) 0.67 (0.62, 0.73) 0.64 (0.59, 0.69)
False Alarm Rate 0.34 (0.27, 0.41) 0.34 (0.27, 0.41) 0.36 (0.28, 0.43) 0.33 (0.25, 0.40)
d′ 0.89 (0.65, 1.12) 0.89 (0.67, 1.11) 0.90 (0.66, 1.15) 0.89 (0.62, 1.17)

Mean Ratio of Ratios: 0.97 (0.55, 1.39) Median: 0.84

c Participants who pass both manipulation-checks
Mixed-Long Mixed-Short Pure-Long Pure-Short

Hit Rate 0.71 (0.67, 0.75) 0.62 (0.58, 0.66) 0.72 (0.68, 0.77) 0.58 (0.55, 0.62)
False Alarm Rate 0.26 (0.22, 0.29) 0.26 (0.22, 0.29) 0.24 (0.20, 0.28) 0.29 (0.25, 0.33)
d′ 1.32 (1.13, 1.52) 1.04 (0.88, 1.20) 1.47 (1.24, 1.70) 0.82 (0.68, 0.95)

Mean Ratio of Ratios: 0.56 (0.27, 0.85) Median: 0.70
Table 2

Experiment 2: Hit rates, false alarm rates and d′ as a function of List and Item type, as
well as the ratio-of-ratios. Hit rates, false alarm rates and d′ as a function of List (Mixed,
Pure) and Item type (Long: 2000 ms, Short: 500 ms ≡ Strong, Weak), as well as the
ratio-of-ratios. Note that false alarms for mixed lists are simply repeated under the
mixed-long and mixed-short columns, as lure items are not identified with one or the other
duration in mixed lists. In parentheses are the 95% confidence interval based on standard
error of the mean. a) Before the manipulation-checks. b) Participants failing one or both
of the manipulation-checks: d′(Pure-Long)> d′(Pure-Short) and
d′(Mixed-Long)> d′(Mixed-Short). c) Participants passing both manipulation-checks.
Compare with Table 1.
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The ratio of ratios (RoR), which is based on d′, was clearly below 1 for all partic-
ipants except those who failed a manipulation check (Table 2). A t test of the log(RoR)
against zero was significant, t(69) = −4.69, p < 0.001, BF10 > 1000.

Mirror effect. Turning again to the pure lists only, the hit rate was greater in
pure-strong than pure-weak lists, t(72) = 9.50, p < 0.0001, BF10 > 1000. If there were
a mirror effect, this would be paralleled by opposite effect for false alarms; this was was
significant but with an inconclusive Bayes Factor, t(72) = −2.59, p = 0.012, BF10 = 2.86.
The change in the hit rate was significantly greater than the change in false-alarm rate,
t(72) = 6.19, p < 0.001, BF10 > 1000.

With manipulation checks

Learning from Experiment 1, we had pre-registered the plan of conducting addi-
tional analyses with participants who passed the manipulation checks. Figure 4b plots the
cumulative distributions functions of the item-strength effect, d′(Pure-Strong)> d′(Pure-
Weak) and d′(Mixed-Strong)> d′(Mixed-Weak), respectively. Compared to Experiment 1
(panel a), one can see that the minor change in duration of the weak condition resulted in
far fewer participants who nominally failed the manipulation check (Strong<Weak). As in
Experiment 1, the distribution of strength effects is broader for pure than for mixed lists,
with both more big positive strength effects and more negative strength effects.

Although the concern is not as pronounced in this experiment, due to greater signal-
to-noise ratio with respect to the strength manipulation, as with Experiment 1, we report a
second set of analyses restricted to participants who passed both manipulation-checks. First,
however, unlike in Experiment 1, the two strength effects are now related to one another; the
correlation of strength effects on d′ was significant as well as large, r(71) = 0.47, p < 0.001,
BF10 = 582, and likewise for hit rate, r(72) = 0.31, p = 0.008, BF10 = 3.15. The null
correlation obtained in Experiment 1 may have been due to the small effect of the strength
manipulation relative to noise.

Table 2 panels b and c report results for the subset of participants who failed at
least one, or passed both manipulation checks, respectively. As in Experiment 1, for the
group as a whole, those who failed the manipulation check had higher false-alarm rates.

List-strength effect. Illustrated in Figure 5j, for the 51 participants for whom the
manipulation of duration was arguably influencing strength in the intended direction, an
even more robust picture emerged. For d′, the main effect of Item Strength was significant,
F (1, 50) = 115.80, MSE = 0.10, p < 0.001, η2

p = 0.70, BFinclusion > 1000. This is of
course unsurprising, because the effect was robust in the full sample and this subsample
was selected based on the individual strength effects. The Mixed/Pure main effect was
not significant, F (1, 50) = 2.13, MSE = 0.039, p = 0.15, η2

p = 0.041, although although
BFinclusion > 1000. The effect of interest, the interaction, was even more robust than with
the full sample, F (1, 50) = 37.10, MSE = 0.05, p < 0.001, η2

p = 0.43, BFinclusion > 1000.
Breaking this down, for hit rates, the main effect of Item Strength was significant,

F (1, 50) = 211.25, MSE = 0.003, p < 0.001, η2
p = 0.81, BFinclusion > 1000. The main effect

of Mixed/Pure was not significant but also inconclusive, F (1, 50) = 2.42, MSE = 0.003,
p = 0.13, η2

p = 0.05, although BFinclusion = 826. Finally, the interaction was very significant,
F (1, 50) = 21.58, MSE = 0.002, p < 0.001, η2

p = 0.30, BFinclusion > 1000.
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For false alarms, the main effect of the three-level factor was significant, F (1.8, 88) =
14.80, MSE = 0.002, p < 0.001, η2

p = 0.23, BFinclusion > 1000, suggesting the effects on
d′ are driven both by false alarms and hits. Post-hoc pairwise comparisons with the Holm
correction revealed significantly more false alarms for Pure-Weak than Pure-Strong lists
(p < 0.001, BF10 = 720), more false alarms for Mixed than Pure-Weak lists (p = 0.002,
BF10 = 36.77) but the greater false-alarm rate for Mixed versus Pure-Strong lists fell just
short of significance (p = 0.055, BF10 = 1.61).

The log of the ratio of ratios was significantly different than zero (i.e., log(1)), based
on a t test, t(48) = −6.96, p < 0.001 and a Wilcoxon test (p < 0.001), BF10 > 1000.

For the subsample of participants passing both manipulation checks, the correlation
of the strength effect (d′) between mixed and pure lists remained significant, r(49) = 0.51,
p < 0.0001, BF10 = 176.90.

Mirror effect. The hit rate was still greater in pure-strong than pure-weak lists,
t(50) = 12.24, p < 0.001, BF10 > 1000 and the false-alarm rate exhibited the opposite
change was significant, t(50) = −4.61, p < 0.001, BF10 = 720.40, indicating a robust
mirror effect. The change in the hit rate was again significantly greater than the change in
false-alarm rate, t(50) = 5.62, p < 0.0001, BF10 > 1000.

Response times and deep processing

Not pre-registered for Experiment 2, Figure 6 plots the response times (median was
computed for each participant in each trial type) for participants who passed the manip-
ulation checks. Again aligning with the predictions, response times on pure-strong lists
were longer for all response types but hits, significantly and with conclusive Bayes Factor
(Hits: t(50) = 0.39, p = 0.70, BF10 = 0.16; Misses: t(50) = 4.44, p < 0.001, BF10 = 439;
False alarms: t(50) = 3.27, p = 0.0019, BF10 = 15.73; Correct rejections: t(50) = 3.40,
p = 0.0013, BF10 = 22.21). This was corroborated when all participants were analyzed,
although with less conclusive Bayes Factors (Hits: t(72) = −0.75, p = 0.46, BF10 = 0.17;
Misses: t(72) = 2.72, p = 0.0082, BF10 = 3.84; False alarms: t(72) = 2.17, p = 0.033,
BF10 = 1.17; Correct rejections: t(72) = 2.52, p = 0.014, BF10 = 2.43).

Overlap between asymmetric mirror effects and inverted list-strength effects

Of the 51 participants passing both manipulation checks, only 9 had RoR> 1. The
comparison we did for the full sample and in Experiment 1 is thus underpowered. Given
the predominance of RoR<1 in this experiment, those nine participants may have produced
RoR> 1 largely by chance. That said, the co-occurrence of a very robustly inverted list-
strength effect and very pronounced mirror-effect asymmetry in this subsample aligns with
the idea that the two features occur within a common task-space.

Single-condition symmetry

Although not pre-registered for Experiment 2, consistent with the simulations and
Experiment 1, the hit rate was less than the correct-rejection rate for all participants, but a
supported null for pure-strong lists, t(72) = −0.75, p = 0.46, BF10 = 0.17; pure-weak lists,
t(72) = −4.05, p = 0.0001, BF10 = 161.01 and the difference was significantly smaller for
pure-strong than for pure-weak lists, t(72) = −6.19, p < 0.001, BF10 > 1000. The subset
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of participants passing both manipulation checks produced the same pattern except that
the Bayes Factor for pure-strong lists fell short of conclusive; pure-strong, t(50) = −1.55,
p = 0.13, BF10 = 0.47; pure-weak t(50) = −4.57, p < 0.0001, BF10 = 641; and the
difference, t(50) = −5.62, p < 0.0001, BF10 > 1000.

Item analyses (both experiments)

We report analyses of variability across words. Some of the following analyses were
pre-registered in each experiment, but in retrospect, we felt the full sequence of analyses
is necessary to obtain a complete picture of the item-level effects. We advise the reader to
view all these findings as fully exploratory.

A major assumption of our theoretical account of stimulus-duration effects was
that the participant derives the criterion based on real-time processing of the probe item.
Given the existence of effects of stimulus properties, including stimulus-based mirror effects
(Glanzer & Adams, 1985, 1990; Neath et al., 2021), we know that items differ in their diffi-
culty in recognition tasks. There must be item-variability in difficulty at least at the level
of those stimulus properties such as word frequency, concreteness and contextual diversity.
If participants tune their criterion based on characteristics of each individual stimulus, not
only the pattern of hit rate across items should replicate, but also the pattern of false-alarm
rates. We exploited the fact that our two experiments were quite similar in design, differing
only in the stimulus-duration of the weak condition, to test these predictions. Including
only participants who passed both manipulation checks in each experiment, all words had
at least 7 trials as targets and at least 7 trials as lures, so we included all words. The
Pearson correlation of hit rate across words, between the two experiments was significant
and robust, r(998) = 0.268, p < 0.0001, BF10 > 1000. For false alarms, the correlation was
even greater, r(998) = 0.390, p < 0.0001, BF10 > 1000, where R2 = 0.15, indicating that
15% of the variance in false-alarm rate was attributable to item-difficulty effects; this would
seem non-negligible, and suggests that a pre-condition to our account of criterion selection
is met.

Next we can ask whether there is something like a stimulus-based mirror effect at the
item level— rather than the stimulus-class level, as has been previously reported starting
with Glanzer and Adams (1985) because Neath et al. (2021) found separate influences on
hits than false alarms when stimulus-set properties were better controlled. Within each
experiment, we correlated overall hit rate for a word with its overall false-alarm rate, still
collapsing across list types to avoid too much missing data. The correlation was significant
(p < 0.05), and even the expected sign (negative) in Experiment 1, but not significant
in Experiment 2. Both correlations were quite small in magnitude and according to the
Bayes Factors, inconclusive in Experiment 1 and a favoured null in Experiment 2;. HR-
Experiment 1: r(998) = −0.0909, p = 0.004, BF10 = 1.57; Experiment 2: r(998) = 0.0410,
p = 0.195, BF10 = 0.058. This seems to take the conclusions of Neath et al. (2021) further,
suggesting that different factors influence hit rate versus false-alarm rate. This is unlikely
to be due to lacking signal-to-noise ratio since the patterns of hit rate and false-alarm rate
did replicate quite robustly between experiments (results in the previous paragraph). This
is informative with respect to stimulus-based mirror effects, but it neither supports nor
challenges attentional subsetting theory. The theory suggests different factors that could
influence hits differently than false alarms, such as the number of features attended and the
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similarity of those features to other studied items, but the way in which those trade off is
parameter-dependent.

These findings extend prior findings of item effects in old/new recognition. Analyz-
ing lists of 60 monosyllabic words (Cortese et al., 2010) or disyllabic words (Cortese et al.,
2017) presented for 2000 ms each or self-paced, around 1/3 of the variance in hits–false-
alarms was explained by stimulus factors such as word length, frequency, imageability and
orthographic and phonological neighbourhood characteristics and similarity to other items
in their stimulus pool (see Lau et al., 2018 for similar results). This exceeds the between-
experiments variance explained in our analyses. They also tested for an item-level mirror
effect and falsified it. In fact, for mono-syllabic words, Cortese et al. (2010) found a small
but significant positive correlation between hits and false alarms across items (r = .17 and
.15 for 2000 ms/word and self-paced, respectively). With disyllabic words, Cortese et al.
(2017) found a non-significant item-level mirror effect, despite their highly powered datasets
(combined: r = −0.017).

Cox et al. (2018) found item effects that explained similarities and differences be-
tween memory tasks, including one item-factor related to recognition bias and one related
to propensity to be produced as a response in a recall task. These may be closely related
to factors we find to separately influence hit and false-alarm rates. Between-sample consis-
tencies have also been found in the visual domain, with high correlations across complex
visual stimuli measured by hit rate for various categories of images (Isola et al., 2011) and
both hit and false-alarm rate of complex images (Bainbridge, 2020; Bainbridge & Rissman,
2017) and faces (Bainbridge et al., 2013).

Finally, we asked if strength influences hit rate and false-alarm rate in tandem or
independently. We correlated, across items, the difference in hit rate for pure-strong minus
pure-weak lists with the difference in false-alarm rate for pure-strong minus pure-weak
lists. For both experiments, this correlation was non-significant and a supported null effect,
Experiment 1: r(927) = −0.032, p = 0.330, BF10 = 0.042; Experiment 2: r(961) = 0.019,
p = 0.562, BF10 = 0.030. Although not a strong test of the theory, this is consistent with our
assumption that strength (here, stimulus-duration) mainly influences attention to deeper,
sparsely subsetted features and that the shallower features common to both conditions can
be largely disregarded when participants are tested on pure-strong lists.

General Discussion

We developed and extended an attentional subsetting theory of stimulus duration
and tested it with two new experiments. The central assumptions of attentional subsetting
theory (Caplan, 2023; Caplan et al., 2022) are:

Assumption 1) Most features of an item are not attended and thus not encoded; rather,
only a small subset of features are attended and thus encoded.

Assumption 2) These subsets are stimulus-specific; thus, they tend to be different vector
dimensions for different items.

Assumption 3) Given the same task-set (cf. Criss & Shiffrin, 2004), the features subsetted
during study of a stimulus will largely (although not strictly) be the same as those
subsetted when the same stimulus is presented as a recognition probe.
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To separately model hit and false-alarm rates, we have introduced a way in which
the response criterion could be derived from the probe item, itself, adding:

Assumption 4) The participant derives a criterion for each probe item as they process it.

Assumption 5) The criterion is a simple calculation related to the number of features
processed in real-time (e.g., one half).

Critically, our specific assumptions about stimulus-duration are:

Assumption 6) The earliest features attended are “shallow” or “superficial” such as or-
thographic or phonological features (or potentially certain kinds of semantic or elab-
orative features). These early-extracted features are selected from a relatively small
feature subspace, so they cannot be sparsely subsetted. This is the source of confusion
due to feature similarity across items.

Assumption 7) Later features are “deeper” or more “semantic” and as such, are subsetted
from a much larger feature subspace so that attended subsets are sparse vectors within
that deeper subspace. This avoids most of the confusion due to feature overlap.

Assumption 8) In certain circumstances, participants may be able to disregard feature
subspaces, such as orthographic or phonological features when deeper features are
sufficient to support performance. We propose that participants may have a way to
detect the presence of confusion due to superficial features, leading to this kind of
meta-cognitive strategy.

We ran a replication study of the first experiment that was noted to violate the
expected “upright” list-strength effect. The replication was not perfect, but came close
to the original experiment, with some support that we obtained the original inverted list-
strength effect. A second experiment with a larger manipulation of strength produced a
more robust inverted list-strength effect. This was done by reducing the weak condition
from 1000 ms to 500 ms, focusing the weak condition even more on superficial features
that the theory presumes cannot be sparsely subsetted, while the strong condition, left at
2000 ms, gives participants ample time to process deeper features that are sparsely sampled
from a high-dimensional space.

These replications mean that the inverted list-strength effect cannot be swept aside.
Attentional subsetting theory anticipates inverted list-strength effects under certain condi-
tions. Our empirical findings thus offer validation to the theory. That said, we cannot rule
out other accounts of inverted list-strength effects. Yonelinas et al. (1992), for example,
proposed that an upright list-strength effect might be partly due to “rehearsal-borrowing,”
where in a mixed list, strong items draw more rehearsal at the expense of the weak items.
It is possible that we have the opposite kind of rehearsal-borrowing in the mixed lists,
whereby weak items attract compensatory rehearsal, stealing rehearsal resources from the
strong items. As described earlier, the phenomenon of differentiation produces an inverted
list-strength effect. When incorporated into SAM (Shiffrin et al., 1990) or REM (Shiffrin
& Steyvers, 1997), this can approximately offset the coexisting upright list-strength effect.
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In some conditions, it might more than offset the latter and result in a net inverted list-
strength effect (as Ensor et al., 2021 produced; note that this simulation still produced an
upright list-strength effect for hits, which mismatches the data; that said, REM has numer-
ous moving parts which might counterbalance in different ways to match the fine structure
of the data), which our data could test. Differentiation also produces a strength-based mir-
ror effect, so it remains to be seen whether REM includes sufficient flexibility to produce
a net inverted list-strength effect while simultaneously producing a much larger difference
in hit rate between item-strengths than the difference in false alarm rate, as in our two
experiments and Experiment 1 of Ratcliff et al. (1990).

We learned an important pragmatic lesson while analyzing the data. While 1 s ver-
sus 2 s at first seems like a large experimental manipulation (twice as much time to study
the “strong” items as the “weak” items), it produced very small effects on recognition in
the hands of Ratcliff et al. (1990) as well as in our first experiment. The main character-
istics of the original study replicated, so there is no reason to suspect the validity of the
manipulation. However, the small magnitude of the manipulation of stimulus-duration on
behaviour produces a dataset with more noise and less sensitivity than one would like. A
specific problem arose because many of the participants did not even seem to pass a ba-
sic manipulation-check, that the longer duration should produce better memory than the
shorter duration. At worst, it could be possible that some participants are immune to ma-
nipulations of stimulus-duration or have a paradoxical effect, where shorter duration leads
to better memory than longer duration, which would clash with a the basic premise that the
experiment is a manipulation of encoded strength. Experiment 2 produced robust results
and far fewer violations of the manipulation-checks, so our view is that it is unlikely that
duration acts differently for some participants. However, the weak effect of the manipula-
tion in Experiment 1 is a tiny signal amid a large amount of noise. In this kind of regime,
null effects, even Bayes Factors favouring nulls, may be quite common.

At a conceptual level, however, we would like to draw attention to the overloaded na-
ture of the term “strength” in so-called list-strength effect experiments and strength-based
mirror effect experiments. Using a single term, “strength,” for manipulations as different as
duration, repetition and even qualitatively different processing tasks probably glosses over
a number of very concrete and different mechanisms. For example, early use of the word
“strength” referred to a scalar multiple of an encoded vector; longer vectors will be remem-
bered better. This produces the long-expected “upright” list-strength effect, an advantage
for strong items within mixed lists compared to pure lists, and the corresponding disadvan-
tage for weak items within mixed lists (Caplan, 2023; Ratcliff et al., 1990). Distinct from
that notion of strength, feature-level models have assumed that some forms of “strengthen-
ing” result in more features encoded and/or more features correctly rather than erroneously
encoded (e.g., Caplan, 2023; Nairne, 1990; Shiffrin & Steyvers, 1997) as we have done in our
formulation of stimulus-duration. Strengthening via repetition has been proposed to result
in editing of existing local traces or the formation of a new trace (e.g., Criss, 2006; Ensor
et al., 2021). And finally, some manipulations viewed as “strengthening” may result in the
encoding of additional features potentially of a different type, such as the account of the
production effect by Jamieson et al. (2016), or for different levels of processing, potentially
completely non-overlapping feature subspaces (Caplan, 2023). Digging into these various
specific mechanisms can add significantly more specificity and direct connections to model
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mechanisms than continuing to use “strength” as a catch-all term.
An attentional subsetting formulation of the effects of stimulus-duration.

In REM, stimulus duration is modelled by increasing the probability that each feature is
encoded (Shiffrin & Steyvers, 1997). We have incorporated that assumption into attentional
subsetting theory (Caplan, 2023), but extended it as summarized in the previous section.
Our formulation of stimulus-duration can produce a variety of list-strength effects, includ-
ing near-null, upright/positive and inverted/negative list-strength effects. It can also now
produce a robust strength-based mirror effect but also leads to large changes in hit rates
with very little change in false-alarm rates when superficial features can be disregarded
(or in other paradigms, if subsetting is entirely sparse or the two feature subspaces are
non-overlapping).

Published data, including the data reported here, offer constraints on the putative
timecourse of processing of shallow versus deeper features. The presence of an upright list-
strength effect and pronounced strength-based mirror effect (Yonelinas et al., 1992) when
stimulus-duration was very short (50–200 ms) is consistent with the idea that at these
timescales, superficial features dominate, and very few deep, sparsely subsetted features are
encoded (but the effect may be fragile; an inverted and null list-strength effect was found by
Ratcliff et al., 1994 with 50 ms versus 200 ms and 100 ms versus 400 ms, respectively, with
strength blocked within mixed lists). This book-ends the continuum alongside the second
of experiment of Ratcliff et al. (1990), who varied stimulus-duration between 2000 ms and
6000 ms. Their finding of an upright list-strength effect, although small in magnitude,
along with strength predominantly influencing hit rate with very little effect on false-alarm
rate, is consistent with the idea that well before 2000 ms, participants are already able
to process a number of deep, sparsely subsetted features that they can rely primarily on
those features to make recognition judgements. The first experiment of Ratcliff et al. (1990)
and our Experiment 1 compared 1 s to 2 s stimulus durations. This seems to be close to
the transition point. 1000 ms gives participants some, but not much spare time to encode
deep features. 2000 ms offers more time to encode deep features, but shallow features are
still somewhat useful in making recognition judgements. Consequently, the list-strength
effect is close to null but slightly inverted. Finally, our Experiment 2 produced clearer
results presumably because we designed it to straddle that transition point. Reducing the
short duration to 500 ms may have further reduced the availability of deep features during
encoding.

This may explain why clear, significant and robust inversions of the list-strength
effect in recognition have been so elusive. Figure 2 shows how, according to our model,
the inverted list-strength effect is a fragile finding, that is highly parameter-dependent.
Comparing 500 ms to 2000 ms durations of visually presented words appears to be a sweet
spot for further understanding inverted list-strength effects.

The assumption that shallower features are processed earlier than deeper features
has some support, and with similar timescales, during the test phase of recognition exper-
iments using the response-deadline procedure. In a response-deadline experiment, partic-
ipants are trained to make a decision by a particular time following stimulus-onset. For
example, Gardiner et al. (1999) trained participants on response deadlines of 500 ms and
1500 ms. These deadlines are close to the range of durations we investigated (500, 1000 and
2000 ms). When studied with a shallow, “phonemic” processing task (rate how easy it is to
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find a rhyme to the word), the hit rate increased from 0.48 to 0.59 from the short to the long
response deadline. For lists studied with a deeper, “semantic” processing task (rate how
easy it is to find a semantic associate of the word), performance was overall better, but the
increase with longer response deadline was also bigger, with hit rate increasing from 0.56 to
0.77. Mulligan and Hirshman (1995), sampling more response deadlines, found evidence for
levels of processing influencing primarily the asymptotic accuracy (d′) level reached, with
very little influence on evidence-accumulation rate.

Brockdorff and Lamberts (2000) have an interesting take on response-deadline data.
They assumed features are sampled with some probability, but different features had dif-
ferent sampling probabilities per unit time, to explain different timecourses for different
forms of information. Their first target finding was an experiment by Hintzman and Cur-
ran (1994), testing recognition of target words, dissimilar lures and similar lures that varied
only in whether they were singular or plural (frog versus frogs). The results showed a
non-monotonicity in the false-alarm rate to those similar lures: at early response dead-
lines, false-alarms to similar lures increased, then decreased at later deadlines. Hintzman
and Curran (1994) reasoned that this non-monotonicity was evidence of two distinct pro-
cesses used to drive recognition, familiarity, which accumulates early, and recollection, which
is possible only later, that supports a recall-to-reject strategy. Brockdorff and Lamberts
(2000) showed that two processes are not needed to explain the data, and instead proposed
different rates of feature sampling. They adapted the Generalized Context Model (Nosof-
sky, 1986) that had been developed for categorization behaviour. They modelled the word
stimuli with binary vectors of six features, where the sixth feature stood in for plurality.
The model produced the non-monotonic function of false alarms to similar lures by fitting
the sampling probability of the sixth feature to be much lower (about 1/10 smaller) than
the remaining features. Their account has a lot in common with our theory of stimulus
duration. It includes more detailed temporal dynamics which we have omitted, but which
would presumably be compatible with our account. What our theory adds, however, are
two things. First, Brockdorff and Lamberts (2000) had very low-dimensional representa-
tions of stimuli. Such a model would quickly break down if the list length were substantially
greater than 6 (the list length they modelled was 12). They assumed that all features were
encoded, and that probabilistic sampling only occurred at test. To make this more realistic
and add probabilistic sampling, increasing the vector dimensionality would have the same
problem as Glanzer et al. (1993), for example, that the chance of randomly sampling the
same features at test that were encoded becomes quite small. In our framework, a subset
of features is stored, but they will tend to be similar upon repeated presentations of an
item, including between a study and a test trial. This reiteration is what supports high
performance levels even while item dimensionality increases. Second, we add the idea that
later-sampled features will tend to be sparse, derived from a high-dimensional feature-space.

Our theory suggests an addendum to the Brockdorff and Lamberts (2000) account of
the Hintzman and Curran (1994) data, which in a sense, harmonizes the two accounts. We
assume that later-attended features tend to be more sparse. Two stimuli differing only in one
letter, frog and frogs, are highly similar within the orthographic feature-space, since they
have almost identical spelling. What is retrieved later is not the letter ‘s’ or its omission,
but semantic or imagery information as the participant more deeply contemplates a frog
or many frogs. A visual image involving a single frog may be quite dissimilar to a visual
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image of many frogs. This is a concrete way we can understand how semantic of deeper
feature spaces can offer distinctiveness through sparseness that is generally not available in
the more superficial, but earlier processed feature space.

Feature depth or dimensionality of the subspace. In expressing the effect of
feature-space dimensionality, we have used as shorthand the idea that perceptual features
are densely subsetted from a low-dimensional feature space whereas semantic or imagery-
related features are sparsely subsetted from a high-dimensional space. However, there
may be features we would like to think of as “deep” that are nonetheless within a low-
dimensional subspace, such as, perhaps, attributes like animacy, pleasantness, function
(furniture, tool, etc.). The early availability of semantic features in response-deadline data
offers some support for the idea that semantic features are available as rapidly as perceptual
features (Mulligan & Hirshman, 1995) and an early interaction of different levels of features
was expressed by Gibson (1971). Conversely, it is possible that in some conditions, some
perceptual features are sparsely subsetted from within a very large feature space. Along
these lines, Johnson (1975) provided evidence that the whole word can be identified before
all the composite features, such as letters, have been processed. This raises the interesting
possibility that semantic or elaborative information about an item may even feed back to
prioritize attention to particular low-level features of the stimulus. The deeper logic we
present is that as time unfolds, to a large degree, the earlier features will be extracted from
lower-dimensional feature spaces than those that are extracted later. The denseness versus
sparseness of those features determines the form of the list-strength effect.

How duration may differ from repetition. Although both have been described
as manipulations of “strength,” manipulations of spaced repetition may function differently
than manipulations of stimulus-duration. For example, Caplan (2023) suggested that repe-
tition forces more attention to the superficial features, because the additional study time is
also accompanied by a new stimulus-onset. Before noticing the repetition, the participant
must surely need to process its superficial features anew, which may result in stronger en-
coding of superficial features with, say, two presentations at 1 s/word than one presentation
at 2 s/word. Moreover, holding constant total duration, the need to re-process the super-
ficial features upon repetition would displace a few hundred ms of study time that would
otherwise be used to process deeper features. Reduced encoding of deeper features com-
bined with additional obligatory encoding of superficial features may reduce the potential
benefit of disregarding superficial features in pure-strong lists. This may explain why in-
versions of the list-strength effects are rare or non-significant when strength is manipulated
via repeated presentation, and remains to be tested.

The “One-Shot” contextual encoding hypothesis. The “One-Shot” hypoth-
esis, as integrated within the REM framework by Malmberg and Shiffrin (2005) for free
recall, proposes that a fixed amount of context is stored during an initial brief exposure to
an item, typically for at least 1 or 2 seconds, and this storage is deemed sufficient for sup-
porting necessary context information for later retrieval. This was particularly effective in
explaining list-strength effect in free recall. According to their hypothesis, additional study
duration or deeper levels of processing do not substantially increase the amount of context
information stored beyond this initial “shot”; instead, they enhance content knowledge,
such as meanings and associations. According to Malmberg and Shiffrin (2005), context
information should continues to accumulate within this timeframe, which suggests that our
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short, 500-ms duration in experiments might encode less context than a 2000-ms duration.
However, the one-shot hypothesis posits that initial brief context capture should suffice for
later retrieval, so it may not be able to explain the inverted list-strength effect observed
in our experiments. When differentiation based on item-features becomes dominant, as
proposed, it could lead to inverted list-strength effects, especially under conditions where
context features are either down-weighted or not used, which might be the case in our ex-
periments. This mismatch between their hypothesis and observed data suggests a need to
further explore whether variations in context encoding between short and long durations
might underpin the mirror effects and inverted list-strength effects observed, calling for a
nuanced application or reconsideration of the one-shot hypothesis in these contexts.

The list-strength effect. Despite the label, “null list-strength effect,” there is in
fact a range of published list-strength effects, including inversions (Ratcliff et al., 1990,
1994; Sahakyan, 2019). Our modelling and findings suggest these cannot be dismissed as
due to noise, but must be taken seriously and addressed by models.

Local-trace differentiation models, including REM, are able to produce upright list-
strength effects. Specifically, Criss (2006) noted that for spaced repetitions, the null list-
strength effect occurs because of the assumption (Shiffrin & Steyvers, 1997) that upon
repetition, the participant notices the repetition and this allows the participant/model to
edit the earlier trace rather than forming a new one. Additional features can be stored
(and in some versions of REM, features that were copied erroneously can be corrected). As
Criss (2006) and Ensor et al. (2021) demonstrated, if the participant does not notice the
repetition, they presumably form a new local trace for the same item instead of editing.
This reduces the benefit of the differentiation process, so a list-strength effect emerges.
Inspiration for this came from Sahakyan (2019) and Sahakyan and Malmberg (2018) who
found pronounced list-strength effects in recognition under divided attention. We do not rule
out the trace-editing account, so it may very well be valid. But it may be straight-forward to
explain effects of divided attention without local traces or notions of participants “noticing”
repetitions. A plausible account of divided attention is that it reduces the participant’s
ability to attend to deeper features, or at least sparsely subsetted features. This would place
the divided-attention data within the regime of very short presentation duration (Yonelinas
et al., 1992) or our account of the production effect (MacLeod et al., 2010), which do
produce pronounced upright list-strength effects (Caplan, 2023; Caplan & Guitard, 2024).

That said, although the trace-editing account has an air of plausibility for spaced
repetitions, it does not immediately seem amenable to manipulations of stimulus-duration.
It does not seem likely that participants would fail to notice an extended duration and
thereby encode two traces rather than one. This leaves it unclear how local-trace differ-
entiation models might explain upright list-strength effects due to strength manipulations
such as reported by Ratcliff et al. (1990), Experiment 2 with 2 s versus 6 s per item, or
by Yonelinas et al. (1992), with 50 ms versus 200 ms per item. Our attentional subset-
ting account expects an upright list-strength effect in the former conditions because the
two strength levels are both within the sparse regime, and in the latter because the two
strength levels are both within the non-sparse regime. Likewise, for the production effect,
it is not obvious why participants might occasionally store two traces for a single presenta-
tion read aloud versus read silently, whereas our attentional subsetting perspective would
anticipate an upright list-strength effect, as is the case (MacLeod et al., 2010), because of
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the assumption that production acts primarily on orthographic or phonological features,
which are not sparsely subsetted.

Moreover, trace-editing does not explain inverted list-strength effects, first reported
as significant by Ratcliff et al. (1990) and now here. But the differentiation mechanism in
REM produces an inverted list-strength effect, which was proposed to approximately cancel
out an upright list-strength effect produced by ambiguity in the context cue. As in most
models, a strong item produces more evidence than a weak item in favour of a hit. But
differentiation means that the strong traces also produce more evidence than weak traces
against the likelihood that a lure item was on the list. The false-alarm rate, therefore, is
positively related to the number of weak items in the list and negatively related to the
number of strong items in the list. This produces an intermediate rate of false alarms
in mixed lists, between pure-strong and pure-weak lists. This in fact does resemble the
pattern of false alarms we observed in our two experiments. The idea that two opposite
list-strength effects coexist leaves open the idea that in cases such as Ratcliff and colleagues
(and our) manipulations of duration, there is a net dominance of the pattern produced
by differentiation. Additional experiments could test the two accounts directly, bearing in
mind that they may both coexist.

Finally, one reason list-strength effects have been so challenging to models is that
the near-null effect in recognition is found despite robust upright list-strength effects in free
recall and cued recall; this contrasting pattern was already shown by Ratcliff et al. (1990).
Briefly, although we have not yet developed attentional subsetting theory for recall tasks,
Caplan (2023) pointed out that clear that positive list-strength effects would generally be
predicted. To summarize: the reason sparse attentional subsetting produces near-null list-
strength effects is because in item recognition, the probe is the item, itself. Given the
item, the model produces the item-specific attentional mask (in many conditions, the same
mask as was produced when first studying the item, in the case of a target). Sparseness
makes overlapping features quite rare, sidestepping most opportunities for other list items to
introduce noise into the judgement. In recall tasks, the probe is an item (cued recall) or an
instruction to recall (free recall; usually it is implied that the participant self-cues with some
sort of representation of context) but the participant’s goal is to find an item to produce as
a response. Without a specific item in hand, there is no item-specific mask. Thus, cueing
with an attentional mask determined by general task-context or plausibly, something like
the union of all attended features during the study phase, there will inevitably be a fan
effect. What makes the task a recall task is precisely what prevents the cue from being
item-specific. Supporting this reasoning, Caplan (2023) indeed found sizeable positive list-
strength effects even in the “sparse” regime when the full vector was used as the recognition
probe. Although Caplan rejected this (in favour of the idea that probes are also masked)
as a plausible model of recognition, it demonstrates the mathematical effect that would
presumably be operating in recall. This account also implies a near-null list-strength effect
for associative recognition; although it is associative like cued recall, because both items
are presented at test, both items could be fully masked. Indeed, associative recognition
produces negligible list-strength effects (Osth & Dennis, 2014, 2015).

Criterion tuned based on the probe, itself. Prior accounts of the strength-
based mirror effect have differed in whether they assume differentiation-based local traces
or criterion shifts. Criterion-shift accounts assume participants use their meta-knowledge
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of the expected distribution of target and lure strengths to set an approximately optimal
criterion between them. Differentiation accounts assume that a stronger trace provides both
more evidence for the corresponding target probe having been studied, and more evidence
for lure probes having not been studied, thus moving hits and false alarms in opposite
directions without invoking any metacognitive strategy. Numerous articles have gone back
and forth over whether participants in fact are able to adjust their criterion for different
types or strengths of items, and whether or not they can make use of knowledge about
expected strength distributions. Attentional subsetting could be entirely compatible with
both accounts, without the need for a new mechanism. But in extending the formulation of
the theory to produce separate estimates of hit rates and false-alarm rates, we noticed an
opportunity, provided by attentional subsetting, to consider a third mechanism. Namely,
we suggest that the participant customizes the criterion for each item, based upon real-time
processing of the item, itself. This retains some desirable characteristics of each of the two
positions. The criterion changes from one item to the next, but the principle by which the
criterion changes may be fixed across an entire list (or block of test trials; see below).

That said, the idea that the criterion changes from one item to the next may seem
at odds with numerous findings that have been viewed as evidence that participants do not
change their criterion, at least within a single list (e.g., Starns et al., 2010; Verde & Rotello,
2007) although they may have this ability because Verde and Rotello (2007) found that
accuracy feedback did induce a criterion shift, as evidenced by a change in false-alarm rates
over the course of multiple test trials. Stretch and Wixted (1998) (continued by Morrell
et al., 2002) tried over several experiments to neutralize or reverse word-frequency effects
on recognition by strengthening (with spaced repetitions) high-frequency items, and then
cueing participants as to the strength/frequency during the recognition probes. Participants
were apparently unable or unwilling to adjust their criterion, given those cues. However,
in separate lists (e.g., different in strength), there was support for a change in criterion.
Corroborating findings were reported by Singer and Wixted (2006). In lists composed of
multiple categories, some categories were studied in one list and the other categories in a list
presented after a delay, making it more recent. Recognition probes were intermixed from
the two lists. The authors thought that the category structure would enable participants to
adjust their criterion based on meta-knowledge of the recency of the category, but findings
were inconsistent with participants making use of that knowledge when the delay was 20 or
40 minutes. When the delay between the two lists was two days, finally there was evidence
of participants using a more lenient criterion for the less recent categories, producing more
false alarms. This result may be evidence of participants scaling their criterion to account
for forgetting, as we speculate about in the future-directions section. However, the lack
of adjustment of the criterion for shorter but still substantial delays (20 and 40 minutes)
suggests that such scaling may often not vary across a set of recognition probes of a single
list. Hicks and Starns (2014) also found little effect of strength-cueing or even performance
feedback, but blocking test trials by strength did seem to induce criterion shifts (see also
Verde & Rotello, 2007). This suggests some adaptation of the participant to their experience
with test probes, although apparently not in response to explicit information about strength
or performance. In contrast, Koop et al. (2019) found a reliable strength-based mirror effect
only after a few trials, and argued that this is not long enough to expect participants to
adjust their criterion.
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In our account, the criterion depends on the number of features of the current probe
that are attended. This is presumably readily accessible information. If the criterion de-
pends primarily on the probe, itself, and how the participant typically processes it, that
would explain why different stimulus classes can have systematically different false-alarm
rates, but also why within a list, across a set of probes, the criterion appears relatively
invariant (with the exception of the blocked strengths of Hicks and Starns, 2014). How-
ever, from one list to another, assumptions about the task or the contents of memory could
change. We have already proposed that in a pure list of strong (long-duration) items, par-
ticipants figure out that they have the luxury of being able to disregard superficial features
such as orthography or phonology, which would otherwise introduce a lot of feature overlap
producing similarity-based confusion. Selective attention in a pure-strong list thus benefits
from this meta-knowledge, and results in fewer features being evaluated— although those
features are more diagnostic because they dwell within a high-dimensional feature space
and are thus sparse. The criterion follows from that, and the false-alarm rate reduces a lot
because the shallow features that produce confusion due to feature overlap are disregarded.
So in our view, the way in which the criterion is calculated may not change, which might
explain the apparent invariance of “the” criterion (although we presume a different criterion
for each probe item). Rather, selective attention influences the set of features attended on
a probe item, which can then produce a downstream effect on the criterion. We think this
is broadly consistent with the findings we just summarized. In other words, the criterion
adapts or varies from one probe to the next, but this is based on selective attention; factors
that influence selective attention, which should usually be invariant over the course of a
list, may influence the set of attended features, and by that route, potentially influence the
final criterion used.

Finally, consider that for lists of mixed strengths, there is a distinction between a
strong and a weak target, but lures are not distinguished by strength, because strength is
determined by processing of the stimulus during the study phase. For a given probe item,
the participant must select the criterion without knowledge of the possible strength. For the
nested model, where the D feature subspace includes the S feature subspace, Caplan (2023)
assumed that when testing mixed lists, the probe item would be based on the D condition,
the greater of the two. This leads to a prediction of no difference in hit rate for strong
items in mixed versus pure lists, but a reduction in hit rate for weak items. The false-alarm
rate should be the same as for pure-strong lists. If some S features can be disregarded, the
hit rate should still change but far less. This does, in fact, resemble our findings (Tables 1
and 2 and Figure 5).

Response times and access speed for shallow versus deep features. A crit-
ical assumption of our model implementation of stimulus-duration was that the shallower,
more fully subsetted features are accessed earlier than the deeper, more sparsely subsetted
features. Paired with our assumption that probe stimuli are processed largely the same as
study items, this led us to expect a speed-accuracy tradeoff, where more processing time,
and thus longer response time, should result in greater accuracy when judgements are based
more often on those deeper features. Ratcliff and Murdock (1976) reported this kind of ef-
fect in a between-subjects manipulation of stimulus duration. In our data, response times
were longer for many probe types following pure-strong than pure-weak lists (note that for
a manipulation of strength via spaced repetitions, Criss, 2010 found response times were
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generally faster for pure-strong than pure-weak lists, so repetition may function differently,
perhaps if shallow features cannot be disregarded, as we suggested above). The main ex-
ception was response times for hits in Experiment 2, which was equivalent for pure-strong
and pure-weak lists, which suggests some additional nuance. Adding to the model a for-
mal process to produce response times, such as the diffusion model (like Criss, 2010; Cox,
submitted; Osth et al., 2017) may shed further light on this. And of course, the response-
time effects may be well explained in numerous other ways, so although we view them as
supportive of our theoretical account of stimulus-duration, they might also be unrelated to
attentional subsetting.

Mirror effects based on stimulus class and at the item level. In the intro-
duction, we cited Neath et al. (2021) to justify a focus on the strength-based mirror effect,
setting aside the older findings of mirror effects when stimulus properties such as word-
frequency were manipulated. This was because Neath et al. (2021) found that when they
put more effort than previous researchers into controlling stimulus characteristics that were
not of interest, manipulations of single item-properties affected predominantly the hit rate
or predominantly the false alarm rate but not both. The main lesson from their findings is
that in manipulations that compare two sets of stimuli, the mirror effect is often mimicked
by two separable effects that happened to both differentiate the two stimulus sets. This
was reinforced by our finding of a null mirror effect at the item-level, corroborating similar
reports by Cortese et al. (2010, 2017).

The Neath et al. (2021) experiments would suggest that there could be two separable
factors influencing primarily hit rate or primarily false alarm rate, respectively. In our
formulation, hit rate is primarily influenced by nC,i (Figure 7). Because θC,i is proportional
to nC,i, items with a greater number of attended features in the test phase will have greater
strengths, which will be partly (but not entirely) offset by the threshold being greater,
increasing the hit rate for the item.

False alarms are produced by accidental matches of attended features of the probe
item to features stored in memory— i.e., attended because of the presence of other items.
If attentional subsetting were strictly sparse, this would never happen— there would be no
false alarms at all, thus no mirror effect. So if items are processed primarily within a large,
sparsely subsetted feature space, we expect to see some items with a higher hit rate than
others, but with no associated reduction in false-alarms— because the false-alarm rate is
virtually zero. In most recognition experiments (presumably tuned based on experimenter’s
intuition, precedent, and the desire to calibrate the task to achieve sensitivity), participants
do make false alarms. If the attentional subsetting framework is valid, then the fact that
participants produce false alarms at any reasonable rate suggests that features common to
the lure items do get encoded. Encoding of features attended in a lure item will happen when
there are common features across the stimuli and those features are attended (subsetted).
This will occur frequently when the attended feature space is relatively low-dimensional,
so that subsetting cannot be sparse, such as with shallow encoding conditions or short
stimulus duration during study. Matching features to lure items will also be more prevalent
for stimuli that have more features in common with other words in the stimulus pool, which
is how word frequency has been modelled (e.g., Criss & Shiffrin, 2004; Malmberg et al.,
2002; Shiffrin & Steyvers, 1997). If other factors are controlled, high-frequency items would
be expected to produce more false alarms, with little effect on hit rate, which is the pattern
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Figure 7

Schematic depiction of how the number of attentional subsetted features might vary across
items. Grey unfilled circles denote features that are not attended (and thus not encoded).
The horizontal line separates the shallow feature-subspace (above) from the deep feature-
subspace (below). For simplicity, items A through E have increasingly more attended deep
features.

reported by Neath et al. (2021) in their third experiment. When uncontrolled for other
stimulus properties, their fourth experiment replicating a classic manipulation of word-
frequency produced a mirror effect, which we would presume is because an uncontrolled
factor resulted in greater nC,i for items within the “high-frequency” set compared to the
“low-frequency” set.

When we treated our two experiments roughly as replications of each other, we
found that there was indeed quite a lot of replication of both hit rate and false-alarm rate
across items, between experiments, replicating verbal recognition studies, resonating with
what has been found in both hit rate and false-alarm rate of continuous recognition of faces
and complex visual images (Bainbridge, 2020; Bainbridge & Rissman, 2017; Bainbridge
et al., 2013; Isola et al., 2011). That suggests that in tasks similar to these, item-difficulty
effects are strong relative to subject-variability. Especially the reproducibility of the pattern
of false-alarms across words aligns well with our assumption that participants tune their
criterion based on the current probe word, so that the criterion effectively changes from one
word to the next. The remaining item-level analyses weakened the argument that a single
factor influences both hit and false-alarm rates in tandem, and that strength manipulations
also influence hits differently than false-alarms across items.
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Future direction: forgetting and scaling the criterion by an estimate of
the dimensionality of the memory. In deriving the mirror effect, we avoided making
use of any meta-knowledge of the memory, itself, but in practice, some knowledge of the
characteristics of the memory would be necessary to adjust the criterion effectively. There
is evidence that participants have some knowledge of ensemble properties of stimuli (e.g.,
Dubé et al., 2019; Tong & Dubé, 2022a, 2022b; Tong et al., 2019). For simplicity, we have
omitted forgetting from the model. Forgetting would have the tendency to either reduce the
amplitude of each encoding term in the memory (multiplication by a scalar) or potentially
the degradation of individual features, so the number of encoded features of any given item
would be effectively reduced. Without adjusting the criterion to account for forgetting,
the current heuristic would eventually place the criterion too high, leading to a high (or
100%) rate of misses. Movement in this direction was seen by Singer and Wixted (2006) in
probe sets mixed from one list just studied and a second list studied 20 or 40 minutes prior,
where lists were composed of different categories. For any non-negligible delay, the heuristic
would need to be adjusted downward to reflect this, but this might be achieved simply by a
scalar factor, not demanding any detailed knowledge of the forms of the expected strength
distributions. In their last two experiments, Singer and Wixted (2006) used a delay of 48 h
and found evidence for a criterion adjustment depending on list-recency. So for delays up
to tens of minutes, participants may not substantially adjust their criterion, but for long
enough delays, they evidently do. In the current formalism, there are two ways in which
forgetting might perturb the memory of a list.

First, suppose that forgetting results simply in a gain factor, scaling down the overall
length of the memory vector,

mT = ρ(T )m, (8)

where ρ(T ) < 1 and is a monotonic function decreasing with increasing study–test time, T .
Scaling the criterion the same way,

θT = ρ(T )θ = ρ(T )1
2

nC,i

n
(9)

will compensate for this, placing the criterion midway between the expected mean strength
for targets and lures, taking into account forgetting. Moreover, ρ(T ) can be derived with
a simple calculation from mT . Without further assumptions, the full dimensionality of the
memory is n1 = nC for one item (where now nC = E [nC,i], the average across items) and
about n2 = 2nC − n2

C/n for 2 items. This iterates, such that nm = mnC − nm−1nC/n.
In the sparse limit (small nC/n), nL = LnC , linear in nC . But the more we deviate
from sparseness, the more overlap there will be in attentional masks across items, and the
lower nm will be. Thus, nL is a sublinear function of L and of nC . If the participant has
a reasonable estimate of L, and of nC (using the nC,i for the current probe item), then
ρT ∼ (nL/L)/nC,i, where nL is the number of non-zero (attended) features in the memory.

Second, suppose that forgetting results not in a scaling down of m, but of zeroing out
of features with some probability, ΠT , dependent on study–test time, T . In this scenario,
nL ≃ (1 − ΠT )LnC . Thus, if the participant has access to an estimate of the number of
attended features in the memory, that becomes the scale factor.
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Conclusion. In sum, the attentional subsetting account of manipulations of dura-
tion anticipated (retroactively) an inverted list-strength effect. This was in fact a feature
of the first experiment in the long line of results viewed as “null” list-strength effects (Ex-
periment 1 of Ratcliff et al., 1990). We reproduced the inverted list-strength effect in a
replication of that experiment and a follow-up experiment designed to increase the effec-
tiveness of the duration manipulation, suggesting it is not a statistical accident but needs
explaining. This provides support for our model account. We extended attentional subset-
ting theory to model hits and false alarms separately, introducing the idea that participants
customize their response criterion based on the number of features extracted from a probe
stimulus. This avoids past criticisms of criterion-shift account of mirror effects, because
the participant does not need to have unrealistic levels of knowledge of the expected dis-
tributions of matching strengths. And yet, the item-wise customization of the criterion
can explain why it has appeared that participants must flexibly adapt their criterion (or
local-trace differentiation mechanisms are at play). Finally, our theory of duration draws
direct attention to how the dimensionality of the attended feature space may unfold over the
course of processing of a stimulus from dense to sparse subsetting. This account is compat-
ible with a range of models that assume a vector representation of items: The attentional
mask can be applied by elementwise multiplication, to most vector representations with
similar effect. Then the subsequent computations applied to the vector (e.g., echo strength
for MINERVA 2 or likelihood ratio for REM) can be carried out as usual. The threshold
would need to be adapted to align with the nonlinearities of nonlinear matching functions.
It will therefore be interesting, in the future, to investigate how attentional subsetting might
be productively combined with current well developed and more complete local trace and
global matching models.
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Appendix: Preliminary Models
Appendix

To increase the coverage of the theory, we derive hit and false alarm rates for two variants
of the model as formulated by Caplan (2023) with potential application to experimental
manipulations other than stimulus duration, such as two different processing tasks. In
the first variant, the probe consists of the full lexicon vector (length n). In the second,
attentional subsetting is applied to the recognition probe.

Preliminary model 1: no attentional subsetting of the probe

Using solutions from Caplan (2023), we start with the simplest case, where we (un-
realistically) assume the full vector representation of the probe is matched against memory.
Each item stored in memory contributes a term to the variances. We denote the variance
due to the dot produce a target item with itself Vxx, and the variance due to the dot product
of the probe item (target or lure) with each other list item Vxy. We find

Vxx = 2nC/n2 (A1)
Vxy = nC/n2, y ̸= x. (A2)

Targets will be subject to one Vxx term (itself) and L − 1 Vxy terms (all other studied
items). Lures will be subject to L Vxy terms since no studied item is an exact match. The
expressions for the variances are thus

σ2
target = Vxx + (L − 1)Vxy (A3)

σ2
lure = LVxy. (A4)

Thus, σ2
target = 2nC/n2 + (L − 1)nC/n2 = (L + 1)nC/n2 and σ2

lure = LnC/n2. For large
L, the variances approach equality. The numerator within the erf() function for hits is
nC/2n − nC/n = −nC/2n and for lures is simply nc/2n, and note that n in the numerator
and denominator of the fraction cancel.

P (hit) = 1 −
(

0.5 + 0.5 erf
(

− 1
2
√

2

√
nC

L + 1

))
(A5)

P (false alarm) = 1 −
(

0.5 + 0.5 erf
( 1

2
√

2

√
nC

L

))
(A6)

The absence of n in these expressions offers some realism to the model; the full set of
knowledge (full vector representation of an item) is immaterial to hit versus false-alarm
rates. What matters is the dimensionality of the attentional masks, as well as list length.

Importantly, without differentiation and without knowledge of the expected distri-
butions of strengths, this produces a mirror effect. These closed-form expressions show with
θ chosen as the midpoint between the expected matching strength for lures (0) and that for
the probe (which we here are assuming is determined by the participant’s own immediate
meta-knowledge of the approximate number of attended features of the probe), that the
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Figure A1

Hit rate (blue) and false alarm rate (red) as a function of the number of item features
subsetted by selective attention (nC), for list lengths varying from L = 5 items (thinnest
line) to L = 100 items (thickest line), in steps of 5 items. (a) Full-probe model. (b) Masked-
probe model.

chief difference between the hit rate and the false alarm rate is the sign of the expression
within the erf(). Given that erf(x) = −erf(x), as L becomes arbitrarily large, as we vary
nC , P (false alarm) will move nearly symmetrically in the opposite direction to P (hit), a
nearly symmetric mirror effect (Figure A1a). For small L, the

√
L + 1 versus

√
L in the de-

nominator means that a given change in nC will produce a larger shift in the P (false alarm)
than in P (hit), a lopsided mirror effect. If we add realism by assuming participants either
under-estimate or over-estimate the number of features they attend, the mirror effect can
easily become more asymmetric, resembling published data.

Preliminary model 2: masked probe

The second model considered by Caplan (2023) adds realism by assuming that the
probe is attentionally subsetted in the identical manner as it would have been had it been
an item presented for study. Bearing in mind that we are considering pure lists only (for the
purposes of the mirror effect), it is plausible to presume the participant processes the probe
stimulus in the same manner as they had been doing generally during the study phase.
This also suggests how the participant might have more or less direct access to nC . Having
processed a probe item, the participant might a) have conscious access to the number of
features extracted from the stimulus (with expectation equal to nC) or b) have the ability
to compute ν = ||wC,x ⊗ fx||, where fx is the probe item, wC,x is the item-specific mask in
condition C, and || · || is the norm (vector-length). Because E [ν] = nC/n, if θ = ν/2, overall
this will result in θ being set midway between the expected target and lure distributions.
If participants derive θ in real-time for each probe, this would optimize the criterion at the
item-level, and might influence accuracy to the extent that nC varies across items.

The masked model produced a (near-)null list-strength effect when nC was low
enough relative to n to produce sparse subsets. This was because the masked probe was
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unlikely to overlap with other list items. As nC increased, mask overlap was more probable,
and list-strength effects became large. The proposed criterion, midway between µtarget and
µlure, is still θC = nC/2n, because the mean matching strengths are identical for the masked
probe as for the full probe. Only the variances need to be adjusted for the variance due to
cross-terms. These cross-terms are non-zero only where there is chance overlap between the
mask of the probe with the mask of other items, ΩCC = n2

C/n features. Each non-target
list item contributes Vxy = n2

C/n3 to the variance. Targets are subject to L − 1 of these
(plus variance due to the encoded target item, itself) and lures are subject to the full L of
these. Thus:

σ2
target = 2nC

n2 + (L − 1)n2
C

n3 (A7)

σ2
lure = L

n2
C

n3 . (A8)

Substituting these expressions for the means and variances into equations 6 and 7:

P (hit) = 1 −
(

0.5 + 0.5 erf
(

−√
nC

2
√

2(2 + (L − 1)nC/n)

))
(A9)

P (false alarm) = 1 −
(

0.5 + 0.5 erf
( √

nC

2
√

2
√

LnC/n

))
= 1 −

(
0.5 + 0.5 erf

(
1

2
√

2
√

L/n

))
.(A10)

The √
nC in the numerator and denominator cancel in the expression for false alarms. In

other words, although hit rate increases with increasing nC , the false alarm rate is invariant
in nC (although it increases with L and decreases with n), so we have lost the mirror effect.

Interestingly, consider the effect of list length. The false-alarm rate is influenced by√
L in the denominator of the expression inside the erf(). For the hit rate, (L−1) multiplies

nC/n but is then added to the number 2. If we vary L but hold nC fixed, recalling that our
assumption is that in general, nC ≪ n, (L − 1)nC/n ≪ 2 so varying L will have a negligible
effect. The list-length effect is thus expected to have a substantial influence on false-alarms
with very little effect on hits. This is what Ratcliff et al. (1990) found in their paradigm
with lists composed of many categories, where “list-length” was effectively manipulated
by varying the number of items within a given category. A strength manipulation (via
spaced repetition) produced a large shift in hit rate with little effect on false-alarm rate,
also resembling this model variant (the dependence on nC in Figure A1b).
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