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Abstract
Although knowledge is extremely high-dimensional, human episodic mem-
ory performance appears extremely low-dimensional, focused largely on
stimulus-features that distinguish list items from one another. A cognitively
plausible way this tension could be addressed is if selective attention selects
a small number of features from each item. I consider an ongoing debate
about whether stronger items (better encoded) interfere more than weaker
items (less well encoded) with probe items during old/new episodic recogni-
tion judgements. This is called the list-strength effect, concerning whether
or not effects of encoding strength are larger in lists of mixed strengths
than in pure lists of a single strength. Analytic derivations with Ander-
son’s (1970) matched filter model show how storing only a small subset of
features within high-dimensional representations, and assuming those same
subsets tend to reiterate themselves item-wise at test, can support high
recognition performance. In the sparse regime, the model produces a list-
strength effect that is small in magnitude, resembling previous findings of so-
called null list-strength effects. When the attended feature space is compact,
such as for phonological features, attentional subsetting cannot be sparse.
This introduces non-negligible cross-talk from other list items, producing
a large-magnitude list-strength effect, similar to what is observed for the
production effect (better recognition when reading aloud). This continuum-
based account implies the existence of a continuous range of magnitudes
of list-composition effects, including occasional inverted list-strength effects.
This lays the foundation for propagating effects of task-relevant attention
to sparse subsets of features through a broad range of models of memory
behaviour.

Keywords: Matched filter model, selective attention, recognition memory,
list-strength effect, production effect
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Introduction

Many mathematical memory models treat an item in a memory task as a list of
features comprising a vector (Figure 1a). Features are deliberately kept abstract, for math-
ematical convenience and to emphasize the distributed nature of representations (Murdock,
1995b), but also to express the generality of the functioning of models across a hypothetical
range of features. There are some interesting exceptions to this, where modellers have in-
corporated assumptions about how various features might function differently in a model.
One important example is the Feature Model (Nairne, 1990), which distinguishes features
of an item that are present every time an item is presented, from features that are specific
to the modality or form in which the item was presented (Cyr et al., 2021; Saint-Aubin
et al., 2021). Another example is MINERVA 2, where modellers have incorporated assump-
tions about ranges of features being specific to particular conditions such as particular ways
participants process word stimuli (Hintzman, 1988; Jamieson et al., 2016). Retrieving Ef-
fectively from Memory (REM) can have a range of features dedicated to associative features
between two items (Cox & Shiffrin, 2017; Criss & Shiffrin, 2005).

Caplan et al. (2022) introduced the idea that different features of an item’s repre-
sentation might be activated when the item is accompanied by one particular item versus
a different particular item (Tversky, 1977; see examples below). I take this idea further. I
assume that participants do not attend to the vast majority of features of an item, which
seems unwieldy and implausible. Rather, they attend to a small subset of features (cf.
Glanzer et al., 1993), and only those subsetted features can be encoded into an episodic
memory (Figure 1b,c). What drives attention could be quite specific, and one can often
specify something about what determines the set of attended features. Such factors can
include task set, due to explicit instructions or participants’ prior experience, where the
model (subject) has some idea of what to expect in the experiment and which stimulus
features are relevant versus irrelevant (e.g., Medin et al., 1993; Osgood, 1949), as well as
context (e.g., Gagné & Spalding, 2007) and recent experience. My main focus here is how
the set of attended features may depend on how the participant processes an item.

What enables a model with sparsely encoded items to excel at episodic recognition
is that I assume (as Caplan et al., 2022), that at test, roughly the same feature-subset
is attended in target probe items (Figure 5), either because the participant re-processes
the item as during the study phase, or because the participant’s assumption about which
features are relevant carries over to the test phase. For example, if the participant forms a
visual image of a word, turtle, during study, the chances are the features of that image and
its main details will be similar if recreated on the fly at test. This achieves several things.
It results in relatively sparse representations stored in an episodic memory. It does so while
not eliminating the cumulative knowledge (entire vector) associated with an item, which I
assume to be stored elsewhere, in a “lexicon” or “semantic memory,” as models of episodic
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Figure 1

Schematic illustrations of the model with full probe. In this toy model, there are 20 features
(dimensions); the full vector representation of four items is depicted in (a), with colour
denoting the value of each feature. Condition S (b) results in fewer (here, 5) features at-
tended and thus encoded for each item. Condition D (b) results in twice as many features
stored. In panels (b) and (c), items to the left of the ellipsis (. . . ) are encoded, summating
feature by feature to construct the memory. Unfilled grey circles denote features that are
unattended and thus not encoded. To the right of the ellipsis is an example probe, where
the full representation of item B is presented to the model. It matches some (5) features
contributed by the corresponding encoded vector in condition S, and more (10) but generally
different features in condition D. The dot product entails matching (multiplying) each fea-
ture with all features within the same row and summating them. One can see that the full
probe matches well on the studied item but picks up noise from other studied items within
both the features attended for the item (B) and features that were not attended for item B.

memory do (e.g., Humphreys et al., 1989; Murdock, 1982).1 It can then potentially explain
differences across conditions. When the attended feature-subset at test mismatches that at
study, performance will be hurt. The model is sandwiched amongst numerous prior models
in the same spirit. The main novel ideas I introduce are the twin assumptions: that the
attended subset of features is quite small and nearly the same attentional subset attended
on an item during study often reiterates itself at test.

As a testbed for these ideas I use the matched filter model (Anderson, 1970), old/new
recognition (judging whether each test item was on the just-studied list or not) and list-
composition effects. In list-composition experiments, each list is composed of items subject
to a single experimental condition (pure lists) or items in both conditions (mixed lists),
elaborated next. The matched filter model is an extremely impoverished model; the goal is

1Note that this raises the question of how semantic memory can largely reproduce the same subset, which
we do not address here but contemplate in the Limitations section of the Discussion.
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not to support or test the matched filter model, itself. Rather, the simplicity of the model
and its central dependence on similarity across item vectors distills the effects of attentional
subsetting. Lessons learned can then be extended to more complicated models.

Empirical findings of interest: list-composition effects

A major driver of research on recognition memory has been to explain the highly
replicated null list-strength effect finding (Ratcliff et al., 1990), that a strength manipulation
produces nearly the same difference in recognition memory when items were studied in pure
lists of a single strength versus mixed lists containing items of both strengths. “Strength”
refers to any pair of conditions wherein one condition (the stronger condition, which we label
“D” to be reminiscent of deeper levels of processing) produces higher recognition accuracy
than the other (the weaker condition, “S,” reminiscent of shallow levels of processing), most
commonly, repeated presentations of an item or longer versus shorter presentation times.
Less frequently, levels of processing is treated as a manipulation of strength (Ensor et al.,
2021; Ratcliff et al., 1990). Ratcliff et al. (1990) quantified list-strength effects with a
ratio-of-ratios index,

RoR = d′(D mixed)/d′(S mixed)
d′(D pure)/d′(S pure) , (1)

which is typically close to 1, a null list-strength effect. A RoR of 1 means that a strong
item is recognized just the same whether it is embedded in a list of other strong items or
a list with some strong and some weak items. This result was surprising because in exist-
ing models in 1990, including the matched filter model, strong items should benefit more
in mixed lists, where half their competition is from weaker items than in pure lists. Weak
items would be disadvantaged in mixed lists, competing against strong items. The near-null
list-strength effect implied that recognition judgements are not susceptible to competition
from other items within a list. This had a profound influence on the development of math-
ematical models of recognition, especially because a model had to still be able to explain
why performance decreases with list length, the list-length effect. Murdock and Kahana
(1993) proposed that competition is present, but saturates over the course of prior lists,
so the composition of the current list, per se, contributes very little to recognition. Other
modellers constructed item representations to be orthogonal to one another (e.g., Chappell
& Humphreys, 1994) but this compromises the list-length effect. Still others designed local-
trace models that prevented item-traces from directly competing with one another, starting
with Shiffrin and Steyvers (1997) and McClelland and Chappell (1998).

However, it may be overstating the data to talk about a null list-strength effect.
RoRs are often around 1.1, albeit not statistically distinguishable from 1, and even below
1 (Ratcliff et al., 1990). Those small deviations may simply be measurement noise about
the true value of 1. However, below we will see that there are good reasons to expect
there to be some true variability in list-composition effects. Rather than explain null list-
strength effects, a better question is why list-strength effects are often rather small and
what determines their magnitude and direction.

Moreover, some interesting exceptions are known. One example is the production
effect, where participants either read words aloud or silently. This manipulation can produce
a large positive list-strength effect (e.g., MacLeod et al., 2010). Articles since 2010 that have
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reported (near-)null list-strength effects have generally not cited the production effect as a
contrasting finding. MacLeod et al. (2010), indeed, explicitly distinguished the production
effect from manipulations that exhibit null list-strength effects, suggesting that production
influences distinctiveness (dissimilarity between items in memory) rather than strength.
But strength, itself, is a slippery term, and as already noted, has been operationalized
several different ways. Models that were designed to explain null list-strength effects face
a challenge in explaining results like the large production-effect list-strength effect. To
foreshadow, with the attentional subsetting mechanism, near-null list-strength effects and
large positive list-strength effects can be produced by the same model, operating the same
way, differing only in terms of the size of the attentional subset relative to the full size of
the feature-space that attention is operating within.

Vector models and the challenge of dimensionality

Writing vectors in boldface, let fi represent the full, n-dimensional vector represen-
tation of a particular item, i, such as a word (illustrated in Figure 1a). As is common in
episodic memory models, feature values, indexed in parentheses, fi(k), where k = 1..n, are
assumed to be independent (except when incorporating feature similarity between items),
identically distributed (i.i.d.) with a mean of zero and a variance of 1/n so that they will
be approximately normalized, |fi| ≃ 1 and approximately (but not strictly) mean-centered
(zero-mean). Features could be viewed as fine-grained as firing rates of individual neurons
in the brain, but it is usually more helpful to think of them as reflecting activity of a pop-
ulation of neurons. To appreciate the paradox of dimensionality, consider that n, the total
number of known features of an item may be quite large, say 100,000. This may seem like a
large number, but consider that for word stimuli, a typical person’s vocabulary is in the tens
of thousands. This existence proof, that people can distinguish such a large set of words,
implies on the order of 100,000 or more dimensions of knowledge of words to avoid linear
dependence. However, this considers a set of items that are all words. Words, compared to
other conceivable items (faces, real-world objects, odours, colours, etc.) presumably have a
large number of features in common (deviating from the independence assumption). They
are composed of letters, they are readable and pronounceable, they can be combined to
express complex concepts, etc. The dimensionality of the vector representations of words
must be even larger to incorporate these common features.

The matched filter model (described in more detail below) simply summates item
vectors to store them in memory. In a standard old/new recognition task, the partici-
pant/model is presented with a probe item and asked to judge whether the item was on
the target list (old, a “target”) or not (new, a “lure”). Old/new decisions are driven by
the calculation of matching strength, the dot product (measuring similarity) of the probe
vector with that episodic memory. This model thus very quickly achieves arbitrarily high
performance, d′ = (µtarget − µlure)/

(
.5

√
σ2

target + σ2
lure

)
as n increases (Figure 2a)— ex-

celling as soon as the dimensionality of the vector representation comfortably exceeds L,
the list length (n ≫ L). The intuition behind this is that with more dimensions, the angles
between any randomly constructed pair of vectors will tend to be quite large. Random
vectors are quite dissimilar in high-dimensional space. This makes it easy for the model
to discriminate targets, which have very small angles relative to the memory, from lures,
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Figure 2

(a) Performance of the matched filter model (with no attentional subsetting) for a list of
L = 10 items, as a function of n. Here, d′ =

√
n/(.5(2L + 1)). (b) Standard model compared

with the addition of noise and stimuli that are 99% similar to one another.

which have large angles relative to the memory.
Thus far, the matched filter model appears too good to be a plausible model of

behavioural data. However, features that all words have in common are, by definition, not
diagnostic of one word from another. If we partition the n dimensions into p dimensions
that are common to all words and q dimensions that could distinguish words from one
another, where p + q = n, it is clear that the similarity between pairs of word vectors is
quite high. Because the item vectors are approximately normalized, fi · fj ≥ p/n, j ̸= i.
This high amount of similarity makes items hard to distinguish from one another. In an
example, if 99% of features are common across the stimuli, including targets and lures, d′

drops drastically (to near chance for the range of n values plotted). This is because the
numerator, µtarget −µlure is the difference only due to the non-similar features and both lure
and target variance increase because all items are matching memory essentially 99% like
targets (Figure 2b). Performance is quite similar to a hypothetical case of adding 99% noise
to the original model. Even if, in principle, a highly similar pair of items i and j can be
distinguished because they are not strictly linearly dependent, a more realistic model would
also include some level of noise. The presence of noise reduces performance even more, and
the more computational operations contribute to the calculation of matching strengths, the
more noise in the calculation. If the common features are included in the memory judgement
process, this will not only demand more computation, but will introduce more noise into
similarity judgements. The advantage due to high dimensionality of item representations
is undermined by this overwhelming similarity. On the other hand, if all the common p
dimensions could be ignored, the items could be acted upon with far less confusion. If the
task is to remember a 10-word list, to distinguish the 10 words from one another, one needs
at least 10 dimensions, but perhaps not many more than that. The fact that short lists
can be mastered to a level of perfect accuracy suggests that episodic memory can function
as though item representations are, in fact, of very low dimensionality and avoid being
swamped by the theoretically massive number of common features or massive cumulative
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amount of noise at the feature-level. But then, if the dimensionality of representations is
too small, items will become confusible for the opposite reason: because the representation
subspace cannot support enough distinguishable vectors.

The central new idea: sparse item-specific subsetting of features

I propose what I think is a non-controversial idea that research participants do,
in fact, adapt the functional dimensionality of their working representations of stimuli to
trade off knowledge versus discriminability demanded by a particular task, in a rational, if
often not optimal, way. We will follow these effects by introducing the idea of attentional
masks applied to features, with notation following Caplan et al. (2022). Masks are written
as vectors, w, of the same dimensionality as the complete item vectors, n. Subscripts and
superscripts will denote task-specificity. The values of w(k) could be real-valued, positive,
negative or zero, but for tractability, values will be only 1 or 0. At any given time within a
task, a mask is applied via elementwise multiplication. Thus, an item fi, masked by w can
be written f̃i, where f̃i(k) = w(k)fi(k), depicted in Figure 1b,c.

In general, the mask could vary quite a lot from study to test phases of a memory
paradigm, as well as for other reasons, including the participant’s expectations about the
task and their recent experience, including other stimuli presented recently or even simulta-
neously to an item of interest. This offers a very large number of degrees of freedom, which
may be plausible. But for this reason, I distinguish between the general framework, and any
particular instantiation of a model that incorporates the ideas within the framework. For
a particular application, the sets of relevant/irrelevant features and their dynamics must
be sufficiently constrained to produce a testable model. In many concrete examples, these
constraints may be straight-forward to identify (such as with visual stimuli comprised of a
handful of features, e.g., Osth et al., 2023).

Consider an experiment involving lists of nouns. All features that designate the
stimulus as a noun may be safely disregarded for any judgement such as recognition, the
main focus in this manuscript. However, in a recall task, the noun-ness cannot be com-
pletely ignored; if it were, the participant might be tempted to “recall” a dance move (by
performing it) or a tangible object (by handing an object to the experimenter). The partici-
pant’s broader knowledge is thus much higher-dimensional than the working dimensionality
required for the main challenge of the task. However, the broader knowledge is important
for constraining the participant’s behaviour. Now assume the lists were exclusively com-
posed of names of birds. An optimal mask would now exclude features common to birds.
However, a participant (or model) that does not identify this constraint within the stimuli
would miss out on the opportunity to optimize their mask in this way, and would presum-
ably be more susceptible to confusing birds with one another, and to producing stimuli
other than birds as responses. Therefore, the subset of attended features will be far smaller
than the full dimensionality of vector representations of items. That attention-driven sub-
set, during the study phase of a task, gates which features can even be encoded. Then,
the attention-driven subset during the test phase (which can be the same or different from
that at study) determines which features can be used as retrieval cues or, as in the case of
recognition that we will focus on here, compared to the memory to drive judgements.

In general, the more features are stored, the stronger and more specific the memory
will be. Next I derive the effects of putative manipulations that act in this way. Exploring
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the similarity structure of those stored vector representations to one another and to potential
probe stimuli, I stop after computing d′ for a hypothetical yes/no item-recognition task. I
consider mixed- versus pure-list effects on d′ to understand list-strength effects. The next
sections develop various instantiations of attentional subsetting as follows.

Matched filter model with attentional subsetting

1. Effect on the number of stored item-specific features. Condition D induces
participants to store more features of stimuli than condition S.2 The set of stored fea-
tures is drawn completely at random, and from the same subspace for both conditions
(Figure 1). The entire item vector is the recognition probe (“full probe”).

2. Probing with a subset of features. The probe consists only of a task-relevant
subset of features (“masked probe”; Figure 5).

3. Conditions are nested. The features of condition S are a subset of the features of
condition D for each item, i.

4. Conditions with segregated feature spaces. Conditions S and D lead to storage
of different, non-overlapping features.

5. Conditions are nested, segregated subspaces. The nested model with the addi-
tional features in condition D in a different feature subspace, especially where subsets
within the D-only subspace are sparse but those within the S are not sparse.

6. Manipulation of strength as vector-length. A manipulation of strength as tra-
ditionally operationalized: a scalar multiplying the entire vector.

Version 1. Effect on the number of stored features

First we see what happens when the model encodes a subset of features, and two
experimental conditions result in different numbers of stored features. Numerous analogues
of this idea have been implemented in TODAM (e.g., Huffman & Stark, 2017; Murdock &
Kahana, 1993; Murdock & Lamon, 1988), the attention-likelihood model (Glanzer et al.,
1993), REM (Shiffrin & Steyvers, 1997), the Feature Model (e.g., Jamieson et al., 2016;
Nairne, 1990) and MINERVA 2 (e.g., Hintzman, 1988; Jamieson et al., 2010; Saint-Aubin
et al., 2021) and is central to Benjamin’s account of aging (Benjamin, 2010).

Again we consider a situation where participants generally perform recognition bet-
ter in condition D than condition S. For each n-dimensional item, fi, a random subset
of nS features, RS

i , or nD features, RD
i , respectively, will be attended— and thus encoded

(illustrated in Figure 1). Thus, the attended item in condition S or D, respectively, is:

fS
i (k) = wS

i (k)fi(k) where wS
i (k) =

{
1 k ∈ RS

i

0 k /∈ RS
i

(2)

fD
i (k) = wD

i (k)fi(k) where wD
i (k) =

{
1 k ∈ RD

i

0 k /∈ RD
i

(3)

2Think deep versus shallow, respectively, although published data do show exceptions to advantages of
deep over shallow processing.
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RS
i consists of nS elements and RD

i consists of nD elements, where nD > nS . The attended
sets are indexed by i, indicating that they are drawn anew at random for each item and
again for each condition. However, RS

i and RD
i are assumed to be based on prior knowledge,

so they are (approximately) invariant across an experiment. For brevity, let C ∈ {S, D}
denote condition. The memory, m (matched-filter model), is the sum of the L subsetted
(masked) list-item vectors:

m =
L∑

i=1
wC

i ⊗ fi, (4)

where ⊗ denotes elementwise multiplication. We omit scalar encoding strengths for ex-
pository purposes only (but we include them later, when manipulating strength as vector-
length).3 Because unattended features have been set to zero in RC

i , it is easy to track
the effects of subsetting through the derivations. Using the standard dot product as our
measure of similarity, the matching strength, s, of an item to its own storage term is

sx = m · fx =
L∑

i=1

(
wC

i ⊗ fi

)
· fx =

∑
k∈RC

x

fx(k)2. (5)

This samples nC features. In the following, we use some derivations from Anderson (1970)
and Weber (1988). Because (when item-similarity is set aside) feature values are drawn
independently across items, terms contributed by other studied items will cancel. Because
feature values within each item are also i.i.d., the mean matching strengths are simply

E [sx] = nC

n
, (6)

where E [ ] denotes the expectation (average) and var [ ] will denote the variance. The ratio
of mean matching strengths of condition S to condition D is nS/nD. For the numerator of
d′, we need the mean matching strengths for targets and lures, which are

µtarget = nC

n
(7)

µlure = 0. (8)

The variances are slightly more involved, since they include variance contributed by
other items. The variance due to the matching term, where x = i, is the corresponding
proportion of what the variance would be for the whole vector (2/n):

Vxx = var [sx] = E [(sx · sx)] − E [sx]2 (9)

= 3nC
1
n2 + (n2

c − nC) 1
n2 −

(
nC

n

)2
= 2nC

n

1
n

. (10)

3The fixed nS and nD can be further generalized to binomial distributions with differences in sampling
probability of each feature (Chappell & Humphreys, 1994), but we have fixed the number of stored features
here for tractability.
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The variance contributed by the terms due to each other list item (also between a lure probe
and any list item) is also straight-forward to calculate:

Vxy = nC

n

1
n

, y ̸= x. (11)

Already we can see that the condition leading to fewer features stored also contributes less
noise. The variances are

σ2
target = Vxx + (L − 1)Vxy (12)

σ2
lure = LVxy. (13)

Thus, the variance in the denominator of the d′ calculation will be intermediate for mixed
lists, σ2

S pure < σ2
mixed < σ2

D pure. Collecting the terms, for pure lists,

d′
C pure = µtarget − µlure√

1
2

(
σ2

target + σ2
lure

) = nC/n√
1
2 (Vxx + (L − 1)Vxy + LVxy)

(14)

= nC/n√
1
2 ((2nC/n2) + (2L − 1)nC/n2)

=
√

nC
1
2 (1 + 2L)

. (15)

Because of √
nC in the numerator, d′ will be greater for condition D than for condition S

because nD > nS . In other words, the increased mean matching-strength term for condition
D compared to condition S is partly, but not completely, offset by the increased noise from
other items within the list. Note that n does not appear in the final expression, so the
subsetting has bypassed the inertia of the full vector dimensionality. However, L in the
denominator shows how increasing the list length effectively replenishes the dimensionality,
reversing some of those gains.

For mixed lists, the numerator is the same as for pure lists (it still depends on
condition of the probe), but the denominator is a mixture of two variance sources. For the
typical mixed list, where half the items will be in condition S and half in condition D,

d′
S mixed = nS√

1
2 (2nS + (L − 1)nS + LnD)

=
√

nS
1
2 ((1 + L) + LnD/nS)

(16)

d′
D mixed = nD√

1
2 (2nD + (L − 1)nD + LnS)

=
√

nD
1
2 ((1 + L) + LnS/nD)

. (17)

The condition-D items have the same advantage over condition-S items due to the numer-
ator, but now the denominators are very similar for S and D items. Because the variance
is smaller than for pure-list D items, mixed-list D items will in fact outperform D items on
pure lists, and likewise, mixed-list S items will underperform those on pure lists (Figure 3a).
This is the list-strength effect. The ratio-of-ratios (Equation 1) simplifies to
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RoR =
√

(1 + L) + LnD/nS

(1 + L) + LnS/nD
, (18)

which depends only on L and the ratio, nD/nS but is otherwise invariant with the subset
proportion and clearly above 1 (Figure 4, blue plot). Interestingly, the more effect the
experimental manipulation has on strength aside from list-composition, the more list com-
position will modulate that effect. In other words, the greater the pure-list strength effect,
d′(D pure)/d′(S pure) =

√
nD/nS , the greater the list-strength effect, RoR.

If the entire item-vector space were only as long as any given item’s attentional
subset, a high level of performance would not be possible. The items would necessarily
become linearly dependent, and thus to some degree, indistinguishable. Our formulation
benefits from low dimensionality but without this disadvantage, because for example, if
nC = 10, each item is selecting a new set of 10 dimensions from the full vector. The larger
the vector, the less the overlap across items, and items remain largely linearly independent,
partway between n = 10 and full orthogonality within a 200-dimensional model.

When more features are stored, recognition is better, but this model has a weakness.
Although the subsetting can increase distinctiveness across the items, this is offset by the
use of the full vector as a test probe. Probing with all features introduces noise terms in
proportion to the effective dimensionality of the space occupied by the memory (all studied
items). Next we amend the model to use the same kind of subsetting at test.

Version 2. Probing with a subset of features

The mask at test could, in principle, be anything. But for a relatively short study–
test delay, it seems fairly parsimonious to assume the participant has (nearly) the same
task-set during the test phase as during study (depicted in Figure 5). If subsets of features
were task-relevant and attended during study, they should largely remain attended during
test, and irrelevant features unattended. Each condition leads the participant to select a
different subset of features, in an item-specific way. These are modelled as independent,
random subsets of features, but importantly (different than Glanzer et al., 1993), the same
task conditions will always lead to the same (or approximately the same) subset of features
of a given item. Imagery processing of a rabbit will always evoke the nose and the ears,
whereas imagery processing of a hummingbird will always evoke the wings and the beak.

For pure lists, we assume the participant’s task knowledge leads them to process
the probe item the same as if it had been a study item, thus subsampling RS

i or RD
i for

pure lists of condition S or D, respectively (Figure 5a,b). For mixed lists, it seems unlikely
that participants use the RS

i features of an item exclusively (or the RD
i features), because

this would lead to very low accuracy for items in the other condition. It could be that one
condition is somewhat dominant, but we treat this conceptually later. For now, we assume
that for a mixed list, the probe is the union of RS

i and RD
i for a given item (Figure 5c),

as though the participant considered both the S-processed and D-processed probe item.
Because the features outside the mask were not stored, probing wC

x fx still produces the
same matching strength on average (Equation 6), E [sx] = nC/n. For the same reason, the
variance introduced by a target-item probe with its own corresponding encoded term will
be the same as before (Equation 10), Vxx = (2nC/n2).
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Figure 3

Model with (a) the full item used as a probe or (b,c) the masked item as a probe. Panel (b)
plots the case for pure lists manipulated strictly between subjects, so that the mask adapts
to the condition, whereas (c) plots the case for each participant experiences both conditions,
and assumes the mask is always the union of the two masks. (d) condition S is nested
within condition D; plotted here assuming all conditions are within-subjects. d′ is plotted
as a function of nS/n, the proportion of features subsetted for each item in condition S,
where we have set nD = 2nS, n = 200 and L = 10. An effect of condition is predicted for
pure lists, but becomes even more pronounced in mixed lists with equal numbers of S and D
items.
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Ratio-of-ratios (Equation 1), d′(D mixed)/d′(S mixed)/(d′(D pure)/d′(S pure), computed
from Figure 3. Conditions ‘Full’,‘Masked (between)’,‘Masked (within)’ and ‘Nested’ corre-
spond to Figure 3 panels a–d, respectively. The grey dashed line denotes the ratio-of-ratios
corresponding to a null list-strength effect, 1:1.

a Pure List (Condition S) b Pure List (Condition D) c Mixed List

Figure 5

Schematic illustrations of the model with masked probe. This figure is conceptually the same
as Figure 1 but illustrates the masked probe. (a) depicts a pure list studied in condition S,
probed with item B with the same S attentional mask (compare with Figure 1b). (b) depicts
the same for a pure list in conditions D (compare with Figure 1c). Masked-out (unfilled
grey) features in the probe produce zeroes in the respective feature (row). The masked probe
picks up far less noise from other studied items, whose attended features will generally be
different, than the full probe. (c) illustrates a mixed list, where A and C were studied as in
condition S and B and D were studied as in condition D. The probe consists of a union of
the features of B attended under condition S and D.
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The cross-terms contributing to the variance, Vxy, are more involved. The dot
product with the terms due to the remaining L − 1 items introduce variance at lower levels,
and only where the masks overlap (Caplan et al., 2022). First, when the condition is the
same for both the probe item and the corresponding studied item for the term in question,
the number of features in the two masks is the same, although the masks are assumed
to have been drawn at random, separately for each mask. Two masks, wA

i and wB
j , will

overlap, on average, on ΩAB = (nA/n)(nB/n)n features. Thus, ΩCC = n2
C/n is the average

overlap between two different items within the same experimental condition (C). This will
contribute a Vxy = (ΩCC/n)(1/n) = n2

C/n3 per studied non-target item. Recall that we
are still assuming the conditions select a subset of features that is randomly selected for
each item, but is of fixed size, nC for a given condition. Note that the amount of overlap
depends on n, so whereas in the full-probe model, performance did not depend on n, in the
masked-probe model, the greater the n, the less overlap there will be, and consequently, the
smaller the contribution from other list items.

For the cross-terms, ΩCC features will be non-zero in both vectors. The variance
contributed by each non-target term is thus ΩCC/n2. This so far is sufficient for pure lists,
and for the same-condition probe/studied-item terms within mixed lists. When we have a
mixed list, the average number overlapping features of two masks from different conditions
D and S is ΩSD = nSnD/n and the corresponding variance contributed is (nSnD/n)(1/n2).

We assume that following mixed lists, the participant probes with the subset of
features from both conditions. To implement this, we first need the average number of
features in the mask at test, RS∪D, where nS∪D = nS + nD − ΩSD, on average. When
nS ≪ n and nD ≪ n, ΩSD ≃ 0 and nS∪D ≃ nS + nD. The variance contribution is the
average overlap between such a probe vector and each non-target studied item multiplied by
1/n; ΩS(S∪D)/n for a condition-S item and ΩD(S∪D)/n for a condition-D item. Substituting:

d′
C pure =

√
nC

1
2 (2 + (2L − 1)ΩCC/nC)

=
√

nC
1
2 (2 + (2L − 1)nC/n)

(19)

d′
S mixed =

√√√√ nS

1
2

(
2 + (L − 1)ΩS(S∪D)/nS + LΩD(S∪D)/nS

) (20)

d′
D mixed =

√√√√ nD

1
2

(
2 + (L − 1)ΩD(S∪D)/nD + LΩS(S∪D)/nD

) . (21)

Already one can see that d′ will be greater than probing with the full vector, because
all the overlap values, Ω, are far smaller than all the mask dimensionality values, nC .
The numerators are unchanged but the denominators will be smaller. A pure-list effect
of condition is still produced as before, due to nD > nS making the numerator different
for the two conditions, which is not fully offset by √

nD and √
nS , respectively, in the

denominator. A mixed-list effect of condition is produced for the same reason. But in
addition, consider that ΩD(S∪D) > ΩS(S∪D) > ΩDD > ΩSS . Because of the assumption that
the probe is the union of the two subsets, the variances are, overall, larger in the mixed lists,
producing a slight net disadvantage for mixed versus pure lists regardless of condition, that
increases with L. Finally, in mixed lists, condition S has an additional ΩD(S∪D) and one



ATTENTIONAL SUBSETTING 15

less ΩS(S∪D). Because the former is larger than the latter, the S condition will have an even
slightly smaller d′ than condition D within mixed lists. This difference is more pronounced
in shorter lists, where the one-item difference has a greater impact on the variance.

With some example parameters, the masked probe model (Figure 3b) produces
higher d′ values across the board, compared to the full-probe model (Figure 3a). Condition
D still robustly exceeds condition S both in pure and mixed lists. Mixed lists show a
greater effect of condition than pure lists, and the weaker condition, S, is further hurt when
included in mixed lists than in pure lists. However, the stronger condition, D, is affected
only to a very small degree with these parameter values (recall that we have set nD = 2nS

in the plotted examples), and for small subsets, the pure-list d′ exceeds the mixed-list d′,
whereas for larger subsets, the advantage reverses. The ratio-of-ratios (Figure 4, red plot)
is positive, indicating a list-strength effect, but at sparse subsetting levels (leftward edge of
the plot), the ratio-of-ratios moves toward 1, resembling the approximately observed (often
non-significant) list-strength effects, even while recognition performance (d′) is well above
chance and in line with observed values (Figure 3b).

Pure lists within-subjects and a less efficient test-phase mask. We have
assumed participants restrict their test mask to the corresponding condition in pure lists.
This may be an accurate assumption when condition is manipulation between subjects. If a
participant only experiences condition D, we would not expect them to consider condition
S in their test mask. If participants experience both conditions, as is the case, for example,
when pure and mixed lists are all conducted within-subjects (for evidence for this type
of effect, see Zhou and MacLeod, 2021), the union of condition S and D multiplies the
cross-terms. This increases the noise variance a little and changes Equation 19 to

d′
C pure =

√√√√ nC

1
2

(
2 + (2L − 1)ΩC(S∪D)/nC

) . (22)

This model variant performs qualitatively like the full-probe model (Figure 3a), but still
experiences the overall advantage to d′ because the masks are still item-specific, and thus,
bypass noise terms introduced by other dimensions (Figure 3c). As before, the ratio-of-ratios
indicates the presence of a list-strength effect that reduces to close to a null list-strength
effect when attentional subsetting is sparse (Figure 4, yellow plot). When participants
cannot fine-tune their attentional mask at test to optimize performance on pure lists, pure-
list D items suffer, as do pure-list S items. Importantly, the difference between mixed and
pure lists becomes attenuated, and there is even less of a list-strength effect.

Version 3. Conditions are nested

In the nested case, for a given item, the set of attended features in condition S are
a subset of those in condition D, RS

i ⊂ RD
i . A manipulation that might work this way

is lengthening presentation time, where presumably, the longer the participant studies an
item, the more features they attend, but with little loss of the earlier-processed features (like
Shiffrin and Steyvers, 1997). Below we will consider a plausible implementation of duration
time where the earlier-attended features are drawn from a different, segregated subspace
than the later-attended features, but for now, we will assume simply that more study
time leads to more item-specific features attended within a single feature-space. Another
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situation this model version might apply to would be a task where participants are explicitly
asked to process each item one way (e.g., shallow processing instruction) versus both ways
(e.g., shallow processing plus deep processing instruction), so that the processing tasks, S
and D would be essentially instructed to be nested within each other.

This changes only the numerator of the above derivations to nS/n, the smaller of
nS and nD, because those are the common features attended between the two conditions.
In other words, the matching strength will be greater than with the previous assumption
that features are drawn independently between the two conditions, but capped at the lower-
dimensional condition. For pure lists, d′

D pure is unchanged from the original masked-probe
model (Equation 19). d′

S pure is also unchanged if we assume RS
i is used at test. If, instead,

RD
i is used at test (e.g., as is plausible for pure lists manipulated within-subjects), only the

cross-terms need to be modified, and those will be produced by a probe consisting of nD

features dotted with stored items consisting of nS features, so that

d′
S pure =

√
nS

1
2 (2 + (2L − 1)ΩSD/nS)

, (23)

where only ΩSS has been substituted with ΩSD; the latter is slightly greater, reducing d′

overall. Finally, for mixed lists, the probe mask always consists of nD features. Thus,

d′
S mixed =

√
nS

1
2 (2 + (L − 1)ΩSD/nS + LΩDD/nS)

(24)

d′
D mixed =

√
nD

1
2 (2 + (L − 1)ΩDD/nD + LΩSD/nD)

. (25)

There is still an effect of condition in both pure and mixed lists (Figure 3d). For very sparse
coding (nS , nD ≪ n), it makes little difference whether the item was in a mixed or a pure
list (a null list-strength effect). The size of the effect is similar for pure and mixed lists. This
is confirmed in the ratio-of-ratios (Figure 4, purple plot). As the chance of overlap between
masks of different items increases, both an advantage for D items and a disadvantage for S
items emerges in mixed lists. Comparing Figure 3d to panel c, it is clear that the nested
and non-nested cases cannot easily be distinguished by measuring list-strength effects.

Interlude: dependence on full dimensionality, subset size and list length

Let us pause here to get a feel for the dependence of the effect of condition, as well
as the presence versus absence of a list-strength effect, on the full dimensionality of the
vector space, the proportion of dimensions subsetted and the list length.

Independence of full dimensionality. The dependence on the full dimensional-
ity of the representation space, n, is greatly attenuated (note the levelling off of d′ for large
n in Figure 6a,b compared to Figure 2a).

List-strength. All models apart from the full-probe model in Figure 3 produced a
null list-strength effect, where the effect of condition is nearly equivalent in magnitude for
both pure and mixed lists (left edge of the graphs) but the list-strength effect emerges as nS ,
the number of subsetted features, increases (Figure 4). Sparse coding, masks applied to test
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Dependence of d′(condition) on n, fixing L (a,b) and on L, fixing n (c,d). nS = 10, nD = 20.

items, preventing optimizing of the masks and nesting combine to attenuate the list-strength
effect. This offers us several factors, and combinations of factors, that could explain why
near-null list-strength effects have often been reported in recognition experiments.

List length. As n increases (with nS and nD fixed to 10 and 20 features, respec-
tively), the list-strength effect is maximal at an intermediate level of n, a characteristic that
can be seen in short lists (Figure 6a) and long lists (6b). At small n, nS/n is relatively large,
so there is a lot of overlap between items regardless of strength. The full dimensionality
is essentially occupied by the subsetted vectors after a small number of items have been
encoded. At larger n, the model starts to benefit from sparseness, but now the amount of
overlap depends on the numbers of stored features of other list items, hence list composition
matters. As n increases further, the representations become even more sparse, and overlap
between any two items becomes vanishingly rare, so list composition matters less and less.
Figure 6c,d show that when n is large enough, storing more items actually brings out a
list-strength effect because it increases the likelihood of masks overlapping across list items.
This works against the effects of n increasing the sparseness of the encoded vectors.
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Version 4. Conditions with segregated feature spaces

The next case is inspired by the idea of conditions S and D representing two very
different processing tasks, such as an orthographic judgement (such as determining the
presence of the letter ‘e’) versus a semantic judgement (such as determining whether the
word refers to an animate or inanimate object). In a task like this, it may be accurate
to assume that the S and D feature subspaces are strictly distinct, and that, in turn, the
model (or participant) can selectively attend or unattend each of those subspaces.

In this version, condition-specific dimensions are segregated to non-overlapping por-
tions of the item vector. This reduces cross-talk (noise variance terms) between conditions,
but also reduces the number of stored features that could match a probe. Partition the
features as follows. For item fi, features 1..nf are the standard item-feature space (like the
Feature Model’s modality-independent features, Nairne, 1990). Features (nf +1)..(nf +ns)
comprise the feature-space occupied by information specific to condition S, and likewise,
features (nf + ns + 1)..n for condition D (note the lowercase s and d, which are deliberate).
Assume n = nf + ns + nd, so there are no leftover features; all features are partitioned
into fixed item-features, S features or D features. Let nF denote the number of fixed
item-features, that are always attended for a given item, where nF < nf . The number of
condition-S-specific features stored is νS = nS − nF < ns, and νD = nD − nF < nd for D.

Because of the strict assumption that the subspaces do not overlap, means and
variances can be partitioned, computed, and then summated just before computing d′.
The case of pure lists, between-subjects, reduces to the previous case of probing with the
masked item (Equation 19). If we consider the case of pure lists, within-subjects, where
both S and D features are included in the probe, the mean matching strength is the same
(µtarget = nS/n and nD/n, respectively, and µlure = 0 as before) and the variances due
to the target item dotted with its own encoded term remain the same (Vxx = 2nS/n2 and
2nD/n2, respectively). The remaining variance terms can be partitioned:

S pure: (2L − 1 terms) Vxy = (ΩF F /nF + ΩSS/νS)/n2 (26)
D pure: (2L − 1 terms) Vxy = (ΩF F /nF + ΩDD/νD)/n2, (27)

where for shorthand, we have redefined:

ΩF F = n2
F /nf (28)

ΩSS = ν2
S/ns (29)

ΩDD = ν2
D/nd. (30)

For pure lists, matching strengths will still be greater for condition D on average, but the
variance will also be larger, similar to the previous pure-list case, with no partitioning. But
essentially, condition D still benefits from nD > nS in pure lists, regardless of whether just
the condition-specific mask is used or the union of the two masks is used.

For mixed lists, there will be L − 1 variance cross-terms with the same condition
between probe and encoded item, and L between different conditions, but the between-
condition terms are simpler because of the non-overlapping feature spaces. Thus,
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S mixed:
{

(L − 1 terms) (ΩF F /nF + ΩSS/νS)/n2

(L terms) (ΩF F /nF + ΩDD/νD)/n2 (31)

D mixed:
{

(L − 1 terms) (ΩF F /nF + ΩDD/νD)/n2

(L terms) (ΩF F /nF + ΩSS/νS)/n2 . (32)

So now, the only difference between the variance cross-terms is (ΩDD/νD − ΩSS/νS)/n2.
The mixed-list effect of condition will still be present due to the difference in mean matching
strengths, and this difference will be a bit larger because the S item will be susceptible to
noise from one additional D item, whereas the D item will be susceptible to the smaller
noise level from one additional S item. For condition S, the noise variance will be larger in
mixed than pure lists, whereas for condition D, the noise variance will be smaller in mixed
than pure lists. Consequently, the effect of condition will be greater in mixed than pure
lists, where D items benefit, but S items suffer compared to pure lists.

If the S and D subspaces are equally large (ns = nd), only the number of attended
condition-specific features differs between conditions. Then condition S will still be hurt by
the presence of D items within the mixed lists and the reverse will hold for condition D.

Version 5. Conditions are nested, segregated subspaces

Now we consider more closely the experimental manipulation of presentation time,
which has been sometimes used with the intention of manipulating “strength” (e.g., Ratcliff
et al., 1990). Let us assume that superficial characteristics, such as orthographic or phono-
logical features, are accessed earlier than deeper characteristics, such as semantic features,
imagery or affordances (Lewis, 1979; Tulving, 1968, 1974). This means condition S, with
short presentation time, has time only for attention to be drawn to superficial features.
By analogy to the production effect, the superficial (e.g., phonological) feature space is
relatively small, so subsetting cannot be sparse. In condition D, participants presumably
process the same superficial features as in condition S, but then have additional time they
might use to attend to features in a distinct (i.e., segregated) larger-dimensional subspace
related to “deeper” features. The attentional subsets within the latter subspace might very
well be sparse; to maintain continuity with the very small (nearly, but not entirely null)
list-strength effect, let us assume subsetting of the D subspace is sparse. The longer pre-
sentation time thus results in more features stored, but the excess features are within a
larger and sparsely subsetted feature space. Longer-presentation items also have the same
number of (non-sparsely subsetted) superficial features stored. Finally, we shall assume the
participant has meta-knowledge that enables them to selectively attend or unattend both
the superficial and deep features at time of test. We can think of this model version as Ver-
sion 4, with segregated features subspaces, but nested, such that the D condition includes
features in both subspaces. To keep the notation simple, we can set the “standard” subspace
nf = 0. In condition S, nS features within the ns space will be stored. In condition D, nS

features within the nS space will also be stored, but in addition, nD features within the nd

space will be stored. As with Version 4, n = ns + nd, so that no features are left out of this
formulation. µtarget=nS/n and (nS + nD)/n, respectively. µlure = 0 as before. As long as
nd > 0, condition D benefits in terms of mean matching strength.
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The variances due to the target item dotted within its own encoded term are Vxx =
2nS/n2 and 2(nS +nD)/n2, respectively. As with the previous model versions, this variance
term is larger for condition D than condition S. The remaining variances can be partitioned:

S pure: (2L − 1 terms) Vxy = ΩSS/nS/n2 (33)
D pure: (2L − 1 terms) Vxy = (ΩSS/nS + ΩDD/nD)/n2. (34)

At this stage, we introduce an attention heuristic, which is a hypothesis that remains to
be tested empirically, as we propose shortly. As alluded to in the Introduction, we suggest
that features that are less diagnostic of items from one another will tend to be suppressed, or
left out of the attentional mask. If the design is between-subjects, then participants in the
pure D list condition presumably learn to base their recognition decisions on features within
the more diagnostic D subspace and less, or to simplify things, none of the S subspace. This
is an extension of the almost tautological argument that participants have wisely been able
to exclude numerous other non-diagnostic characteristics of the stimuli such as the font,
size and colour of the words, etc. In this case,

D pure: µtarget = nD/n (35)
(2L − 1 terms) Vxy = (ΩDD/nD)/n2 (36)

and Vxx = 2nD/n2. (37)

Mean matching strength reduces, but in exchange, the sizeable cross-terms contributing to
the variance due to the low-dimensional S subspace (i.e., ΩSS ≫ 1) are also reduced.

For mixed lists, at time of test, the participant presumably does not know whether
the probe item, if studied, was studied in condition S or D, so the mask must include both
subspaces. But because the S items had no (with our simplification) D features stored,
the variance cross-terms will be restricted to the S subspace, and thus identical for S items
embedded in mixed lists as for S items embedded in pure lists. For D items, a probe item
with the combined mask will introduce cross-terms within the S subspace that were not
present for pure lists (especially in a between-subjects design), so in fact,

S pure: (2L − 1 terms) Vxy = ΩSS/nS/n2 (38)
D pure: µtarget = (nS + nD)/n (39)

(L − 1 terms) Vxy = (ΩSS/nS + ΩDD/nD)/n2 (40)
(L terms) Vxy = ΩSS/nS/n2. (41)

The predicted outcome is thus that S (short-duration) items will produce the same hit
rate and thus d′ in pure and mixed lists, thus not depending on list composition. But D
(long-duration) items will in fact be at a disadvantage in mixed lists (compared to pure
lists) due to the inability to screen out the low-dimensional, non-sparse superficial features.
Figure 7 plots the output of an example model with the same list length as used by Ratcliff
et al. (1990), Experiment 1 (32 words) and somewhat arbitrarily selected parameters (see
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Figure 7

Example model of a manipulation of presentation duration (condition S=short duration,
condition D = long duration). List length is set to 32. ns = 64 “superficial” features.
nS =16 features subsetted per item. nd = 512 “deep” features. nD, the proportion subsetted
per long-duration item, is varied parametrically across the horizontal axis. (a) d′ as a
function of list composition and nD. (b) Ratio-of-ratios as a function of nD.

figure caption). For this parameter set, the disadvantage for long-duration words due to
cross-talk within the superficial feature space outweighs the advantages of having encoded
the deeper features for small (but not very small) deep-feature subsets (small but not tiny
nD). This materializes as a ratio-of-ratios below 1, even while d′ values are around realistic
values and short-duration items (S) are nearly unaffected.

This is similar to what Ratcliff et al. (1990) found. In their first experiment, the hit
rate was unchanged for items presented for 1 s each but was worse in mixed than in pure
lists for items presented for 2 s each (see their Table 1). The ratio-of-ratios was 0.88 in
that experiment. A more pronounced inversion of the list-strength effect (ratio-of-ratios of
0.77) was reported in their Experiment 4 (Table 5). In the control condition, pairs of items
studied for 1 s each had virtually identical hit rates in mixed and pure lists (0.662 and 0.659,
respectively) whereas the bigger difference was for pairs studied for 5 s, which were hurt in
mixed lists compared to pure lists (hit rate 0.804 and 0.827, respectively). The pattern is
close to what we just described. However, in the second condition of their Experiment 4,
the ratio-of-ratios was 0.80, but both short- and long-duration pairs had higher hit rates
in pure than in mixed lists. The flexibility of the attentional subsetting account has shown
how “upright,” “inverted” as well as near-null list-strength effects can result, depending on
the balance of dimensionality of the two condition-specific subspaces as well as how the
attentional masks compare from study to test phases and across list compositions.

An empirical test of this account of inverted list-strength effects, therefore, would
need additional ways to constrain the various dimensionality parameters. One way to check
whether superficial features are included or excluded from the test mask would be to include
lures that are similar with respect to the superficial features only. If those features are
successfully excluded, false-alarms to such similar lures should be rare, as one would expect
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for pure lists of long-duration items. If, as we assume for mixed lists, superficial features
are included in the attentional mask at test, similar lures should attract a high false-alarm
rate for long- as well as short-duration words. One potential additional constraint might
be to include a condition in which participants are cued, for each test probe, as to whether
the item had been studied with long or short duration (and an equal number of lures cued
the same way). The pink plot in Figure 7a shows how cueing item-condition at test would
be predicted to undo the inverted list-strength effect and perhaps even restore a sizeable,
positive list-strength effect (although in the case of a strength manipulation, this might
not work; participants appear not to adjust their criterion from one item to the next when
given visual cue information about encoding strength; Singer and Wixted, 2006; Stretch and
Wixted, 1998, so strength-cueing may not enable participants to adjust their attentional
mask either, although see Starns et al., 2010 who found evidence that strength-cueing can
protect weak items from interference from strong items within the same list).

A more intelligent strategy participants might use would be to mask out superficial
features during the study phase, when possible— for long-duration items. If participants
are able to this, which remains an empirical question, then the effects are qualitatively
different. S items in mixed lists experience about half the level of cross-talk because only
half the items had features within the S subspace encoded. Meanwhile, D items in mixed
lists, because the full mask needs to be applied to the test item, have variances increased
due to the L/2 S items overlapping by chance with the non-sparse subset from the probe.
The latter would not, in this scenario, have been present in pure lists. The corresponding
savings to variance due to fewer stored features within the D subspace would be negligible
given the assumption that the D subspace is sparsely subsetted; nD ≪ nd thus ΩDD ≃ 0.
Note that if participants succeed in masking out superficial features, the overall advantage
for D items will only remain if nD > nS .

Version 6. Manipulation of model-strength as vector-length

Thus far, we have considered manipulations that differ in the number of features
stored. But strength is alternatively quite naturally incorporated into the matched filter
model by multiplying the entire vector by a scalar, α. Higher α increases the dot product
in the eventual recognition comparison. To model a “pure” manipulation of strength, we
assume that both strong and weak items have the same dimensionality, but strong items are
multiplied by α. Strength should be drawn from a random distribution, but for exposition
purposes, we assume every strong item is multiplied by the same α. For pure lists,

µtarget = αCnC/n (42)
Vxx = α2

C2nC/n2 (43)
Vxy = α2

CnC/n2. (44)

The αC in the numerator cancels the
√

α2
C within the denominator, producing no strength

effect for pure lists. We have simply scaled the model, but the relative effects are all the
same. For mixed lists, the strengths indeed produce a competitive effect. For a given
probe, mean matching strength is unchanged, but for condition D, the variance will include
L − 1 terms with Vxy = α2

DnC/n2 and L terms with Vxy = α2
SnC/n2, resulting in less
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variance than in pure D lists. Conversely, S items will have L − 1 terms as in pure lists,
with Vxy = α2

SnC/n2 but L larger terms, with Vxy = α2
D2nC/n2. This produces a positive

list-strength effect, with a bigger strength effect in mixed than in pure lists. As with the
feature-based strength model, if the overlap is small, d′ will only depend on the strength
of match of the probe item to the encoded subset, and its corresponding variance (Vxx),
with vanishingly small contributions from other encoded items. For sparse representations,
or small subsets, therefore, there will not only be no list-strength effect, cancellation of αC

will result in no effect of strength in either pure or mixed lists when measured with d′. If a
fixed matching-strength criterion is used for all probes of a given list, hits and false alarms
will trade off differently for strong versus weak items.

In the presence of additive noise, such as a spurious or pre-experimental “item”
added to the memory, the stronger vectors should fare better. Essentially, the additional
item or noise introduces a strength scale. This could be the source of a strength effect
in pure lists, but the strength effect is still predicted to be greater in mixed lists when
the attentional subsets overlap substantially, but reduce to a null list-strength effect when
attended representations are sparse.

Discussion

Random, relatively sparse subsetting of features during the study phase results in
low-dimensional encoding operations that nonetheless benefit from distinctiveness offered
by their embedding within a higher-dimensional representation space. What made sparse
subsetting work was the assumption that the random subset will tend to reiterate itself at
test. Intuitively, experimental conditions that result in more features attended outperform
conditions that result in fewer attended, and thus stored, features, exhibiting a familiar
dimensionality effect (as in Figure 2a). When roughly the same item-specific mask applies
to the probe item, all variants produce a null list-strength effect in the sparse regime.

Many experimental manipulations appear not to function at face value. For example,
word-imageability or concreteness effects do not appear to improve memory by invoking
visual imagery processes (e.g., Barber et al., 2013; Besken & Mulligan, 2022; Caplan &
Madan, 2016; Fiebach & Friederici, 2004; Westbury et al., 2013). Interactive imagery
instructions, likewise, do not seem to depend on imagery ability (Thomas et al., 2023).
Method of loci appears not very dependent on imagined navigation or spatial knowledge
(Caplan et al., 2019) and navigation-like brain activity is not causally linked to memory
success with the method of loci (Dresler et al., 2017; Kondo et al., 2005; Maguire et al., 2003;
Mallow et al., 2015; Müller et al., 2018; Nyberg et al., 2003), nor is vividness of imagery
(Kliegl et al., 1990; Kluger et al., 2022). This raises the intriguing possibility that a large
portion of the reasons why many experimental manipulations improve memory is driven not
by the complex implications of the instructions (detailed visual images or the intricacies of
wayfinding), but rather, a simple cause such as the number of encoded features.

Next I discuss implications for list-composition experiments, then comment on view-
ing memory tasks through the lens of effective dimensionality of a list, and contrast atten-
tional subsetting to other approaches that reduce cross-talk across representations.
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What produces a near-null list-strength effect?

In the perspective presented here, when the encoded representations are sparse, there
will be nearly zero overlap between subsets across items, so list composition will play very
little role, resulting in a near-null list-strength effect. The larger the full dimensionality,
n, the less chance of overlap, all other parameters being equal. However, as seen in the
formulation of the model with segregated subspaces, any features known to the participant
that are never diagnostic of studied versus unstudied items will play no role in determining
the overlap (Tversky, 1977). Rather than n, the subspace the memory occupies is more
aptly the functional feature space for the task. nf was the dimensionality of the feature
space common to a pair of conditions, S and D. nf will be far smaller than n. If n is
replaced with nf in the early models, each model is essentially embedded within a more
task-relevant subspace. When list-strength effects are found, I suggest this arises because
the attentional subsets, nS and nD, are not particularly small compared to nf . When this
happens, the probability is higher that attended feature sets will overlap across items. If
condition-specific feature spaces are strictly segregated, the condition-specific subspaces will
determine the presence or absence of a list-strength effect. S probes will be subject to less
noise in mixed than pure lists because the noise introduced by including the D-space features
in the test-phase mask will be less than the noise introduced by the equivalent number of S
items due to the S-space features. D items will be subject to more noise in mixed than pure
lists for the complementary reason. Such a situation will produce an inverted (negative)
list-strength effect. Depending on what else is happening within the common feature space,
the result could be a negative list-strength effect or a null or positive list-strength effect.
We have assumed that sparseness is not absolute; for example, Osth et al. (2020) found a
small but reliable graded effect of semantic similarity on recognition. Using forced-choice
recognition, Fawcett et al. (2022) found that semantically similar lures did, in fact, invite
errors responses. Sparse subsetting, or the large dimensionality of a feature space, may
also be dependent on experience or expertise with stimuli. Consistent with this, Osth et
al. (2014) found substantial list-strength effects with highly confusable fractal images and
Kinnell and Dennis (2012) found list-strength effects with non-words.

This framework could potentially apply not only to classic manipulations of
“strength:” presentation time, repeated presentations and levels of processing (Hintzman,
1988; Ratcliff et al., 1990), but potentially same/difference processing for items presented in
pairs (e.g., Epstein & Phillips, 1976), imagery and sentence mediation (e.g., Paivio, 1971),
and the production effect, generation effect and enactment effect, with arguments about
distinctiveness already advanced by Bodner, Huff, and Taikh (2020), Bodner, Jamieson,
et al. (2020), Cyr et al. (2021), Jamieson et al. (2016), MacLeod and Bodner (2017), and
Saint-Aubin et al. (2021), among others. The specifics surely differ, but these experimental
manipulations may at least partly improve memory by storing more features.

Orthogonal to this kind of distinctiveness-based strength effect, we saw that
amplitude-based “strength” (scalar gain on encoding strength), on the other hand, leads
to a sizeable list-strength effect. Whether a putative “strength” manipulation produces a
list-strength effect or a distinctiveness-based effect according to our operational definitions
will depend on the relative values of parameters (αs/αD and nS/nD, respectively). Some
conditions that produce a large list-strength effect might act in this way, essentially by
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strengthening the same subsets of features rather than encoding more features.
When strength is increased by repeated presentations of an item, as is common

in the list-strength effect literature, what would ensure that additional features are stored
during the second presentation? If the same features were stored twice, this simply doubles
the vector length, reduces to the latter mechanism and offsetting most of the strength
advantage. Murdock (1982) noted this and Murdock and Lamon (1988) addressed it with
a “closed-loop” rule. The incoming item was first matched to memory, then encoded in
inverse proportion to its pre-existing strength (see also, e.g., Lewandowsky and Murdock,
1989 and Osth et al., 2020). A closed-loop rule might operate at the feature level. Each
attended feature could be stored inversely to its current value so that feature values would
asymptote and additional presentations would rather offer more opportunities to encode
more features. This would resemble the trace-editing mechanism used in REM to produce
differentiation (Shiffrin & Steyvers, 1997).

Comparison with other accounts

The earliest model-explanation of the null list-strength effect in recognition was the
introduction of differentiation to local-trace models (Ratcliff et al., 1990; Shiffrin et al.,
1990), which subsequently motivated the design of REM (Shiffrin & Steyvers, 1997) and
SLiM, (Subjective Likelihood in Memory McClelland & Chappell, 1998). In a differentiation
model, strengthening an item produces a more accurately encoded local trace for that item.
Because the local trace produces its own matching strength, and recognition is driven by
a likelihood calculation, the characteristics of other studied items exert little influence on
recognition of a given item. Ensor et al. (2021) found evidence in line with the idea that
null list-strength effects might occur when a repetition trial results in further refining of the
pre-existing trace rather than creation of a second, distinct, local trace; when participants
were not aware that an item was a repeat, a list-strength effect sometimes emerged. This
was proposed as an account of the emergence of a list-strength effect in recognition under
divided attention (Sahakyan, 2019; Sahakyan & Malmberg, 2018).

In contrast, operating within the matched filter model, Murdock and Kahana (1993)
and Murdock (1995b) reasoned that noise accumulates over recent experience, including
recent experimental lists, but also extra-experimental experience. If noise has reached an
asymptote, list composition contributes little to the noise present on a given trial.

A third account, by Chappell and Humphreys (1994), Dennis and Humphreys
(2001), and Osth and Dennis (2014, 2015), similar to our reasoning, assumes items are
nearly orthogonal. Noise cross-talk is thus absent, so list composition has little influence on
recognition. These models account for the basic effect of the strength manipulation in other
ways, such as deepening of item attractor energy wells or variability in context–item asso-
ciations. However, accounts that assume strict orthogonality will not produce a list-length
effect. Because it is a continuum account, attentional subsetting provides a way in which
orthogonality is not absolute but only approximate, which results not in a null list-strength
effect but a near-null list-strength effect, and for the same reason (overlap of attentional
masks across items) produces a non-negligible list-length effect (Figure 6c,d).

These various accounts, including the one presented here, do not seem to be mutually
exclusive. They might very well co-exist in some sort of mixture in observed behaviour.
The attentional subsetting account offers some new suggestions about potential boundary
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conditions because it specifies what causes representations to be approximately orthogonal,
namely, sparse attentional subsetting. Thus, the full vector representations of stimuli in an
experiment are neither sparse nor orthogonal to one another.

The production effect

When attentional subsetting is not sparse or not random, list-strength effects should
re-emerge, as in the production effect, where words read aloud are recognized better than
words read silently (Bodner, Jamieson, et al., 2020; Hopkins & Edwards, 1972; MacLeod et
al., 2010). A well supported account of the production effect is the so-called “distinctiveness
heuristic” (MacLeod et al., 2010) but “distinctiveness” has a different meaning here. The
assumption is that participants, to some degree, recollect or replay their experience of
producing the word, and use this as evidence of its list membership. MacLeod et al. (2010)
draw a direct connection to Kolers’ proceduralist framework (Kolers & Roediger, 1984). I
suggest an arguably simpler explanation: the distinctive features added by production are
“squashed” into a relatively low-dimensional feature sub-space. If, in a between-subjects
design, participants with no production do not attend to that feature subspace, the low
dimensionality of the production subspace will produce lots of cross-talk in the mixed lists
that the non-produced items are not subject to in pure lists. Combined with a relative
distinctiveness and cueing advantage for produced items, this results in a list-strength effect.
This account is quite closely related to Jamieson et al. (2016), and I was partly inspired
by that model. They implemented the production condition in MINERVA 2 (Hintzman,
1988) by dedicating 5 of their 25 features to the production condition. Their encoded item
representation was not sparse. Jamieson et al. (2016) also assumed the probe item did not
include production features. Instead, they obtained a production effect by implementing an
iterative retrieval process through which production features can emerge. In contrast, I have
suggested that task meta-knowledge influences whether production features are included in
the attentional mask at test. Although an iterative retrieval of condition-specific features
is not at odds with the attentional subsetting framework, it would seem hard to implement
within the matched-filter model, specifically. It would be interesting to test for such iterative
retrieval, for example, by testing whether response times are lengthened when iterative
retrieval is present versus absent. On pure lists, manipulated between subjects, the iterative
retrieval mechanism would predict a speed–accuracy tradeoff of sorts: more long response
times in exchange for greater accuracy on produced than non-produced pure lists.

Implication: a list-strength effect “hiding” within weak items

A critical assumption in producing an inverted list-strength effect was the idea that
unlike features that take more time to process, the fastest processed features dwell within
a small, and therefore densely occupied, feature space. If this is the case, then one should
observe a positive list-strength effect if strength were manipulated with stimulus duration, if
short and long durations were both quite short. In fact, Yonelinas et al. (1992) manipulated
strength via durations of 50, 100 or 200 ms/item, and observed a substantial positive list-
strength effect (e.g., RoR=1.77 in experiment 2) with yes/no recognition. Now, consider
that the weak condition in most strength manipulations is about 1 s or longer. This suggests
that those early, compact-space features are processed in both typical weak and strong
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conditions. They may, in fact, contribute the same amount of cross-talk to recognition
judgements— other items’ strengths within a given list do, perhaps, influence recognition,
but to the same degree for items in the “weak” and “strong” conditions. The effect of
weak versus strong, therefore, may be largely due to the number of features stored within
a relatively large (therefore sparsely subsetted) feature space, so the added effect of longer
durations or multiple presentations may not introduce very much additional cross-talk.
The production effect partly inverts the situation: the “strength” manipulation draws the
participant’s attention toward features (phonemic) that dwell within a compact subspace
that produces significant cross-talk.

List-strength effects in other tasks

Besides having to explain why list-strength effects are sometimes found, another
challenge for accounts of null list-strength effects in recognition is simultaneously explaining
why, with the same manipulations of strength, a list-strength effect has often been observed
in free recall, where participants recall items from a list in any order they choose (e.g., Ensor
et al., 2021; Ratcliff et al., 1990; Talmi et al., 2021; Wilson & Criss, 2017) and sometimes
in cued recall, where participants are asked to produce the item a cue item had been paired
with during study (Kahana et al., 2005; Ratcliff et al., 1990) but with several rigourously
executed failures to replicate a robust list-strength effect in cued recall (Wilson & Criss,
2017). Without modelling free or cued recall, there are some ways in which the intuition
developed here may inform this question.

In free recall, the cue is the list context (e.g., Atkinson & Shiffrin, 1968; Brown et
al., 2007; Gillund & Shiffrin, 1984; Howard & Kahana, 1999; Raaijmakers & Shiffrin, 1981;
Wilson & Criss, 2017). In a distributed model, the simplest way to implement memory
of a list that can be retrieved via free recall is as a summation of associations (e.g., outer
product or convolution) between a context vector and each list item along with associations
between items (Kahana, 1996) or a 3-tensor incorporating list context and associations
(Humphreys et al., 1989). The context cue thus produces a fan effect— it is an ambiguous
cue for numerous items. Most pertinent, there can be no item-specific attentional mask
on the context cue. The context cue will retrieve a weighted sum of studied item vectors
(the matched filter model). That retrieved vector would not initially be masked.4 The
retrieved vector then would need to be compared to a set of candidate response items (e.g.,
a “lexicon”), computing dot products to determine which items are likely to have been
present in the target list. This amounts to something very similar to the full probe matched
filter model of item recognition (or perhaps a probe masked by the union of all masks used
in the list). Just like the full probe model, this produces a list-strength effect that is very
robust to the sparseness of attentional subsetting during study (Figure 4).

Cued recall, as nicely expressed by Wilson and Criss (2017), is something of a hybrid
between item recognition and free recall. The cue is an item, not a general list-context cue.
The cue item could be masked as it was during the study phase but the response is not a
forced-choice judgement but an item, itself. The first stage of cued recall may show weak
or no list-strength effect for the same reasons as for item recognition. But the last stage,

4Or more plausibly, retrieved features might be masked based on meta-knowledge of the task or even the
list, such as the union of all attentional masks recently used (i.e., during encoding of the list).
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whereby the participant needs to select an item from a set of response candidates, resembles
free recall, and could be the locus of a list-strength effect. This might explain the variability
in findings in the small number of attempts to test for list-strength effects in cued recall.
Wilson and Criss (2017) failed to replicate the robust list-strength effect in cued recall that
was reported by Ratcliff et al. (1990) and by Kahana et al. (2005).5 Some of their null list-
strength effects in cued recall produced the characteristic crossover interaction nominally
(Experiments 1 and 5) but the effects were too small to be supported by Bayes factors
(Wilson & Criss, 2017). This leaves open the question of the true status of the list-strength
effect in cued recall. Perhaps when cued recall is dominated by the application of the cue
item to retrieve associations, the list-strength effect should be quite small. When cued recall
is dominated by the selection of the response item, the list-strength effect should re-emerge.

This also implies that there should be a nearly null list strength effect in associative
recognition (having studied a list of pairs, judge whether two probe items were paired during
study or were in different pairs). Because both items are present (copy cues; Humphreys
et al., 1989) for judgement, the study mask would be expected to reiterate at test as
it did at study. Osth and Dennis (2014) indeed found support for a null list-strength
effect in associative recognition (and Osth and Dennis, 2015) and suggested this could be
compatible with near orthogonality of item representations in a matrix model (see also
Chappell & Humphreys, 1994; Dennis & Humphreys, 2001), close in spirit to the idea of
sparse attentional subsetting in item recognition.

Finally, rethinking the free recall task, the probability of first recall may be cued
only by list context, but subsequent recalls are also cued by items via inter-item associations
(Atkinson & Shiffrin, 1968; Kahana, 1996). Given the intermediate status of cued recall, one
interesting prediction is that the list-strength effect should be stronger for the probability
of first recall than for subsequent recalls.

Effective dimensionality

In the unmodified matched filter model, each item, fi, occupies n-dimensional space,
and the memory, m occupies the same space. When masked, each masked item during study
occupies an nC-dimensional subspace of the full vector space. Memory of a list containing
only a single item thus also occupies this nC-dimensional subspace. Adding a second item
increases the probability that a particular feature has been included in the mask, on average,
from nC/n to 1 − (1 − nC/n)2, less than doubling it. In general, for L items, the number of
occupied dimensions is n

(
1 − (1 − nC/n)L

)
. If nC ≪ n (i.e., sparse attention), as we have

been assuming, there will be very little overlap between the subspaces of different items (a
similar idea, that selective attention could produce roughly orthogonal representations, was
proposed by Osth and Dennis, 2015). Thus, the memory for a small set of items occupies a
subspace that increases nearly linearly with list length, for small L. For large L, if nCL ≃ n,
the memory has expanded to occupy a large portion of the full vector space. Due to random
selection of the subset dimensions, it will still not nearly fill the entire subspace until L is
even greater. So with small nC and small L, items are sparsely coded in memory. As more

5Their initial suspicion was that the list-strength effect was caused by a confound due to the study–test
lag having not been equated between strong and weak items. However, their own attempt to replicate that
confound failed; they still found a null list-strength effect, despite this confound in their fifth experiment.
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items are stored in the memory, this introduces more cross-talk between item j and the
unattended features of item i; namely, the unattended features of i that were attended for
j. If these can be left out of the recognition probe, there will be no cross-talk, but if the
mask at test is not optimal, it will slip and increase that cross-talk noise.

For lure probes, the more items are stored, if their attentional masks are indeed
drawn independently, the greater the chance the lure item might produce a high matching
strength. In contrast, when nC is small and only a few items are stored, most of the lure
items will be excluded from the subspace of the memory, itself.

The effects of inter-item similarity build on one’s intuition from other models.
When there are attended features common to multiple items stored in a memory, matching
strengths will increase across the list, but lure items with those features in common will
also produce high matching strengths. If nK of the nC dimensions are common and have
the same values across items, the memory effectively occupies a smaller subspace, with di-
mensionality nC − nK . If at test, those common, nK , dimensions can be excluded from the
mask, matching strength will drop by a constant across the similar studied items, but the
mask will exclude noise from those dimensions and avoid a potential match of a similar item
that was not in the study set. So depending on the specific task demands, item-similarity
might be helpful, in which case attending to those similar feature dimensions would benefit
the participant. Alternatively, item-similarity might lead to errors or to needlessly increase
the computational complexity of the comparison, in which case those dimensions may be
better masked out. In a list that includes some items with this sort of similarity and other
items without, it may still be advantageous to attend those similar features. Although an
increasing number of stored features does produce a first-order effect of improving memory,
numerous additional forces result in a far more nuanced picture, where more features (e.g.,
in the case of similarity or noisy features) at both study and test can in fact reduce perfor-
mance, and more clever decision rules, such as those used in the Feature Model and REM
(Cox & Shiffrin, 2012; Nairne, 1990; Shiffrin & Steyvers, 1997) may often override effects
of raw dimensionality in exchange for the diagnosticity of the features, themselves.

This framework raises an interesting possibility: Some items may have a common
attentional mask (that similar types of features are relevant) but different values for those
features. Suppose these common features were attended, and thus part of all items’ masks.
If the common subspace is large enough, attending the common subspace will increase
distinctiveness among items. If other items omit these features, there will be minimal
cross-terms and the variances will remain low. For example, both the words wildebeest and
cheetah may evoke features related to predation and chase, but those feature values would
be quite different (prey/predator, endurance runner/sprinter, herbivore/carnivore, etc.).
Thus, if both items drew attention to those same dimensions, the result would be increased
distinctiveness. This is in contrast to other features such as habitat, mammal status, etc.,
that would result in similar feature-values as well. Perhaps mastering a particular memory
task includes optimizing the attentional masks in this way.

Related concepts

Mathematically, attentional masking is quite similar to the probabilistic encoding
applied to the matched filter model by Murdock and Lamon (1988), but with two differences:
a very small subset of the full vector is encoded on any given trial and the mask is not,
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in fact, randomly redrawn on every trial. The assumption is that the same mask will
reiterate itself whenever the item and task demands are identical. That is, a mask might
have characteristics that approximate random sampling of features, but they are actually
presumed to be largely deterministically selected based on prior knowledge. The idea that
the attended subset is a rather small proportion of the total number of features has a
precedent in Glanzer et al. (1993). However, theirs was a local-trace model and they drew
the test mask at random, with no consideration of the mask at study. The small average
amount of overlap between study and test masks of a given item was coincidental. If Glanzer
and colleagues had tuned their model to sparse attention, overlap would have been nearly
zero and recognition performance would thus also have been close to chance. Finally, the
model implemented by Glanzer et al. (1993) made memory judgements only based upon
the mask, itself. The episodic memory, in other words, was the set of attended features of a
given item, not the feature values, themselves. In the current model, similar to Murdock and
Lamon (1988), when features are attended, their values are stored in the episodic memory.

Representations that are approximately orthogonal have been long understood to
be desirable, especially to overcome memory confusions due to similarity. Sparse repre-
sentations are an established way to achieve this (Chappell & Humphreys, 1994; Tsodyks
& Feigel’man, 1988). This kind of transformation is thought to be carried out by the
hippocampus— specifically, the dentate gyrus, and posterior hippocampus (e.g., Marr,
1971; McClelland et al., 1995; Norman & O’Reilly, 2003; Poppenk et al., 2013). How-
ever, orthogonalization or pattern separation implies that the model (person) will change
the vector representation of an item. Moreover, Becker (2016) found that similarity-based
interference could be solved not by separating patterns, but by adding features to them (in
her model, via neurogenesis, but the insight may be more general). With attentional sub-
setting, in contrast, item knowledge remains relatively unaffected by an episodic memory
task. It is instead, the functional representations, in the service of a particular memory
task, that can be approximately orthogonalized or sparse. Functional vectors are not ar-
bitrarily or randomly “separated,” but are sparse because prior knowledge, influenced by
meta-cognitive beliefs about which features could be task-relevant, tends to produce ap-
proximately sparse functional representations. In stark distinction to pattern separation,
the notion of attentional subsetting does not actually separate patterns. It also does not
really orthogonalize the item representations. In fact, by zeroing out all the unattended
features, the angles within the full n-dimensional space between items will only decrease.
Attentional subsetting only excerpts portions of the vector representations of items within a
given task setting, and only arrives closer at orthogonal functional representations— within
the attended subspace— to the degree to which common-valued features are unattended.
An important theoretical point, therefore, is that the left-in features are unchanged from
the original vector representation.

Representational hierarchical theory (Bartko et al., 2010; Bussey & Saksida, 2002;
Cowell et al., 2010, 2019) proposes that the hippocampus adds representational precision
by computing conjunctions of features of its inputs. Perhaps the sparseness of firing rate
patterns within the dentate gyrus is not computed by the dentate, itself, but by attentional
modulation (masking) of features at its input. This notion is compatible with the idea
that hippocampal pyramidal-cell activity is, similar to an inverse Fourier Transform, a
consequence of Fourier-like basis functions supported by entorhinal grid cells modulated by



ATTENTIONAL SUBSETTING 31

content and context information (Hayman & Jeffery, 2008; Rodríguez Domínguez & Caplan,
2019). The idea that the sparseness of hippocampal representations is due to subsetting of
features in the service of optimizing stimulus distinctiveness within a task context might
explain why those hippocampal representations appear noise-like (Redish et al., 2001).

Limitations

To better see the effects of attentional subsetting in the analytic derivations, I sim-
plified the matched filter model even relative to its early formulations (e.g., Anderson, 1970,
1973; Murdock, 1982, 1995b; Murdock & Lamon, 1988): 1) Each item was stored with the
same “strength” (aside from Version 6). Previous models have included variability in encod-
ing strength, implemented with an overall randomly sampled coefficient multiplying each
encoding term. 2) The subsetted features were always reliably encoded. A more realistic
implementation would treat that encoding as, to some extent, probabilistic (Glanzer et al.,
1993; Murdock & Lamon, 1988). Within the set of relevant features, some features might
be skipped due to limited cognitive resources or study time, for example, and this, in turn,
might differ across experimental conditions. Moreover, the attentional mask at study and
test might differ a bit, and could presumably differ increasingly more with increasing study–
test delays, for example. 3) There was no forgetting. Forgetting is typically a coefficient
just under 1 that multiplies the memory on each study iteration (Murdock, 1982). All
these would be fruitful to explore in the future. They would tend to increase the realism
and scope of the model but would tend to decrease overall performance levels while not
qualitatively affecting any of the phenomena we have considered here.

For attentional subsetting to be item-specific, I assumed that those subsets are
pre-existing and have not modelled them directly but simply as random subsets. This
was a pragmatic choice, to rein in the scope of the work, just as how episodic memory
models typically presume the “semantic” lexicon (full item representations) are pre-existing
and drawn from some sort of random distributions of values. A good model of semantic
memory could potentially increase the explanatory power of attentional subsetting and
customize predictions for particular stimulus sets. Formally, the tacit assumption is that
a pre-experimental semantic associative network exists. The item, or processed subset of
the stimulus, heteroassociatively retrieves the attentional mask, itself, also intersectionally
retrieved by the task set. Semantic memory must have a lot of infrastructure, including
high-order associations such as tensors (Humphreys et al., 1989) or n-way convolutions
(Murdock, 1995a). Mueller and Shiffrin (2006) presented a compelling framework through
which this could develop, through an iterative interaction between episodic and semantic
memory. This presumed prior associative knowledge confers upon the feature subsets the
characteristics of item-specificity, approximate sparseness and dependence on factors like
context, task set and relational influence from proximal items. It is also the mechanism
that produces what appears like rapid switching of selective attention to features from one
item to the next. At least as proof of principle, Wu and Barsalou (2009) found task-set
effects on the features participants listed in response to a verbal cue. For example, for
the concept of a rolled-up lawn, participants generated features consistent with the visible
features of the image like dirt, which were not produced in response to the unmodified
cue “lawn.” The results showed considerable consistency across participants. If different
participants produce similar features, in a contextually modulated way, then it is plausible
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that a single participant thinks of the same features on two occasions, to the extent that the
task-set is the same. Medin and Shoben (1988) found that judgements of prototypicality
and of similarity depended on additional task-context information (e.g., judging spoons
versus wooden spoons, judging the similarity of the colours white, gray and black in the
context of hair versus clouds). As with Wu and Barsalou (2009), this speaks both to
the contextual-dependence of similarity (and task-relevant, attended features) and to their
otherwise considerable consistency across participants and presumably within participants.

By focusing on d′, we have deliberately avoided addressing how participants select
their response criterion, or threshold, to trade off hits with false alarms. The question of
criterion-setting speaks to a host of important empirical findings, and should be addressed
in future development of the modelling ideas. Because the number of encoded features, in
our formalism, can vary drastically across task conditions and, in a more realistic model,
across items, sticking with a threshold based purely on absolute matching strength could
become extremely unstable; if the threshold is a bit too high or a bit too low, the model
would produce 100% misses or 100% false alarms.

Another major omission was any episodic, contextual or temporal features or as-
sociations. The model as it stands is unable to do tasks beyond the simple recognition
task considered here. The simplicity of the model helped us understand how attentional
subsetting might work at the level of item representations. Those item representations, in
turn, are at the heart of other well developed models. Sparse attentional subsetting, and
its tendency to reiterate at test, could be integrated to interesting effect into any vector
model of memory (e.g., Hintzman, 1988; Howard & Kahana, 1999; Humphreys et al., 1989;
Murdock, 1982; Nairne, 1990; Shiffrin & Steyvers, 1997), and extended to more complex
memory tasks such as free recall, cued recall, associative recognition and serial recall. In
this sense, the matched filter model is not meant as an argument against more complex
models. Context and temporal information could quite naturally be implemented as in
those models, as explicit associations or as vectors within some corresponding subspace.
Alternatively, an intriguing possibility that could be explored in the future is that contexts
may sometimes lead to distinct, item-specific attentional subsetting, acting at the very level
we have considered here. Consider the word “screen.” If context “S” were school and “D”
were den (home), context S might draw attention to features related to lectures and exams,
whereas context D might draw attention to entertainment and television series. Contexts
might, in principle, result in the encoding of very non-overlapping subsets of item features,
potentially enabling even our current simplistic vector-summation model to discriminate
study contexts with high precision, and could contribute to study–test congruence effects.

Conclusion

The very plausible assumption that attention modulates the subset of features of
an item that are encoded provides a good compromise between the theoretical high dimen-
sionality of knowledge and the flexibility, hence low-dimensionality of episodic memories.
If the subsets are item-specific and not drawn anew at random, but are instead driven by
meaningful processing of items, the idea can produce numerous patterns of findings, includ-
ing a near-null list-strength effect when subsets are small and functional representations
are essentially sparse, and a positive list-strength effect when attention-masked represen-
tations start to overlap substantially. In certain sections of the parameter space, even an
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inverted list-strength effect is expected, potentially explaining those rare but noteworthy
reports. The continuum-based nature of this account of list-composition effects may ex-
plain not only specific instances of null, positive or inverted list-strength effects, but also
suggests factors such as the dimensionality of the working feature subspace, that might
explain what modulates the magnitude and sign of list-composition effects. Although the
effects of such attentional subsetting were explored within the matched filter model applied
to item-recognition, many of the phenomena will propagate through more well developed
models and models of more complex tasks.
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