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Abstract

Most of what we know about neural mechanisms of incremental learning
through feedback comes from descriptive, univariate analyses. Here we go
one step further, seeking brain activity that is not just statistically reliable
(potentially small-but-significant) but can track such learning at the item
level, taking a classifier-based approach to narrow in on basic neural en-
coding processes. Participants (N = 45) learned 48 word-value mappings
through trial-and-error. First we checked whether established EEG markers
of feedback processing, the feedback-related negativity (FRN) and frontal
midline theta activity (FMT), are in fact predictive of trial-to-trial learning
of the current item— and they were (above chance, but not by much), val-
idating the behavioural relevance of those features. Next we asked whether
there might be considerably more information about encoding on single trials
beyond these statistically robust, regular signals. Indeed, multivariate clas-
sifiers (LDA and SVM), incorporating signal-features beyond the FRN and
FMT, predicted learning more substantially and exceeding previous perfor-
mance on episodic recognition using the same basic approach (Chakravarty
et al., 2020). Time-frequency spectral features produced better classifica-
tions (AUC ~0.7) than time-domain features. Finally, a possible shortcut
due to accuracy varying systematically with trial number could not explain
away classification success. In sum, FRN and FMT are not just descriptive
of feedback-driven learning but also a bit predictive— but are the tip of the
iceberg (subject-specific, spatiotemporal features) uncovered by the multi-
variate classifiers. This extends current classifier-based approaches to brain
activity from episodic memory to incremental, feedback-driven learning.
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Introduction

We often learn incrementally through feedback, where we evaluate the outcomes of
our actions to optimize future behaviour (Sutton & Barto, 2018). Our overarching goal was
to investigate learning-related brain activity using an approach that weds the subsequent-
memory effect approach to identifying brain activity that differentiates actual memory out-
come, with classifier methods that enforce the requirement that such activity be predictive
rather than simply descriptive. Next we briefly summarize electroencephalographic (EEG)
research on feedback processing, describe our learning task that has a greater learning de-
mand than typical tasks, and describe the two-stage (univariate followed by multivariate)
approach we apply to identify brain activity that underlies feedback-driven learning.

Learning from feedback

Feedback-driven learning is thought to be mediated by the calculation of a reward
prediction error (RPE)— the difference between an action’s expected and obtained outcome
(Schultz et al., |1997). Accordingly, studying RPE-linked brain activity may inform our
understanding of how the brain incrementally updates action expectations, where reward
shapes learning. Extensive research using univariate methods has repeatedly replicated
two features of interest that may reflect RPE: the feedback-related negativity and frontal-
midline theta activity. For the first stage of our two-stage approach, we investigate these
two features, through a classification lens.

First, the Feedback-Related Negativity (FRN) is an event-related potential (ERP)
found at frontocentral electrodes around 200-350 ms post-feedback, where FRN amplitude
is lower while processing negative than positive feedback (Bellebaum & Daum, |2008; Frank
et al., |2005; Goyer et al., [2008; Hajcak et al., 2006} Holroyd et al., 2004} Marco-Pallares et
al., 2011 Nieuwenhuis et al., [2002; Pfabigan, Seidel, et al., [2015; Walsh & Anderson, 2011
Wu & Zhou, 2009; Yeung et al., 2004)). A leading account of the FRN suggests that, as the
FRN is sensitive to whether feedback was expected, it could act as an RPE detector as well,
enabling error-driven learning (Holroyd & Coles, [2002). As such, some have reported that
FRN magnitude is related to learning outcomes (i.e., that it is more negative during errors
which are later corrected; Hester et al., 2008; van der Helden et al., [2010), though others
have failed to replicate this finding (Chakravarty et al., in review; Luft et al., 2014; van de
Vijver et al., 2011). We also note that the FRN window overlaps with that of a reward
positivity (a positive deflection during rewarding feedback; e.g., Proudfit, 2015), and that it
is unclear whether the FRN effect is driven by a greater positive deflection while processing
rewarding feedback, or a greater negative deflection while processing errors (Holroyd et al.,
2008]). We will not conclude on either side of this debate, although for simplicity, we use the
older and more common acronym, FRN, to refer to this particular measure of EEG voltage.

Second, Frontal Midline Theta (FMT) is characterized by elevated theta-band (4-8
Hz) power over frontocentral regions peaking around 300 ms post-feedback. Some have
suggested that FMT is an “error detector” which appears following any negative feedback
(Bernat et al., 2015; Cohen et al., 2007; Marco-Pallares et al., 2008), while others have
reported that FMT is modulated by outcome magnitude or probability (Christie & Tata,
2009; Hajihosseini & Holroyd, 2013)), suggesting that it is sensitive to RPE (Cavanagh et
al., [2010; Mas-Herrero & Marco-Pallares, 2014). FMT has also been explicitly linked to
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learning, with some reporting that it shows subsequent memory effects, or greater power
during the study of items that are later remembered than later forgotten (e.g., Chen &
Caplan, 2017} Fell et al., 2011; Klimesch, [1999; Klimesch et al., [2010)).

To date, researchers have studied brain activity during feedback processing in two
main paradigms. Many employ a probabilistic reward learning task (Bernat et al., 2015;
Cavanagh et al., [2010; Christie & Tata, 2009; Cohen et al., 2007, Gehring & Willoughby,
2002; Goyer et al., [2008; Hajcak et al., 2007; Marco-Pallares et al., 2008), where on each
trial, participants bet on which of a small set of stimuli (typically 2 to 4) will give a greater
reward when chosen. Participants can then use feedback for their selection to optimize
future bets on the stimuli later in the task. Others use a time estimation task (Gehring
et al., [1993; Hajihosseini & Holroyd, |2013} P. Li et al., [2016; Luu et al., 2004} Miltner et al.,
1997; Nieuwenhuis et al., 2005; van de Vijver et al., 2011), where participants aim to press
a button a specific amount of time (e.g., one second) after a cue, and receive feedback on
how accurate their guess was to guide their future actions.

Note that neither task offers a clear and substantial learning objective for partici-
pants to achieve, which is the task-regime we are interested in here. In probabilistic reward
learning, participants often do not learn a fixed word-value association, but instead learn
to choose the stimulus that is most likely to give a reward, with a reward probability of,
for example, 80%. In time estimation, feedback typically scales with participant perfor-
mance, where better—performing participants must be increasingly accurate to achieve the
same reward as in previous trials. As such, in both cases, it is possible for a participant
to learn the task well, but still receive negative feedback from their actions. Accordingly,
such paradigms are well suited for studying the neural correlates of processing unexpected
feedback, but not so much feedback which helps achieve a concrete learning goal.

Our task of interest. To address such a related, but different question, in the
present study, we analyze a reward-driven verbal learning task (initially developed and in-
vestigated behaviourally in Chakravarty et al.,|2019)) where participants learned to associate
each of 48 words with a binary response— either to choose the word and receive a reward
(in the case of words we call “high value”), or to avoid it (in the case of words we call “low
value”) and receive the same. Participants learned these word-value mappings through
trial-and-error over 16 training cycles, aiming to maximize reward earned over the course
of the task (for similar approaches, see Arbel et al., 2014} Arbel et al., 2013; Chase et al.,
2011; Ernst and Steinhauser, 2012).

A classifier-based subsequent-memory-effect approach

A major goal of memory research is to identify how brain activity supports memory
performance: success versus failure. Measures of brain activity are, by necessity, observa-
tional, making it difficult to establish causality, and differentiate necessary versus sufficient
activity. Indeed, much brain activity that is observed during memory tasks may be un-
related to memory success and even unrelated to the memory task altogether. However,
progressively refining the approach to data analysis can bring us increasingly closer to iden-
tifying brain activity that drives memory performance and thus should eventually give us
insights into the brain-activity basis of memory. One of the most important such major
breakthroughs was the trial-sorting method introduced by Sanquist et al. (1980]) and named
the “subsequent-memory effect” by Wagner et al. (1998). The subsequent-memory effect
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contrasts brain activity measured while people study items (e.g., words) that they later
remembered versus items that they later forgot. The idea is that of all the brain activity
present, a subset of that might reflect processes during encoding that lead to better mem-
ory. Those should be more present during later-remembered than later-forgotten trials.
A major step forward, subsequent memory effects still typically average across trials and
across participants, and thus identify activity that while robust by some definition, may be
selected more for reliability across subjects and trials than for their causal role in memory
outcome.

The field of machine-learning has offered tools to take the subsequent memory effect
one step further. This perspective views conventional analyses as descriptive. This can
yield results that are statistically robust but with considerable overlap in the signals that
differentiate classes, such as subsequently remembered from subsequently forgotten items,
which can be insufficient to make non-negligible predictions about learning or memory on
a trial-to-trial level. Machine-learning classification methods have been used to identify
signal that not only exhibits descriptive effects but can in fact substantially predict class
identity, including avoiding overfitting training data. This approach has been applied to
predicting subsequent memory in tasks like recognition and free recall (e.g., Arora et al.,
2018; Chadwick et al., [2010; Chakravarty et al., [2020; Halpern et al., [2023; Hohne et al.,
2016; Mirjalili et al., 2022; Weidemann & Kahana, [2021)), as well as with functional magnetic
resonance imaging (e.g., Watanabe et al., [2011)).

Those prior studies typically examined episodic memory tasks where a stimulus,
usually a word, is studied only once prior to the memory test. To our knowledge, a classifier-
based subsequent-memory effect approach has not previously been used to study incremen-
tal, feedback-driven learning. That was our main goal here. Learning may occur at any time
during the task, but unlike those typical episodic memory tasks, in a feedback-driven task,
it is only at the time that the feedback stimulus, itself, is presented, that the participant
obtains information about whether or not to adjust their knowledge about the stimulus.
We therefore presume that in our task, when an item’s value is learnt, brain activity that
reflects learning of the item occurs while, or soon after, the feedback is viewed, with the
consequence that the next trial with that stimulus is more likely to be responded correctly.
Thus, we take a classifier-based approach to study EEG data recorded during feedback pro-
cessing to evaluate the brain activity linked to learning concrete word-value associations.
We build on our previous conventionally analyzed event-related potential study with this
task (Chakravarty et al., [in review)).

One complication is that applications of classifier analyses of brain activity often
start with data-driven feature-selection and the classifier hyperparameters and algorithms
vary across studies. Although justifiable when the aim is to maximize classifier success, this
can make it hard to evaluate classifier performance across studies, and raises the possibility
that there might be some selective reporting in the field. With this perspective in mind,
Chakravarty et al. (2020) took a two-stage approach aimed to minimize researcher degrees
of freedom and obtain a more baseline level of classifier success, albeit probably more like
a lower-limit. Developing a classifier-based subsequent-memory effect analysis of a conven-
tional episodic, verbal, old/new recognition task, Chakravarty and colleagues started by
asking whether frequently reported univariate features might already have some predictive
power to classify subsequent memory (subsequent hits versus misses). They then applied
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the simplest classifiers, linear discriminant analysis (LDA) and support vector machines
(SVM) to signal that was first downsampled, not by data-driven feature-selection but by
sampling a subset of electrodes and by time-binning voltage. We take the same approach
to our feedback-driven, incremental learning task. First, we evaluate the predictive power
of the highly replicated univariate measures of feedback processing in the EEG, the FRN
and FMT, and then we turn to multivariate classifier analyses.

Finally, multivariate classifier-based analyses of EEG activity have typically used
spectrographic features, or power as a function of electrode and time (e.g., Arora et al.,[2018;
Halpern et al., 2023; Y. Li et al., [2024; Mirjalili et al., |2022; Noh et al., 2014; Weidemann
& Kahana, [2021). To our knowledge, Chakravarty et al. (2020) was the first to report
classification success leaving the signal in its original time domain (electrode by time-bin).
Because Fourier Transforms (and wavelet transforms) are linear, it seems intuitive that a
linear classifier should have access to linear combinations of features and potentially exploit
the same information embedded in the signal whether in the time-domain or spectrographic
(time-frequency) form. We thus compared classifiers acting on the time-domain alone versus
the time-frequency domain to check this. To foreshadow, the time-frequency features led
to greater classifier success, which we revisit in the Discussion.

Overview

We take a two-stage approach to identifying learning-related brain activity dur-
ing a feedback-driven task. First we re-consider robust univariate signals, the FRN and
FMT, through the lens of classification, to ask whether these already might offer substan-
tial predictive power. Second, we look beyond those univariate features and ask whether
subject-specific, multivariate classifiers can identify more learning-predictive information in
the EEG.

Stage 1. Consider that both the FRN and FMT are conventionally analyzed at
the trial-average level. It is unclear whether either signal can index an RPE calculation
and future behavioural adjustments at the level of individual trials. We take inspiration
from the classifier-based subsequent memory effect paradigm, where researchers ask whether
trial-level brain activity during item-encoding can be used to predict whether that item will
later be remembered or forgotten (Arora et al., [2018; Chadwick et al., |2010; Chakravarty
et al., [2020; Halpern et al., [2023} Hohne et al., 2016; Mirjalili et al., 2022} Weidemann &
Kahana, [2021). We ask whether trial-level FRN and FMT magnitude can predict whether
word values will be learned on a given trial, as indicated by future responses when that
word is presented. Specifically, following the signal detection theory approach taken by
Chakravarty et al. (2020) for single-trial episodic item-recognition, we trace the receiver
operating characteristic (ROC) curve using single-trial FRN/FMT magnitude to predict
correct responses, quantifying predictive power using the area under the curve (AUC).

Stage 2. Next, suspecting that univariate signals do not describe the full complexity
of feedback processing, we ask whether multivariate classifiers incorporating broader spatial
patterns of time and time-frequency domain data can predict learning to a greater degree.
To minimize researcher degrees of freedom (Chakravarty et al.,|2020) we apply linear classi-
fiers to predict successful behavioural adjustments from pre-selected spatial, temporal, and
spectral EEG features.
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Thus, in a cognitively demanding paradigm with a concrete learning objective, we
examine whether established univariate signals and broader multivariate activity measured
during feedback processing can index successful item-value learning.

Methods

Data and conventional analyses are reported by Chakravarty et al. (in review) where
the full methodological details are reported. We summarize them here. The procedures were
approved by a University of Alberta ethical review board.

Participants

In total, 68 introductory psychology students at the University of Alberta partic-
ipated in exchange for partial course credit. All participants spoke English as their first
language and had normal or corrected-to-normal vision. Written consent was obtained prior
to the experiment. We performed a manual inspection of the EEG, and abnormal channels
were removed, for example, flat/no signal, channels affected by high frequency/line noise,
head motion, etc. We followed the standard guidelines for our system: 256 channel HCGSN
nets from EGI, recording done with Netstation. We also used EEGLAB’s kurtosis method
to further remove bad channels. Further, ICA was used to remove artifacts due to eye
blinks, muscle noise, etc., removing approximately 5-10 ICs per participant. Exclusion of
participants based on EEG data was based on a combination of factors: 1) too many chan-
nels (~30% or more) removed due to noise, 2) a cluster of channels removed from a specific
region, 3) poor quality of the ICs, and 4) many missing event triggers. Consequently, data
from 10 participants were excluded: 5 due to corrupted data files, 3 due to excessive EEG
noise, and 2 due to missing event triggers. In the current study, an additional 11 partici-
pants were excluded for achieving less than 80% average accuracy in the last four training
cycles (cycles 13 to 16, see below). Another 2 participants were excluded, as their average
spectrogram power values were an order of magnitude greater than the across-participants
average, leaving 45 participants available for the current analysis.

Stimuli

Briefly, stimuli were a set of 48 words, assigned to one of two feedback outcomes: a
10-point reward (high-value) or a 1-point reward (low-value). At the beginning of each par-
ticipant’s session, half of the words were randomly categorized as high-value, with the rest
categorized as low-value. Word values were to be learned through trial-and-error feedback
over multiple word presentations, where the participants aimed to select high-value words
to maximize reward over time.

Task

Participants completed a word-choice task where, on each trial, they chose between
one of the 48 word stimuli and a fixed non-word string (“HHHHH”) presented side-by-side
on a computer screen (Figure . The left /right position of the word relative to the string
was randomized across trials. Participants were instructed that the task included high-
and low-value words and that, if they encountered a high-value word, choosing the word



CLASSIFIERS AND FEEDBACK LEARNING 9

a
Example: Example:
TUNNEL = high-value BORDER = low-value
| |\ |
if (TUNNEL): if (HHHHH): if (BORDER): if (HHHHH):
¢
il ~ )
¢ _'5'"}' ¢ 5} }

+10 points +1 point +1 point +10 points
b

Choice | Blank |Feedback| Blank | Choice

Variable (response time) Jittered (500-700 ms) Fixed 1500 ms Jittered (500-700 ms) Variable (response time)

Figure 1

A schematic of the task. a) Fach grey box represents what a participant saw on the screen
at a given stage of the task. Note that the alternative option, “HHHHH,” was identical on
each trial, sometimes on the left and sometimes on the right. It served as a placeholder to
give the participant a way to “not-choose” the word. Reproduced from Chakravarty et al.
(in review). b) Timeline of the procedure.

would give 10 points and choosing the string would give 1 point (the opposite was true
for low-value words— selecting the word gave 1 point, while selecting the string gave 10
points).

Each of the 48 words was presented once each per cycle over 19 cycles, where the
word order was random within each cycle. Participants were instructed that their aim was
to maximize the total points earned across cycles. After the task, points were converted to
a monetary bonus using a conversion rate of $0.0006 per point rounded up to the nearest
$0.25 CAD; participants could earn up to $5 CAD.

On a given trial, the word and string remained visible until the participant made
a keyboard response: pressing “Q” for the stimulus on the left, and “P” for the stimulus
on the right. Feedback then appeared with a jittered onset time of 500-700 ms after the
response was made, remaining visible for 1500 ms. For the 10-point reward, an image of
a pile of coins was displayed, while for the 1-point reward, an image of a single coin was
presented (Figure [1)). Participants could also see their total points earned so far during
each feedback presentation. After feedback, the next trial started with a jittered onset of
500-700 ms.
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Figure 2

Average accuracy across participants by cycle. Participants accurately learned word values
before the reversal at cycle 17, with average accuracy nearing 100%. Error bars represent
95% confidence intervals.

Finally, left out of the current analyses (but reported in Chakravarty et al., fin
review)), on cycle 17, a surprise reversal occurred, where half of the word values were ran-
domly switched. We focus on the training stage, where participants successfully learned
stable word-value associations (Figure full behavioural analyses are also reported in
Chakravarty et al., in review).

EEG Recording

EEG activity was recorded using a 256 channel Geodesic Sensor Net (Electrical
Geodesics, Inc.). Recordings were sampled at 500 Hz, amplified at a gain of 1000, and
referenced to the mid-central electrode Cz. Electrode impedance was kept below 50 k2.
Recordings were re-referenced to the channel average and digitally band-pass filtered be-
tween 0.1-40 Hz. Visible artifacts such as eyeblinks were corrected using Independent Com-
ponent Analysis, and recordings from noisy channels were rejected and interpolated using
nearby electrodes. We also rejected any trial epochs (0-1500 ms post-feedback) where
recordings deviated by more than 300 pV from baseline (-200-0 ms), or any which in-
cluded point-to-point voltage fluctuations of more than 25 puV, resulting in the removal
of M(SD) = 2.20 £ 7.38 trials (range=[0, 48]). Pre-processing was done using custom
MATLAB scripts in conjunction with the EEGLAB library (Delorme & Makeig, 2004).

Classification Problems
Predicting subsequent accuracy

First we asked whether brain activity during feedback could predict subsequent be-
havioural adjustments in the training phase of the task (i.e., the first 16 cycles). Specifically,
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we analyzed whether word responses (correct/10 points vs. incorrect/1 point) in cycle N +1
could be predicted from brain activity associated with the word (its feedback-processing)
in cycle N.

For cycles 1 to 15, we labelled each trial/word as “subsequently correct” or “subse-
quently incorrect” according to whether the participant responded correctly or incorrectly
to that word in the following cycle (cycles 2 to 16, respectively). Specifically, correct re-
sponses were marked as those giving a 10-point reward, which could be achieved by choosing
either the word (for high-value words) or the string (for low-value words).

Then we aimed to classify subsequently correct from subsequently incorrect trials
based on brain activity during feedback processing (see below). Analyses were performed
separately based on the feedback received in cycle N (correct trials only, incorrect trials only,
or all trials), allowing us to ask whether the brain activity associated with the processing of
more rewarding (10 point) and less rewarding (1 point) feedback could predict subsequent
accuracy equally well.

Predicting item-value acquisition

As participants had a 50% chance of correctly responding to a given word, even the
subsequently correct responses could have been lucky guesses. Accordingly, we established
a more conservative criterion to determine the one trial when a word’s value was ostensibly
acquired. We marked that trial as “acquired” if, following that trial, a participant only
responded correctly to that same word on the remainder of the training cycles. We further
required that “acquired” trials were followed by at least 3 correct responses for that word,
thus eliminating words that might have been acquired during the final 3 cyclesE With this
approach, there was at most one “acquired” trial for a given word.

Note that we use the term “acquired” with the aim of isolating the trial where the
participant stably determined a word’s value. As such, the rest of the trials for a given word
were labelled as “unchanged”, including those both before and after the word was “acquired”.
However, even with our stricter criterion, it is still unclear ezactly when a word value was
acquired. If a participant produced an incorrect response followed by 10 consecutive correct
responses, it is possible that the word was acquired following that incorrect response (i.e.,
the participant learned from their error), or following one of the first few correct responses
(i.e., the participant learned from an unexpected reward). Accordingly, we arranged two
classification problems considering both situations. First, we assumed that item value
acquisition only took place following correct-response, and labelled each correct trial as
“acquired” (a correct response followed by nothing but 34+ consecutive correct responses to
that same word) or “unchanged” (all other correct trials). Next, we assumed that acquisition
only took place following errors, and followed the same procedure, but for incorrect trials
instead.

While learning presumably occurred in the last 3 cycles, we deemed that there were not enough con-

secutive correct responses for us to ascertain this from the behavioural data so here we excluded items that
might have been acquired in cycles 14-16).
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Planned comparisons

We analyzed two well-established markers of feedback processing, the FRN and
FMT. Before asking whether behavioural adjustments could be predicted from the FRN
or FMT, we followed a conventional trial-average approach and evaluated the mean differ-
ence in either signal between our conditions of interest (subsequently correct/subsequently
incorrect and acquired/unchanged).

To quantify the FRN, for a given trial, we extracted EEG epochs from —200-1500
ms relative to feedback onset. Epochs were baseline-corrected relative to the —200-0 ms
baseline period. FRN magnitude was defined as the average baseline-corrected voltage at
the frontocentral electrode FCz (channel 15) from 200-350 ms following feedback onset. We
chose this window based on our rough reading of FRN papers. There is a good argument
that the FRN is better measured toward the earlier end of this window, whereas P200 and
P300 effects may “contaminate” the later portion of this window. In a follow-up analysis,
Chakravarty et al. (in review) confirmed a robust FRN effect using a window of 190-230
ms, suggesting that a shorter, earlier window would also capture the effect. However, here
we stick with our initial window to reduce degrees of freedom. The contamination by other
ERP effects is a problem, but rather than post-hoc adjust the window, we turn to the
multivariate classifiers to obtain the (more) full picture of learning-related brain activity.
Our larger goal with this approach is in fact to avoid the process of trying to isolate specific
putative signals that in fact overlap spatially and temporally.

To quantify FMT, EEG recordings were transformed to the time-frequency domain
using custom MATLAB scripts, which included functions from the EEGLAB (Delorme &
Makeig, 2004) and Better OSCillation detection (BOSC) method (Whitten et al., 2011)
libraries. For each participant, a Morlet wavelet transform was applied to the continuous
EEG recording made at each electrode throughout the entire task. The mother wavelet had
a width of 6 cycles, and the 18 daughter wavelets had frequencies logarithmically spaced
between 1.0-19.0 Hz. Wavelet power was log-transformed before further analyses. For each
trial, FMT was defined as the power averaged across frequencies sampled between 4-8 Hz
over the 200-450 ms time window following feedback onset (Luu et al., 2004)).

Trial-averaged FRN and FMT measures for the two pairs of conditions (subsequently
correct /subsequently incorrect and acquired/unchanged) were compared across subjects us-
ing paired-samples ¢-tests. Based on previous literature, we expected greater FRN magni-
tude (lower voltage) and higher FMT log-power for subsequently correct than subsequently
incorrect trials. Likewise, we expected greater FRN magnitude and FMT power for acquired
than unchanged.

We repeated the above analysis for several other comparisons, where the same pro-
cedure was followed, but for different conditions (e.g., subsequent accuracy following correct
trials only). For all statistical tests, an alpha value of 0.05 was used to determine signifi-
cance.

Classifier analysis

Separate classifier analyses were performed for each participant, and then perfor-
mance is summarized across participants.
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Univariate classifiers

To ask if the FRN and FMT could predict subsequent accuracy and item value
acquisition, we followed the signal detection theory approach (Green & Swets, 1966) previ-
ously used by Chakravarty et al. (2020) for old/new recognition. With the set of trial-wise
FMT magnitudes, we set sliding classification thresholds, where trials above the threshold
were classified as subsequently correct and trials below as subsequently incorrect. A true
positive rate and false positive rate were calculated for each threshold based on the true
trial labels, and an ROC curve was drawn plotting the rates against each other for each
threshold. AUC, calculated with MATLAB’s perfcurve.m function, measured classifier suc-
cess. AUC> 0.5 would support our prediction that FMT should be more pronounced when
participants received feedback that informed their future responses, while AUC< 0.5 would
suggest the opposite. We applied the same procedure for predicting acquired and unchanged
trials and likewise for the FRN. Note that for the FRN, we set successive thresholds cor-
responding to increasingly megative voltage. Accordingly, we could interpret AUC> 0.5 as
indicating greater FRN magnitude in subsequently correct or acquired trials, matching our
interpretation of AUC for FMT.

Multivariate classifiers

Next we considered whether multivariate EEG activity during feedback processing
could predict subsequently correct/incorrect and acquired /unchanged trials.

Features. We conducted our multivariate analysis in two parts. We first classi-
fied time-domain features (voltage) and compared this with classification of time-frequency
features (wavelet spectrogram).

Recall that we sampled from 256 electrodes at 500 Hz, yielding a large number of
features per trial which risks raising the computational cost for little gain. As such, we
restricted our analysis to a smaller feature subspace. Specifically, we chose 6 electrodesﬂ
roughly covering the scalp (Figure [3)) and averaged the signal from these electrodes into
5 non-overlapping 300 ms time bin from feedback onset to 1500 ms post-feedback. We
extracted a total of 30 features (6 electrodes x 5 time bins) per trial for our time-domain
classifiers.

For the same set of electrodes and time windows described above, we calculated the
average power in each of 4 frequency bands: delta (1.0, 1.2, 1.4, 1.7, 2.0, 2.4, 2.8, 3.4 Hz),
theta (4.0, 4.8, 5.7, 6.7, 8.0 Hz), alpha (9.5, 11.3 Hz), and beta (13.5, 16.0, 19.0 Hz). This

2Tt is common for researchers using EGI’s dense-array caps (which by default offer 256 electrodes with
minimal setup time) to analyze averages of clusters of neighbouring electrodes,with the idea that that should
increase the signal-to-noise ratio. In our lab’s experience, at least with a sufficient amount of data, cluster-
averages produce results very similar to single electrodes. Our goal in this manuscript is not to help the
classifier perform the best it can, but rather, to minimize researcher degrees of freedom and characterize
classifier success using rather naive methods. For this reason, we continue with our lab’s standard, analyzing
single electrodes rather than cluster-averages. We note that a future research project aimed at developing
more optimal classifiers would do well to compare cluster-averages to single electrode subsampling. We
also note that at least indirectly, signal quality was influenced by the full 256 electrodes because they all
contributed to the ICA-driven artifact correction procedures.

3Chakravarty et al. (2020) used 100 ms bins; 300 ms time bins were chosen here to better compare with
the time-frequency features, for which 100 ms bins would be severely oversampled
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Figure 3

Electrode locations on the 256-channel Geodesic Sensor Net. The 6 electrodes used to gen-
erate the features for our multivariate classifiers are highlighted in green.

produced a total of 120 features (6 electrodes x 5 time samples x 4 frequency bands) per
trial for our time-frequency domain classifiers.

Algorithms. To minimize researcher degrees of freedom, we followed the classifier
approach that Chakravarty et al. (2020) applied to single-trial item-recognition. Specifically,
we compared two simple linear classifiers, Fisher’s linear discriminant analysis (LDA; Fisher,
1936) and support vector machine (SVM; Cortes and Vapnik, [1995) with a linear kernel. For
LDA, we used the fitcdiscr.m function (with the Gamma regularization parameter set to 0.5),
and for SVM, we used the fitcsvm.m function (with the BoxConstraint tolerance parameter
set to 0.5), both from MATLAB’s Statistics and Machine Learning toolbox (Martinez et
al., 2017)). Classifier success was measured by calculating the AUC of the ROC curve
for classifier score (i.e., classifier confidence that a trial belonged to the positive class,
subsequently correct or acquired).

Cross-validation. For each analysis, classifiers were trained and tested under a 5-
fold cross-validation schemeﬁ The trial set was randomly partitioned into 5 subsets/folds,
stratified such that the proportion of trials belonging to each of the two classes was relatively
preserved across them. In each iteration, a classifier was trained using data from 4 folds
and tested on the remaining 1. Fach fold was used as the test set exactly once. AUC was
averaged across the 5 test folds to measure overall performance.

Post-hoc feature analysis. For each LDA classifier where AUC was above chance,
we visualized the feature weights, or the relative importance of each feature for classification
(the DeltaPredictor property of the classifier object). Specifically, we re-scaled and averaged
weights across participants, then plotted across time and space.

Performance evaluation

For both univariate and multivariate classifiers, we used one-sample ¢-tests to mea-
sure performance across participants: the set of participant-wise AUC values for a given
classification problem was tested against chance (AUC = 0.5).

4This follows the approach taken by Chakravarty et al. (2020) but with fewer folds to compensate for
having relatively fewer trials here
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Figure 4

(a) Event-related potentials during the reversal cycle (cycle 17) when half the word values
were switched. The FRN is evidence in a more negative voltage at FCz during the window
200-350 ms when processing feedback indicating the response was incorrect than correct.
Error bars are timepoint-wise 95% confidence intervals based on standard error of the mean.
(b) Topographic plot of mean voltage at all electrodes, spline-interpolated, across the 200—
350 ms time window. (c) Spectrogram plotting the difference in log(power) between feedback
indicating correct and incorrect responses at FCz as a function of frequency and time. The
rectangle indicates the time window (200-450 ms) and frequency range (4-8 Hz) used to
quantify FMT.

Results

Before reporting the main analyses, we check whether there is robust evidence of
the presence of both the FRN and FMT in our task, in conditions where they are typically
found, during cycle 17 when half the item-response mappings (item values) were switched
after participants had learnt most of the items (Figure . We expected more negative
voltage (FRN) during incorrect (mostly switched trials, violating expectation) than correct
(mostly non-switched feedback trials, matching expectation) and more theta-band power
during switched than non-switched feedback trials (FMT). The FRN showed a significant
effect in the expected direction (Figure @a), paired-samples t(41) = 3.18, p = 0.003, and
with frontocentral topography, consistent with prior FRN reports (Figure [4p). The FMT
effect (Figure [4c) was not significant in this contrast, ¢(41) = —0.689, p = 0.495.

Planned comparisons for the FRN and FMT
Subsequent accuracy

First, we compared trial-averaged FRN and FMT between subsequently correct
and incorrect trials, where the FRN was significantly greater (i.e., FRN voltage was more
negative) for the subsequently correct condition (Figure [5, Table|[1]). This relationship held
when restricting our analysis to trials where a correct response was given, but not for trials
where an incorrect response was given. Meanwhile, FMT power was significantly greater
for subsequently correct trials, and again, this was only true when the whole set of trials or
only correct trials were used (Figure 5, Table [1)). Note, however, that power was broadly
increased in the subsequently correct condition, not selectively for FMT frequencies or that
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Signal All Correct Incorrect

FRN t=-382,p<0001 t=-3.83 p<0.001 t=-—0.088, p=0.931
FMT t=212,p=0.039 t=237,p=0.022 ¢=0.545 p=0.588

Table 1

Paired-samples t-tests (df = 44) of the difference in FMT power or FRN wvoltage between
subsequently correct and subsequently incorrect trials across participants. Columns
represent whether all trials in cycle N were considered, or only correct/incorrect trials.
Boldface indicates a significant difference, p < 0.05.

Signal Correct Incorrect

FRN t=287 p=0.006 ¢=1.30,p=0.202
FMT t=-351,p=0.001 t=-161,p=0.114

Table 2

Paired-samples t-tests (df = 44) of the difference in FMT power or FRN voltage between
acquired and unchanged trials across participants. Columns represent whether we assumed
item value acquisition occurred following correct or only incorrect-response.

Boldface indicates a significant difference, p < 0.05.

time window (Figure [3]).
Item value acquisition

As elaborated in the Methods, we followed up with a classification problem that was
designed to be more targeted toward the precise (inferred) trial when each given item was
learned, which we call “acquired.” This was compared to prior and subsequent trials which
we call “unchanged.” This comparison was again significant only following correct but not
incorrect trials (Figure @, Table . Curiously, the directions of the effects were reversed
from the subsequent-accuracy comparisons.

Summary of planned comparisons

The trial-averaged FRN and FMT were more pronounced for subsequently correct
trials, as expected, and unchanged trials, which we did not anticipate. This held for correct,
but not incorrect current feedback trials. The descriptive effects are thus confirmed. Next
we test whether these signals are predictive.

Predicting subsequent accuracy

First, we asked whether the FRN, FMT, or multivariate brain activity predicted
subsequent accuracy.
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a,c,e) Event-related potential plots (left) at FCz for subsequently correct and subsequently
incorrect trials across participants. Black rectangles denote the FRN time window. FEr-
ror bars are timepoint-wise 95% confidence intervals based on standard error of the mean.
b,d,f) Spectrograms of the power difference at FCz between the average subsequently cor-
rect and subsequently incorrect trials across participants. The black rectangles denote the
FMT frequencies and time window. a,b) All trials are included. c,d) Only trials that were
currently correct are included. e,f) Only trials that were currently incorrect are included.
Sub=Subsequently.
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Figure 6

a,c) Event-related potential plots (left) for for acquired and unchanged trials across partic-
ipants. Black rectangles denote the FRN time window. Error bars are timepoint-wise 95%
confidence intervals based on standard error of the mean. b,d) Spectrograms showing the
power difference at FCz between the average acquired and unchanged trials across partici-
pants. Black rectangles denote the FMT frequencies and time window. a,b) All trials are
included. c,d) Only trials that were currently correct are included. Sub=Subsequently.
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Classifier All Correct Incorrect

FRN 0.541 [0.521 0.562] 0.554 [0.531 0.578] 0.492 [0.477 0.506]
t =4.08, p < 0.001 t=4.71,p<0.001 t=-1.14, p=0.261

FMT 0.524 [0.497 0.551] 0.534 [0.501 0.567] 0.504 [0.483 0.525]
t=1.82,p=0075 t=209 p=0.043 =037 p=0.717

DA (1) 0609 [0.5820.636]  0.612[0.5810.643]  0.494[0.471 0.518]
t =8.14, p < 0.001 t=725 p<0001 ¢t=-0.48, p=0.633

SVM (T) 0.573[0.552 0.594)| 0.573 [0.549 0.596| 0.496 [0.472 0.520]
t =6.95 p < 0.001 t=6.20,p<0.001 t=-0.34,p=0.738

LDA (T-F) 0716 [0.6900.743]  0.711[0.6810.741]  0.517[0.494 0.541]
t =16.51, p < 0.001 t=14.10,p < 0.001 ¢=1.47, p=0.148

syM (Tp) 0643 [0.616 0.670]  0.641[0.6100.671]  0.512[0.492 0.532]
t=10.64, p<0.001 t=9.16p<0.001 ¢=1.22 p=0.229

Table 3

Predicting subsequent accuracy. Mean AUC values, with 95% confidence intervals and
paired-samples t-tests (df = 44), for each subsequent accuracy classification problem.
Columns represent whether all trials in cycle N were considered, or only correct/incorrect
trials. Classifiers included univariate measures (FMT or the FRN), and two multivariate
classifiers (SVM or LDA) informed by either time (T) or time-frequency (T-F') domain
data. Boldface indicates significantly different than chance (0.5), p < 0.05.

Univariate classification

Adding to the descriptive effects, AUC values from the FRN classifiers were sig-
nificantly above chance across subjects when using all trials and when we restricted the
analysis only to trials for which the current trial was correct (Figure [7h and Table [3). FMT
predicted subsequent accuracy when restricted to correct current trials, though AUC was
only marginally significant (Figure ma and Table .

Multivariate classification using time-domain features

Next, we attempted to classify subsequent accuracy using LDA and SVM informed
by multivariate time-domain features. Both LDA and SVM predicted subsequent accuracy
when trained on all trials or correct (current) trials, but not when trained on incorrect
current trials only (Figure and Table . Multivariate classifiers were more successful
than the FRN: for example, when predicting from all trials, LDA and SVM AUC values were
significantly greater than those from the FRN (¢(44) = 5.22, p < 0.001 and ¢(44) = 2.63,
p = 0.012, respectively).

LDA feature maps (Figure |8) show that in both cases, the classifiers emphasized
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Figure 7

Predicting subsequent accuracy and item value acquisition. Mean AUC values, with 95%
confidence intervals, for each subsequent accuracy and item value acquisition classification
problem. Blue, green, and red bars indicate classifiers trained on all, correct, and incorrect
trials, respectively. Classifiers (indicated by brightness) included univariate measures (FMT
or FRN; lightest), and two multivariate classifiers (SVM or LDA; medium) informed by
either time or time-frequency domain data (darkest). * significantly different than chance

(0.5), p < 0.05. The dashed line denotes chance AUC (0.5).

all electrodes in the second time bin and distal electrodes across several time windows—
overlapping with, but not exclusive to, the spatiotemporal window for the FRN.

Multivariate classification using time-frequency features

We conducted the same multivariate analyses with time-frequency domain data.
The same pattern of classifier-success emerged, where LDA and SVM predicted subsequent
accuracy following correct or all feedback, but not incorrect-response alone (Figure @a and
Table . Time-frequency classifiers were significantly more successful than those informed
by time domain data: for example, both LDA (¢(44) = 7.36, p < 0.001) and SVM (¢(44) =
5.28, p < 0.001) performed significantly better when making predictions from all trials.
The same relationship held when predicting from correct trials (¢(44) = 6.19, p < 0.001 for
LDA, and ¢(44) = 4.00, p < 0.001 for SVM).

Figures [9] and [10] show the feature weights for the above-chance classifiers. In both
cases, the classifiers emphasized early latencies (in the 1-300 ms range), the beta and delta
frequency bands, and distal electrodes. Heavily weighted features did not overlap with the
spatial, temporal, or frequency characteristics of FMT.

Summary of predicting subsequent accuracy

While both the FRN and FMT differentiated between subsequently correct and
incorrect trials at the trial-average level, it was not known whether the signals would be
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Predicting subsequent accuracy from all or correct trials: LDA time domain feature weights.
Topographies show MATLAB’s DeltaPredictor value, indicating the degree to which a feature
influenced classification, at various scalp sites. Plots are interpolated using a spline method.
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Figure 9

Predicting subsequent accuracy from all trials: LDA time-frequency feature weights. To-
pographies show MATLAB’s DeltaPredictor value, indicating the degree to which a feature
influenced classification, at various scalp sites. Plots are interpolated using a spline method.
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Figure 10

Predicting subsequent accuracy from correct trials: LDA time-frequency feature weights.
Topographies show MATLAB’s DeltaPredictor value, indicating the degree to which a feature
influenced classification, at various scalp sites. Plots are interpolated using a spline method.

predictive at the level of individual trials. From our results, the FRN was confirmed as a
predictive signal. FMT was also predictive, but it was less robust.

Moving beyond univariate signals, the multivariate classifiers incorporating broad
patterns of brain activity predicted subsequent accuracy to a substantial degree, if informed
by trials where all or correct-response was given. Classifiers performed best when informed
by time-frequency data, with AUC around 0.7 in the best cases. We could also predict
subsequent accuracy using time domain data to a lesser degree, with some improvement
over using the FRN alone. Importantly, we observed that activity extending beyond the
FRN and FMT (though likely including the former) did, in fact, inform classifier decisions.

Predicting item value acquisition

As before, we next report the more selective analysis targeting the trial at which a
given item’s value was presumably first learned, predicting “unchanged” versus “acquired”
trials: the transition points where word values became ostensibly known for the rest of
training.
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Classifier Correct Incorrect

FRN 0.463 [0.438 0.487] 0.487 [0.469 0.506]
t=-302, p=0.004 ¢t=-1.34,p=0.186

FMT 0.461 [0.435 0.487] 0.514 [0.493 0.534]
t=-299, p=0.005 +¢t=1.36,p=0.180

0.584 [0.553 0.614] 0.517[0.490 0.543]

LDA (T) t =5.57, p < 0.001 t=1.25 p=0.216
0.547 [0.527 0.567] 0.535 [0.509 0.560]
SVM (T) t=4.78, p<0.001 t=274,p=0.009
0.690 [0.662 0.718| 0.531 [0.507 0.555]
LDA (T-F) t=13.78, p < 0.001 t=2.61,p=0.012

SVM (T-F) 0.615 [0.588 0.643] 0.518 [0.495 0.541]

t = 8.39, p < 0.001

t =154, p = 0.130

23

Table 4

Predicting item value acquisition. Mean AUC values, with 95% confidence intervals and
paired-samples t-tests (df = 44), for each item value acquisition classification problem.
Columns represent whether we assumed item value acquisition took place following correct
or incorrect-response. Classifiers included univariate measures (FMT or the FRN) and
two multivariate classifiers (SVM or LDA) informed by either time (T) or time-frequency
(T-F) domain data. Boldface indicates significantly different than chance (0.5), p < 0.05.

Univariate classification

The FRN predicted item value acquisition following correct-response (Table |4 and
Figure ), but the effect was in the opposite direction of what we expected (i.e., greater
FRN voltage predicted unchanged trials; significantly different than chance according to a
two-tailed test). This matched what we observed in our ERPs, where the average FRN
for the unchanged condition was more negative (Figure . Meanwhile, the FRN could
not predict acquired trials following errors, consistent with results from our subsequently
correct /incorrect analysis.

The set of FMT AUC values was significantly below chance for correct trials (Table
and Figure [7), suggesting that reduced FMT activity could predict item value acquisition.
As with the FRN, FMT held no predictive value following incorrect-response.

Multivariate classification using time-domain features

Using multivariate time domain data, LDA and SVM both predicted acquired trials
from correct-response (Tableand Figure ) Compared to their corresponding subsequent
accuracy classifiers, LDA performance was significantly lower (#(44) = —2.41, p = 0.020),
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while there was a trend towards the same for SVM (#(44) = —1.92, p = 0.060). For
incorrect trials, SVM AUC values were marginally (but still significantly) above chance,
whereas LDA AUC values were not. These results mirror the subsequent accuracy analysis,
where time-domain features only tracked behavioural adjustments after rewarding feedback.

The average LDA feature maps (Figure show a pattern remarkably similar to
the feature maps for the subsequent accuracy classifiers (Figure , with LDA emphasizing
the second time window (301-600 ms) and a broad range of electrodes, again overlapping
with the FRN.

Multivariate classification using time-frequency features

When informed by time-frequency domain data, LDA and SVM predicted item value
acquisition to a substantial degree from correct-response (Table 4| and Figure . Again,
time-frequency classifiers performed significantly better than their time-domain counter-
parts (t(44) = 6.38, p < 0.001 for LDA, ¢(44) = 4.86, p < 0.001 for SVM). Classifiers
performed similarly to their counterparts predicting subsequent accuracy from correct tri-
als (¢(44) = —1.50, p = 0.140 for LDA, ¢(44) = —1.67, p = 0.102 for SVM). As before,
AUC dropped when classifiers were trained with incorrect trials only, with SVM at chance
performance and LDA marginally above.

LDA feature weights for classifiers informed by correct trials (Figure show a
pattern that mirrors that from the subsequent accuracy classifiers (Figure , where LDA
emphasized non-central electrodes, early time windows, and the delta and beta frequency
bands, again failing to overlap with FMT.

Summary of predicting item value acquisition

Our classifiers predicted acquired and unchanged trials to about the same degree as
they predicted subsequent accuracy, with AUC again approaching 0.7 in some cases. As with
the subsequent accuracy analysis, time-frequency data informed predictions to a greater
degree than time domain data, and activity beyond the FRN and FMT informed classifier
decisions. For the univariate analyses, increased FRN and FMT magnitude successfully
predicted unchanged trials, which we did not expect a priori. The direction of this effect
matched our initial trial-averaged results, however, suggesting that both signals could offer
information at the individual trial level. Finally, our classifiers were much more successful
when we assumed that item value acquisition took place only following rewarding feedback.

In establishing the item value acquisition approach, we aimed to “de-noise” the be-
havioural data by assuming that acquisition only took place when indicated by a consistent
stream of correct responses. While these acquisition labels were likely still noisy to some
degree, we expected that classifiers informed by such labels would be less influenced by ran-
dom guesses. However, our classifiers performed similarly across the subsequent accuracy
and item value acquisition problems.

Addressing effects of class imbalance

Because participants were more accurate over time (Figure , there were more
subsequently correct trials in later cycles and more acquired trials in earlier cycles. Along-
side this trial imbalance, we also observed a systematic shift in EEG activity across cycles
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(Figure , whether due to drift (where the average value of the signal changes as the
task progresses) or some systematic change in brain activity over the session. So, a “lazy”
classifier might be able to use some measure of this shift as a way to roughly infer task
progress (cycle number), then take advantage of the relationship between cycle number
and the class imbalance to simply make predictions based on inferred cycle— ignoring true
learning-relevant brain activity in the process.

First we quantified the class imbalance across cycles. Then we asked whether the
imbalance was related to classifier success. Finally, we assessed how our results changed
when we restricted classifiers from accessing cycle number. We used the subsequent accuracy
classifiers as a test case, since this classifier problem started out better-powered than the
item value acquisition classifier.

Establishing the cycle imbalance confound

First, to quantify how well a classifier could perform if it were only exploiting the
cycle imbalance, we traced ROC curves for each participant using each trial’s cycle number.
Concretely, each trial was labelled according to which cycle it belonged to. Then, we set
each cycle number as a threshold, with each trial belonging to a cycle at this threshold or
above classified as “subsequently correct.” As more subsequently correct trials appeared in
later cycles, AUC values were well above chance, as shown in Table In both classifica-
tion problems where classifiers consistently performed above chance (predicting subsequent
accuracy from all or correct trials), the cycle imbalance was substantial, with AUC values
around 0.8. Meanwhile, in the problem where classifiers performed around chance (where
only incorrect trials were used), the cycle number confound was present, but to a lesser
degree (AUC = 0.591).

Next, we wondered whether our classifiers performed best on participants whose
data was most skewed by the cycle imbalance (i.e., participants who succeeded at the task
earlier on). For each classifier problem, across participants, we correlated classifier AUC
values with AUC values quantifying the class imbalance, with results shown in Table[5] For
the two problems where classifier AUC was well above chance, predicting from all or correct
trials, multivariate classifier success was related to the cycle imbalance, regardless of whether
time or time-frequency data was used. Interestingly, this relationship was not present for
the FRN or FMT univariate classifiers, despite the FRN achieving clearly above-chance
classifier performance. Meanwhile, there was no relationship between cycle imbalance and
classifier success for any classifiers trained on incorrect trials only (Figure , just as none
of these classifiers initially performed above chance.

Correcting for the cycle imbalance confound

Because we found that cycle-related class-imbalance was related to classifier success,
we considered the possibility that our classifiers may have used learning-irrelevant brain ac-
tivity to predict learning outcomes. To check for the potential effects of this class imbalance
confoundﬂ we asked how performance would change if we trained classifiers on data which

®The go-to method to address class imbalance is synthetic minority oversampling technique (SMOTE;
Chawla et al.,|2002, also used by Chakravarty et al.,|2020)), where synthetic trials are computed from existing
trials from the smaller class. However, the class imbalance of concern here is within each given cycle. SMOTE
would be inappropriate, for example, when the smaller class had just one, or even two trials, which would
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Figure 11

ERP at FCz across participants for each of the 16 learning cycles. Dark blue ERPs represent
earlier cycles, while light yellow ERPs represent later cycles.

offered no overlapping information between cycle number and subsequent accuracy. We did
this by subsampling the larger class (subsequently accurate versus subsequently inaccurate),
similar to how Y. Li et al. addressed accuracy-based class-imbalance as a function
of serial position in their free-recall task. If the classifiers could still succeed under these
conditions, they must be doing so without using cycle number as a shortcut for predicting
behavioural adjustments. (But note that the converse is unclear; if classifier success goes to
chance in this analysis, that could be due to the reduced number of included trials leading
to noisy ROCs, so these should be viewed more as a lower-limit on classifier success).

For each participant, we determined how many trials from a given cycle belonged
to either class. Next, within each cycle, we randomly shuffled the trials from the most rep-
resented class (usually subsequently correct) and discarded the first N trials from this list,
with NV corresponding to the difference between the number of over- and under-represented
trials within the cycle. When all trials had the same label for a given cycle, the entire cycle
was discarded. This gave a “balanced” dataset including an equal number of trials from
both classes within each cycle.

We trained our classifiers on 80% of this balanced data, and tested on the remaining
20% and all data discarded in the cycle balancing procedure (the 80/20 split ensured that

force us to exclude even more data.
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Classifier

All

Correct

Incorrect

Cycle Number AUC

FRN AUC Corr
FMT AUC Corr
LDA AUC Corr (T)
SVM AUC Corr (T)
LDA AUC Corr (T-F)

SVM AUC Corr (T-F)

0.817 [0.793 0.841]
t = 26.72, p < 0.001

r=0.072, p = 0.636"
r =0.069, p = 0.653
r = 0.42, p = 0.0041
r=0.29, p = 0.050"
r = 0.80, p < 0.0011

r=0.72, p < 0.0011

0.823 [0.795 0.852)]
t = 22.84, p < 0.001

r =0.035, p = 0.818F
r =0.099, p = 0.516"
r = 0.40, p = 0.007"
r=0.22, p=0.140"

r=0.74, p < 0.001}

r=0.73, p < 0.0011

0.591[0.568 0.613]
t = 8.22, p < 0.001

r = 0.058, p = 0.707
r =0.186, p = 0.221
r=0.22, p=0.144
r=0.16, p = 0.302
r=0.17, p = 0.267

7 =0.04, p = 0.809

Table 5

Assessing the class imbalance confound for predicting subsequent accuracy (see illustrative
plots in the Appendiz, Figures . First row: mean AUC values [95% confidence
intervals/, and results from t-tests against chance (df = 44), for tracing ROC curves only
using cycle number for each subsequent accuracy classification problem. Columns: whether
all trials in cycle N were considered, or only correct/incorrect trials. Other rows: the
results of correlating (df = 43) cycle number-derived AUC values classifier-derived AUC
values across participants. Classifiers included univariate measures (FMT or the FRN)
and two multivariate classifiers (SVM or LDA) informed by either time (T) or
time-frequency (T-F) domain data. Boldface indicates statistical significance, p < 0.05. 1
indicates that the original classifier AUC values were above chance (0.5), p < 0.05.

trials from both classes were present in the test set). Since trial counts dropped substan-
tially (Table @, we excluded any participant whose training set did not include at least 20
observations of each class. Finally, we repeated the 80-20 split 5 times and averaged classi-
fier AUC values across iterations. Note that we restricted this analysis to our multivariate
classifiers, since the confound did not appear to influence our univariate results (i.e., FRN
and FMT AUC values were unrelated to cycle imbalance).

Results (Tableand Figure found that AUC dropped substantially, unsurprising
given the reduction in data analyzed, but remained above chance when predicting subse-
quent accuracy from all trials, regardless of the features or classifier used. For correct trials,
only LDA informed by time domain data retained above-chance performance. As before,
our classifiers could not make predictions following errors.

The time domain feature maps for classifiers trained on all and correct trials (Fig-
ure and Figure respectively) both before and after balancing the training trials,
emphasized some overlapping features, including the second time bin and distal electrodes
throughout the feedback processing window. For classifiers trained on time-frequency data
from all trials (Figure , the feature maps again showed some similarities, where both
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Trials All Correct Incorrect

Before 718.38 584.44 133.93
After 216.36  98.76 97.82

Table 6

Average trial counts before and after balancing trials within each cycle for subsequent
accuracy classification problems.

Classifier All Correct Incorrect
LDA (T) 0.529 [0.507 0.550] 0.533 [0.512 0.555] 0.497 [0.477 0.516]
t(43) =2.71, p=0.001 t(39) =3.11, p=0.003 #(42) = —0.32, p = 0.749
SVM (T) 0.527 [0.508 0.546} 0.520 [0.500 0.541] 0.497 [0.481 0.513}
t(43) =291, p=0.006 #(39) =2.00, p=0.052 #(42) = —0.38, p =0.704
LDA (T.F) . 0:32910.5090549 0.513 [0.484 0.541] 0.506 [0.485 0.527]
t(43) = 2.94, p = 0.005  ¢(39) = 0.91, p=0.368  ¢(42) = 0.61, p = 0.548
SVM (T-F) 0.523[0.507 0.539] 0.515[0.492 0.538] 0.503 [0.485 0.520]
) t(43) =2.91, p =0.006 t(39) =1.29, p =0.204  #(42) = 0.31, p = 0.757
Table 7

Predicting subsequent accuracy with balanced trials. Mean AUC values [95% confidence
intervals] and paired-samples t-tests for each subsequent accuracy classification problem,
with training trials balanced within each cycle. Columns: whether all trials in cycle N
were considered, or only correct/incorrect trials. Classifiers included SVM or LDA
informed by either time (T) or time-frequency (T-F) domain data. Boldface indicates
significantly different than chance (0.5), p < 0.05.

emphasized the beta band and distal electrodes.

Summary of checking the influence of class imbalance

Class imbalance changing with cycle number was established as a potential confound
for interpreting classification-success, at least for the multivariate classifiers. In many cases,
our classifiers performed best on participants who quickly achieved high accuracy during
training (i.e., participants whose data were most skewed by cycle number). The confound
had the greatest impact on our best-performing classifiers.

However, correlations between classifier success and the cycle confound were not
present for all successful classifiers (e.g., the univariate FRN classifier). Further, when we
explicitly prevented our classifiers from being informed by cycle number during training,
several classifiers retained above-chance performance, even though the classifier success
rate reduced, as expected due to the reduction in the number of training trials. Finally, the
spatiotemporal characteristics of the classifying features have considerable overlap with and
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Figure 12

Predicting subsequent accuracy after balancing trial counts within each cycle (compare with
F igure@a ). Mean AUC values, with 95% confidence intervals. Blue, green, and red bars indi-
cate classifiers trained on all, correct, and incorrect trials, respectively. Classifiers (indicated
by brightness) included univariate measures (FMT or FRN; lightest), and two multivariate
classifiers (SVM or LDA; medium) informed by either time or time-frequency domain data
(darkest). * significantly different than chance (0.5), p < 0.05. The dashed line denotes
chance AUC (0.5).

without our approach to addressing class balance, which argues against the classification
having been purely due to classifiers finding a shortcut and inferring trial number only.
This suggests that our initial classifiers likely captured some genuine learning-relevant brain
activity.

Discussion

The feedback-related negativity (Bellebaum & Daum, Cohen et al.,
Walsh & Anderson, 2011) and frontal midline theta activity (Bernat et al., Hayji-
hosseini & Holroyd, 2013; van de Vijver et al., are widely reported neural signals
associated with feedback processing. Moving beyond prior descriptive analyses, we explic-
itly evaluated the predictive power of the two signals, determining whether their purported
roles at the trial-average level would generalize to predicting feedback-driven learning at the
single-trial level. We then leveraged multivariate classifiers to ask whether the single-trial
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EEG contains additional learning-relevant information beyond either signal.

First, we established that both the FRN and FMT were more pronounced for the
average subsequently correct than subsequently incorrect trial, as expected (though the sub-
sequently correct condition was characterized by broadband power increases beyond FMT).
Then, analyzing the predictive power of the signals at the trial level, we found that the FRN
and FMT could significantly predict subsequent accuracy, though only during feedback fol-
lowing correct responses (with FMT AUC values only marginally above chance). Despite
these findings, both signals were less pronounced when a word was followed by a series of
consecutive correct responses (“acquired” trials) at both the trial-average and single-trial
levels. Feature weights for multivariate classifiers suggested that signals overlapping with
the FRN, but not FMT, were relevant for discriminating between trials. Our results validate
the FRN as a predictive signal, but are less clear about FMT.

In a parallel analysis of the same dataset, Chakravarty et al. (in review) aimed
to study the FRN at points where a meaningful amount of learning occurred, studying
the first training cycle and the participant-specific “steepest” cycle which preceded their
largest increase in accuracy. The FRN indexed feedback magnitude, as expected, but only
differentiated subsequently correct and incorrect trials when restricted to correct (current)
trials only. Likewise, at the trial level, the FRN could only predict subsequent accuracy
following correct responses. To boost power, we expanded our current analysis to the full
set of training cycles, with the trade-off of including many trials late in the task which
were unlikely to index learning. Despite these changes, we found the same result— that the
FRN could only predict subsequent accuracy following relatively more rewarding feedback,
demonstrating the robustness of this finding.

The leading account of the FRN suggests that it indexes an RPE calculation fol-
lowing errors, inheriting an assumption from much of the reinforcement learning literature
that learning primarily occurs following errors (Sutton & Barto, |2018). By extension, if
the FRN indexes RPE, it should predict learning outcomes primarily following errors or
when reward is less than expected (Holroyd & Coles, 2002)). However, our results alongside
Chakravarty et al. (in review]) do not clearly support such an account, at least for this task,
because the FRN was only able to predict learning following relatively rewarding feedback,
namely, correct-response trials but not errors. One possible explanation for this difference
may be related to our task having a high learning demand. In this context, perhaps feed-
back stating that the just-given response was incorrect is harder to integrate (for example,
requiring the participant remember both the response they made and that it was wrong)
than feedback confirming that the response was correct. Also, because of the challeng-
ing nature of word-value learning, many correct responses may have been “exploratory”
or “hypothesis-testing” decisions by the participant, so that the role of the feedback may
accordingly function differently with respect to learning than in other tasks in which the
participant has a more confident mental model of the task. However, consider that the way
in which feedback was given during the task may have influenced our findings: participants
could not make absolute errors, only relative ones, as incorrect responses still gave a 1-point
reward. As such, we cannot explicitly comment on whether participants did or did not
learn from errors in our task. Otherwise, relative classifier performance in either condition
may have simply been a product of trial count: after epoch rejection, participants averaged
630.5 correct trials and 135.5 incorrect trials during the 16 training cycles.
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Beyond the negative-going deflection thought to characterize the FRN, the FRN
time window also includes a positive deflection sensitive to rewarding feedback (Holroyd
et al., 2008). Importantly, Chakravarty et al. (in review) concluded that the apparent
sensitivity of the FRN to value acquisition may have been largely driven by the magnitude
of this reward positivity. Visual inspection of our ERP plots (Figure [5)) suggests the same,
where the most prominent differences between conditions appear limited to the positive
deflections early in the FRN time window, rather than the negative deflections later on.
Our results alongside those from Chakravarty et al. (in review)) suggest that the negative-
going deflection thought to characterize the FRN may not drive feedback-guided learning,
and that signal sensitive to feedback magnitude (i.e., the reward positivity) may be more
relevant for behavioural outcomes, converging with Krigolson (2017) and with individual
sensitivity to reward covarying with voltage during reward trials more than non-reward trials
(Proudfit, 2015). In this view, the negativity is produced by a N2 peak that is relatively
invariant in response to feedback, whereas the reward positivity reflects positive reward
processing, so that gain-reward trials are the ones that evoke meaningful reward-related
activity during the FRN/RewP time window. This could be why using the EEG signal,
especially the FRN measure, succeeded in predicting trial-level learning on correct-feedback
trials but not error-feedback trials.

Other explorations of the FRN in similar reward-driven verbal learning paradigms
have produced mixed results regarding its status as an RPE detector. Chase et al. (2011)
supported the FRN as an RPE-sensitive signal, since it was most pronounced when word-
value associations were unexpectedly violated. However, inconsistent with this, Arbel et al.
(2014)) reported that the FRN did not dampen when feedback was presented for already
learned word-value associations (as expected if the FRN is sensitive to reward probability),
and Ernst and Steinhauser (2012)) found that FRN did not separate error trials based on
whether the error was corrected later in the task.

More generally, the literature linking the FRN (and FMT) to feedback-driven learn-
ing is centered on tasks without a clear and substantial learning objective. These include
probabilistic reward learning tasks, where participants learn to choose the stimulus with
the greatest reward probability (Bernat et al., 2015; Cohen et al., 2007; Marco-Pallares
et al., |2008), and time estimation tasks, where feedback scales with task performance (P.
Li et al., 2016; Luu et al., 2004; van de Vijver et al., [2011)). Accordingly, our work adds
to a growing literature suggesting that the FRN and FMT may not generalize as learning
indices in tasks with a more explicit learning target (Arbel et al., 2014; Chakravarty et al.,
in review; Chase et al., 2011} Ernst & Steinhauser, 2012)), suggesting that they may be best
understood as markers of feedback processing itself, rather than signals which explicitly
guide goal-oriented future behaviour.

Following our univariate analyses, we expected that classifiers informed by multi-
variate brain activity could predict learning outcomes more successfully. Accordingly, our
multivariate classifiers predicted subsequently correct and acquired trials better than the
FRN and FMT, despite our intentional steps to limit overfitting and researcher degrees of
freedom, including pre-defining classifier features and sticking closely to the methods used
by Chakravarty et al. (2020) in a standard verbal recognition task. While our methods
were parsimonious, above-chance AUC values approached 0.7 in the best-case scenarios—
well within the range of values reported by others predicting memory outcomes from EEG
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activity using linear techniques (Arora et al., 2018; Y. Li et al., 2024; Noh et al., 2014]).

However, one challenge had to be addressed. Trial counts were skewed by cycle
number, where participants were more accurate as the task progressed, leading to more
subsequently correct and unchanged trials in later cycles. As such, we wondered whether
our classifiers were taking advantage of the relationship between cycle number and trial
labels to simply make predictions based on inferred task progress, instead of being informed
strictly by learning-related brain activity. This confound appeared to influence classifier
success, as classifiers performed best on data from subjects who learned more quickly in the
task. After we balanced the numbers of each trial type within each cycle, explicitly pre-
venting classifiers from accessing information related to task progress, AUC values dropped
substantially, indicating that the original classification AUCs may have been inflated by the
trial-imbalance confound, but this drop is also expected due to the reduced number of trials
going into the analyses. However, many AUC values remained above chance, despite the
greatly reduced trial count (and by extension noisier classification problem). Crucially, the
feature maps before and after this procedure were similar for the same classification prob-
lems, echoing findings reported by Chakravarty et al. (2020) using SMOTE, that although
class imbalance could theoretically pose a major problem, it seems not to have a large
effect on classifier-based analyses of EEG. This suggests our initial classifiers must have
been informed by genuine learning-relevant brain activity. Our approach to trial balancing
within learning cycles could be used by researchers studying similar multi-trial paradigms
to evaluate the robustness of their classifier success.

Of our successful classifiers, those predicting from time domain data emphasized
distal electrodes throughout the feedback processing window, and all electrodes 301-600 ms
post-feedback. Interestingly, this is the time range where one of the most robustly reported
subsequent-memory effects is reported, typically in episodic item-recognition tasks (Karis
et al., 1984). Known as the late positive component or even possibly a P300, this activity
has been linked to shallow levels of processing during the study phase (Fabiani et al., 1986;
Karis et al., |1984), which may relate to its role here. Meanwhile, successful time-frequency
domain classifiers emphasized beta and delta activity, along with an array of non-central
electrodes and time bins throughout the feedback processing window. In both cases, features
beyond the FRN and FMT windows were relevant for making classifier decisions, suggesting
that broad, multivariate EEG activity is necessary to describe the full scope of feedback
processing.

Finally, as indicated in the introduction, we were curious about why published clas-
sifier analyses typically use spectrographic (power in the time-frequency domain) features
and rarely the original time-domain signal (which is the natural starting point from the
perspective of event-related potentials). Broadly speaking, classifications with more fea-
tures produced better performance (univariate < time-domain < spectrographic domain).
So it could very well simply be that inputting more features monotonically increases the
amount of behaviourally relevant information available to the classifier, an idea to be tested
in the future. However, the degree to which spectrographic features outperformed the time
domain is still somewhat surprising. Because Fourier and wavelet transforms are linear—
values are weighted sums of the original time-domain values (voltages)— LDA and SVM
would both seem to be well suited to exploiting the same information whether the feature
space is expressed in the time or time-frequency domain. In other words, at least from
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a naive perspective, the spectrogram should not contain any more information than the
time-domain signal, and arguably less, because the squaring operation to compute power
values throws away information about the sign of the signal. But our classifiers did, in fact,
succeed better with spectrographic than time-domain features. We can only speculate, but
perhaps this is because wavelet power is relatively insensitive to phase, or precise-timing
information. The spectrographic features may simply be more resilient to the jitter of ac-
tivity features across trials. It seemed obvious to us to start with time-domain features
before moving on to spectrographic features, in part because of the intuitive argument we
expressed about spectrographic features being composed of the original time-domain fea-
tures. While other groups may have had very justified independent reasons to skip to the
time-frequency domain, we wonder if some of the missing time-domain classifiers are in
researchers’ “file-drawers.” Perhaps they were less robust or not clearly above chance, and
this led some researchers to leave behind the time domain and move on to the more robust
time-frequency domain.

A few limitations should be noted. First, our feedback stimulus indicating a correct
choice response was larger than that indicating an incorrect choice. Pfabigan, Sailer, and
Lamm (2015)) showed that larger stimuli evoke larger FRNs. With this in mind, we con-
structed our comparisons and classifications such that the stimulus displayed at the time
that brain activity was analyzed was always the same. Hence, for example, correct-feedback
processing was compared with correct-feedback processing depending on the accuracy of the
subsequent trial with a given item (and likewise for incorrect). This concern does not present
a confound for the results we present here.

Second, a stronger test of the predictive information contained within the feedback-
processing EEG signal would be to keep a held-out set of data to apply a trained classifier
only at the very final stage. This is particularly important when researchers casually explore
the hyperparameters of the classifiers, as compellingly demonstrated by Skocik et al. (2016).
However, importantly, we are not optimizing hyperparameters. Moreover, cross-validation
is within-subject. In within-subjects applications of classifiers in cognitive neuroscience,
held-out data is quite rare. The reason is largely due to the limited number of trials per
subject (compared to between-subjects classification problems, for example). Our paradigm
produces more trials than most memory EEG studies, and even so, we are up against lower
limits for trial counts which become quite pronounced in some cases. That said, with a
creative approach to task design, potentially many experimental sessions per participant
(although that may also introduce more challenging variability), it may be feasible to hold-
out data at the single-subject level in future studies. For the work reported here, we have
minimized the possibility of overfitting at the hyperparameter level by sticking closely to
our previous hyperparameters and avoiding exploring them.

Taken together, our classifiers successfully predicted feedback-driven learning in a
cognitively demanding trial-and-error learning task. The most successful classifiers were
informed by multivariate brain activity extending beyond the feedback-related negativity
(which held some predictive power, likely driven by an overlapping reward positivity) and
the frontal midline theta (which held less), suggesting that the bulk of feedback-relevant
brain activity extends beyond established univariate signals. In this regard, the FRN, and
particularly FMT, may be best characterized as markers of feedback processing itself, rather
than integrative signals which explicitly guide future learning.
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Figure Al
Predicting item value acquisition from correct trials: LDA time domain feature weights.

Topographies show MATLAB’s DeltaPredictor value, indicating the degree to which a feature
influenced classification, at various scalp sites. Plots are interpolated using a spline method.

Appendix

In this Appendix we present additional topographic plots and additional analyses of the
effects of cycle imbalance.
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Figure A2

Predicting item value acquisition from correct trials: LDA time-frequency feature weights.
Topographies show MATLAB’s DeltaPredictor value, indicating the degree to which a feature
influenced classification, at various scalp sites. Plots are interpolated using a spline method.
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Cycle imbalance confound: predicting subsequent accuracy from incorrect trials. Scatter
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Predicting subsequent accuracy from all trials: LDA time domain feature weights before and
after balancing training trials within each cycle. Topographies show MATLAB’s DeltaPre-
dictor value, indicating the degree to which a feature influenced classification, at various
scalp sites. Plots are interpolated using a spline method.
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Figure AT

Predicting subsequent accuracy from correct trials: LDA time domain feature weights be-
fore and after balancing training trials within each cycle. Topographies show MATLAB’s
DeltaPredictor value, indicating the degree to which a feature influenced classification, at
various scalp sites. Plots are interpolated using a spline method.



CLASSIFIERS AND FEEDBACK LEARNING 45

a Unbalanced training set
Beta 1-300 ms Beta 301-600 ms. Beta 601-900 ms  Beta 901-1200 ms Beta 1201-1500 ms
0.4 0.4 0.4 04 0.4
i ¢ o3 i N X i || 03 1 ¢ | 03 1 ¢ o3
02 L 02 = 0.2 -/ 0.2 = 0.2

Alpha 1-300 msn B Alpha 301-600 mg4 Alpha 601-900 mg4 Alpha 901-1200 m054 Alpha 1201-1500 er1s4

| v 103 | |03 | v |l o3 I ¢ |l 03 I v | o3
02 02 02 02 0.2

Theta 1-300 msn B Theta 301-600 m% . Theta 601-900 m% . Theta 901-1200 mns‘l Theta 1201-1500 rlés4
i N LE] i N EE] i || 03 i e || 03 i o3
7 0.2 u 0.2 L 0.2 = 0.2 0 0.2

Delta 1-300 ms 04 Delta 301-600 msD . Delta 601-900 mso . Delta 901-1200 mg‘l Delta 12011500 m

0.4
i | 0.3 i | 0.3 i | 0.3 1 | 0.3 1 | 0.3
02 2 02 E 0.2 - 0.2 = 0.2
b Balanced training set

Beta 1-300 ms Beta 301-600 ms Beta 601-900 ms = Beta 901-1200 ms Beta 1201-1500 ms
04 0.4 0.4 0.4 0.4
03 7 B ) e |l o3 ] || 03 ] e |l 03
02 ¥ 02 ) 0.2 _ 0.2 = 0.2

Alpha 1-300 ms‘.0 4 Alpha 301-600 mg4 Alpha 601-900 mg4 Alpha 901-1200 mos‘l Alpha 1201-1500 nas4

1 i E] 1 « |03 i 0.3 i ¢ [l o3 i ¢ || 03
02 02 0.2 0:2 0.2

Theta 1-300 mso 4 Theta 301-600 m% . Theta 601-900 m% . Theta 901-1200 mos‘l Theta 1201-1500 n’[\)s‘;
[ | 0.3 [ | 0.3 [ | 0.3 1 | 0.3 1 | 0.3
_ 02 5 02 . 0.2 - 0.2 8 0.2

Delta 1-300 ms 04 Delta 301-600 ms Delta 601-900 msD . Delta 901-1200 mns‘l Delta 1201-1500 m

0.4
i N LE] i N EE] i || 03 i e || 03 i o3
0.2 0.2 0.2 0.2 0.2

Figure A8

Predicting subsequent accuracy from all trials: LDA time-frequency domain feature weights,
before and after balancing training trials within each cycle. Topographies show MATLAB’s
DeltaPredictor value, indicating the degree to which a feature influenced classification, at
various scalp sites. Plots are interpolated using a spline method.
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