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ABSTRACT: Neuronal population oscillations at a variety of frequen-
cies can be readily seen in electroencephalographic (EEG) as well as
local field potential recordings in many different species. Although these
brain rhythms have been studied for many years, the methods for identi-
fying discrete oscillatory epochs are still widely variable across studies.
The ‘‘better oscillation detection’’ (BOSC) method applies standardized
criteria to detect runs of ‘‘true’’ oscillatory activity and rejects transient
events that do not reflect actual rhythms. It does so by estimating the
background spectrum of the actual signal to derive detection criteria
that include both power and duration thresholds. This method has not
yet been applied to nonhuman data. Here, we test the BOSC method on
two important rat hippocampal oscillatory signals, the theta rhythm and
slow oscillation (SO), two large amplitude and mutually exclusive states.
The BOSC method detected both the relatively sustained theta rhythm
and the relatively transient SO apparent under urethane anesthesia and
was relatively resilient to spectral features that changed across states,
complementing previous findings for human EEG. Detection of oscilla-
tory activity using the BOSC method (but not more traditional Fourier
transform-based power analysis) corresponded well with human expert
ratings. Moreover, for near-continuous theta, BOSC proved useful for
detecting discrete disruptions that were associated with sudden and
large amplitude phase shifts of the ongoing rhythm. Thus, the BOSC
method accurately extracts oscillatory and nonoscillatory episodes from
field potential recordings and produces systematic, objective, and con-
sistent results—not only across frequencies, brain regions, tasks, and
waking states, as shown previously, but also across species and for both
sustained and transient rhythms. Thus, the BOSC method will facilitate
more direct comparisons of oscillatory brain activity across all types of
experimental paradigms. VVC 2011 Wiley Periodicals, Inc.
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INTRODUCTION

Neuronal oscillations arise from the intrinsic properties of neurons
and their functional network interactions. Population oscillations at

diverse frequencies can be readily seen in electroenceph-
alographic (EEG) as well as local field potential (LFP)
recordings in many different species and have been
shown to correlate with ongoing behavior and with the
processing of stimuli in the immediate environment in
addition to both online and offline mnemonic functions
(Berger, 1929; Vanderwolf, 1969; Worden et al., 2000;
Bland and Oddie, 2001; Caplan et al., 2001; Buzsaki
and Draguhn, 2004; Klimesch et al., 2007; Marshall
and Born, 2007; Freunberger et al., 2009; Dickson,
2010). Although oscillations have been studied for many
years (Berger, 1929), identifying discrete oscillatory
epochs in EEG traces is still quite variable across studies
(van Vugt et al., 2007). A major challenge for the major-
ity of current methods is that they are sensitive not only
to oscillations but also to sharp transient potentials
(either spontaneous or event-related) that are nonoscilla-
tory, as well as artifacts caused by eye movements and
static discharges. Another problem is that criteria for
oscillation detection require dynamic adjustments across
frequency due to the colored-noise background spec-
trum of field potentials wherein low-frequency compo-
nents tend to have higher amplitudes than high-
frequency components (Schlesinger and West, 1988;
Caplan et al., 2001; Buzsaki and Draguhn, 2004). These
problems make a systematic study of brain oscillations
difficult both within and across different brain states
(much less within and across different species), because
threshold and statistical criteria tend to vary methodo-
logically as do the background properties of signals.

With these pitfalls in mind, Caplan et al., (2001)
designed the ‘‘better oscillation detection’’ (BOSC)
method. The method calculates a power threshold that
is derived from an estimate of the local background
spectrum and a duration threshold that is scaled to each
specific frequency (Fig. 1). This method detects only
segments of recorded activity that meet these rigorous
criteria and rejects transient events that are not oscilla-
tory but that can create spectral peaks or changes in
power that can be erroneously interpreted as rhythmic
activity. These properties make BOSC a principled and
objective method that could place different studies on
the same footing and reduce researcher subjectivity.

At present, the BOSC method has only been
applied to detect sporadic oscillations in awake, behav-
ing humans (Caplan et al., 2001; Caplan et al., 2003;
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Ekstrom et al., 2005; Caplan and Glaholt, 2007; Watrous et al.,
2011; Whitten et al., 2011) and during sleep (Marzano et al.,
2011). Ideally this method would also be useful for LFP record-
ings obtained from nonhuman animals, especially rats, the chief
subjects used to study hippocampal rhythms, both within and
across brain state changes such as those that occur during
ongoing behaviour, sleep, and also under anesthesia. Hippocam-
pal state alternations are associated with both sporadic and con-
tinuous trains of oscillatory activity including theta, ripples, and
the slow oscillation (SO; Bland, 1986; Chrobak et al., 2000;
Buzsaki, 2002; Wolansky et al., 2006; Clement et al., 2008),
and these activities are thought to play important roles in both
online and offline memory processing (Buzsaki, 1989;
Hasselmo, 2005; Dickson, 2010). However, it is unclear how
BOSC would perform for the detection of different types of
state-dependent activity, especially when state changes occur
within the data segment being analyzed. This is an important

question, because one of the hallmark features of a state change
is an alteration of the overall shape of the power spectrum. If
this reflects a change in the background colored-noise power
spectrum, the estimate of the background spectrum that the
BOSC method relies on may be skewed, and this could under-
mine its effectiveness in oscillation detection.

To evaluate the robustness of the BOSC method for both
continuous and sporadic oscillatory activity across state changes,
we tested it on LFPs recorded from the hippocampus of ure-
thane-anesthetized rats. These recordings demonstrate both
continuous (theta) and sporadic (SO) rhythmic activity in addi-
tion to spontaneous state alternations (Wolansky et al., 2006;
Clement et al., 2008). This allowed us to test the ability of the
method for both types of activity based on background samples
within and across states and to validate detections with those
made by human experts using more conventional (but still
qualitative) analyses.

FIGURE 1. Schematic depiction of the BOSC oscillatory epi-
sode detection method. A power threshold (PT) must be exceeded
for a minimum duration of time (i.e., number of cycles), designated
by a duration threshold (DT). A: A hypothetical example raw trace
that exceeds both of these thresholds, and would be counted as
oscillatory. B: A hypothetical example of a raw trace that exceeds the
duration threshold, but fails to exceed the power threshold, and
would thus not be labeled as oscillatory. C: A hypothetical example
of a raw trace that exceeds the power threshold, but fails to exceed
the duration threshold, and would thus not be labeled as oscillatory.

Both thresholds are scaled to the frequency of interest. DT is a fixed
number of cycles, most commonly set to 3. D: A hypothetical
example of a power spectrum with a peak potentially reflecting theta
oscillations (gray), and the modeling of the background spectrum
with a linear regression (black). E: A hypothetical probability
distribution function of power values at frequency f* can be fit by a
v2(2) distribution (see text), which is used to determine the power
threshold (PT) for oscillation detection, in this case based on
the 95th percentile of the v2(2) distribution. This figure has been
modified from Figure 1 of Whitten et al. (2011).
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METHODS

Hippocampal Recordings

Hippocampal LFPs were recorded as previously described
and published (Wolansky et al., 2006). In brief, monopolar
Teflon-coated stainless-steel electrodes (bare diameter 125 lm,
A-M systems) were targeted to the hippocampal fissure of the
dorsal hippocampus of urethane-anesthetized rats (coordinates
from Bregma: AP: 23.3, ML: 62.0, DV: 22.8 to 23.3 mm).
A representative placement is shown in Figure 2A. Recordings
(referenced to the stereotaxic apparatus) were amplified at a
gain of 1,000, bandpass filtered from 0.1 to 500 Hz (Model
1700 amplifier: A-M systems), and digitized at 1 kHz (Digi-
data—Axon Instruments). As we have previously shown
(Wolansky et al., 2006; Clement et al., 2008) these recordings
demonstrate spontaneous state alternations between activated
(theta activity), transition (large amplitude irregular activity,
LIA), and deactivated (LIA 1 SO) states which we could
characterize by the observation of the raw traces (Fig. 2A), via
Fourier-transform-based spectral methods (Fig. 2B), and by
autocorrelation analysis (Fig. 2C).

Fourier Peak Power Analysis of LFPs

In our previous work, state changes were characterized by
extracting and comparing power values at specific bandwidths
across epochs using traditional Fourier spectrographic analysis.
Specifically, power spectral density estimates were computed on
sliding windows of the LFP data using a modified version of
Welch’s periodogram method implemented in Matlab (versions
5 or 7: Mathworks, Natick, MA; Clement et al., 2008; Schall
et al., 2008). In the bottom panels of Figure 2, the spectral
power in the theta (3–4 Hz) and SO (0.5–1.5 Hz) bandwidths
are shown in panel E for a windowed analysis of the LFP traces
shown in panel D. These windows were 3 s in length with a
1/3rd overlap (1 s). To classify states and their transitions, the
distribution of the ratios of logged power values of SO to theta
bandwidths was evaluated across time. Values lying in the
trough between bimodal peaks of this distribution were used as
a threshold for state changes; values above this threshold were
considered SO, and values below were considered non-SO. A
similar analysis using the ratio of theta over SO power was
used to distinguish theta and not-theta states. Time periods
between these two states that were classified as not-theta and
not-SO were labeled LIA.

The BOSC Method

For all computations, a continuous wavelet transform using
a Morlet wavelet with width 5 6 was performed on the data.
The Morlet wavelet is commonly used for the analysis of
human EEG because of its sinusoidal shape and tapering ends.
The success of wavelet-based EEG analysis may be attributed
to the similarity of the wavelet to the target signal (Schiff
et al., 1994). Data analysis was performed using MATLAB 7.6
(see supplementary materials of the work by Whitten et al.,

2011). Frequencies were sampled logarithmically from 0.71–
76.1 Hz, in 28 frequency steps. Wavelet power spectra, Power
(f ), were then fit with a linear regression in log–log coordinates
to estimate the colored-noise background spectrum (Fig. 1D).
A power threshold, PT, for each frequency was calculated as the
95th percentile of the theoretical v2(2) distribution of wavelet
power values (Fig. 1E), assuming the mean background spec-
trum estimated by the linear regression would be the mean of
the corresponding v2(2) distribution at a given frequency

FIGURE 2. Spontaneous hippocampal LFP waveforms and
their transforms as recorded in the urethane-anesthetized rat. A:
Example traces of each of the three hippocampal states: (1) Theta,
(2) large amplitude irregular activity (LIA), and (3) the slow oscil-
lation (SO). Only theta and the SO show oscillatory components.
The inset shows the location of a typical recording site in a photo-
micrograph of the dorsal hippocampus in a coronal section of rat
brain. The circular lesion at the hippocampal fissure (white arrow)
was made by passing DC current through the electrode tip follow-
ing the experiment. Each state is also represented in spectral (B)
and autocorrelation (C) plots taken from the examples shown in
(A). D: A long duration LFP trace from which each trace in A was
taken (see numerals corresponding to panel numbers in A). E:
Peak power in both theta and SO bandwidths was extracted from
the signal shown in D and plotted on the same time scale. Based
on the ratio of the extracted power values, theta, LIA, and SO
states could be separated as denoted.
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(Caplan et al., 2001; Whitten et al., 2011). The reason the dis-
tribution of squared wavelet coefficients is expected to have the
form v2(2) is that raw LFP signal is approximately Gaussian-
distributed; power, the square of the wavelet coefficient, is
therefore v2-distributed (Percival and Walden, 1993). As wave-
let coefficients are complex, each wavelet power value is the
sum of two squared Gaussian-distributed values (Pythagoras’
theorem), one for the real and one for the imaginary part,
resulting in a v2 with df 5 2. Figures 3 and 4 show the theo-
retical v2(2) plotted over the observed probability distribution
functions of wavelet power. For frequencies that are expected
to be oscillatory within a given state (Figs. 3D and 4B), the
estimated distribution deviates considerably from the observed
distribution, especially due to a surplus of high power
values. For other (nonrhythmic) frequencies (other panels in
Figs. 3 and 4), the expected distributions fit the observed distri-
butions well.

Power values exceeding the power threshold were then sub-
jected to the duration threshold DT 5 3 cycles. The duration
threshold criterion is that PT must be exceeded for a minimum
of DT cycles (DT/f at a frequency of interest, f ). Oscillatory
epochs were thus considered ‘‘detected’’ when both thresholds
were met (Fig. 1A when compared with 1B and 1C). Note that
in the continuous wavelet transform there is considerable over-
lap between successive wavelet-power values. The degrees of
freedom for this evaluation can be computed (i.e., Plett, 2000)
and for the example of a 4-Hz rhythm meeting the minimum
DT of three cycles, the independent degrees of freedom are 2.7.
Thus, although the PT sets the initial level of conservatism, DT

makes detection slightly more conservative due to the reduced
probability that PT could be exceeded for DT cycles.

To assess the performance of the BOSC method and its sen-
sitivity (or resilience) to state changes, signals were analyzed
based on background spectrum estimates that used data either
from within state or aggregating between states. This tested the
influence of state on the tuning of the PT(f ), which could
potentially undermine the robustness of the method to detect
oscillations consistently despite state changes, which in a realis-
tic research setting, could quite plausibly be unknown.

Comparison of Analysis Methods

To assess the performance of the Fourier peak power analysis
(FPPA) and BOSC methods, we computed the Pearson correla-
tion for the results of the classifications across different meth-
ods, including those made by human raters. We focused on
SO, because we have previously determined that this activity is
more difficult to classify because of its sporadic nature
(Wolansky et al., 2006). FPPA and BOSC methods were com-
pared with each other and were each compared with ratings
completed by a panel of expert raters (authors AMH, TAW,
and CTD). As the initial implementation of FPPA was very
poorly correlated with both BOSC and our raters we devised a
more conservative version that required at least two adjacent
windows (just prior and subsequent) to reach threshold in
order for the middle window to be classified as oscillatory.

Each rater evaluated windowed signals from deactivated peri-
ods that had been previously analyzed by either the FPPA or
BOSC technique. These windowed and band-pass filtered
(between 0.5 and 1.5 Hz) signals were displayed in a random-
ized order, along with upper and lower limits, which were
calculated at two times the root mean square (RMS) of the
filtered signal across the entire epoch. As well, displayed along-
side the traces were (1) the autocorrelation of the windowed
signal superimposed on an autocorrelation of a 1-Hz sine wave
and (2) the power spectral density of the raw, unfiltered signal
along with the upper and lower confidence limits for the entire
epoch. For each window, reviewers applied their expertise to
rate windows as either oscillatory or not at 1 Hz.

RESULTS

As shown in Figure 2 and as described previously (Wolansky
et al., 2006; Clement et al., 2008), the LFP of the rat hippo-
campus under urethane-anesthesia showed spontaneous state
alternations between activated and deactivated patterns. The
activated pattern consisted of an almost continuous 3–4 Hz
rhythm (theta), whereas the deactivated pattern was character-
ized by a broadband irregular signal with higher power at low
frequencies (LIA). Also apparent during the deactivated pattern
were discrete epochs of sporadic large amplitude �1 Hz
oscillatory activity (SO). These three types of activity could be
differentiated based on their raw waveforms, spectra, and auto-
correlation functions as shown in Figures 2A–C.

By extracting power from the Fourier-transform-based spec-
trographic analysis of signals in both the theta (3–4 Hz) and
SO (1 Hz) bandwidths and plotting these values as a function
of time we could evaluate state changes systematically. Theta
power was high during activated states and low during deacti-
vated, whereas SO power showed the opposite pattern. In this,
and previous work, we used the power in either peak band-
width (and/or the ratio) to characterize theta versus SO states.
The gross separation of states using this FPPA method is
shown in Figure 2E.

The BOSC Method for Detecting Hippocampal
Theta

Given that the BOSC method has only been used to extract
sporadic episodes of oscillatory activity from a recording, we
first assessed the ability of this method to detect the 3–4 Hz
theta rhythm during the activated state. As shown in Figures
5B; C–F, nearly continuous oscillatory theta (4 Hz) activity was
extracted from the activated state. There were some transient
breaks observed during the activated state, and a few epochs of
4 Hz activity were detected during the deactivated state as well.
Although the linear regression fit differently depending on
which signal was used to estimate the background spectrum
(Fig. 5A), especially at the lower frequencies, the detection of
4 Hz oscillations was nonetheless very similar except when the
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FIGURE 3. Probability distributions of power values for acti-
vated states. For all panels, bars represent the empirical probability
distribution function of power values from the signal used to estimate
the background spectrum in 25 equally spaced bins for the a given
frequency. The thin curve represents the theoretical v2(2) probability
distribution function based on the estimated mean power at the same
frequency, derived from the linear-regression fit obtained from

the activated state. Vertical lines represent the 90th, 95th, and 99th
percentile thresholds (left to right). Note that for theta frequencies
(most prominently at 4 Hz), a great proportion of the power values
are far beyond the range plotted here; those are summed in the right-
most bin. At theta frequencies, the distributions deviate substantially
from the expected v2(2) but at other frequencies, the fit is reasonable,
in line with the assumptions of the BOSCmethod.

Hippocampus
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FIGURE 4. Probability distributions of power values for deac-
tivated states. For all panels, bars represent the empirical probabil-
ity distribution function of power values from the signal used to
estimate the background spectrum in 25 equally spaced bins for
the given frequency. The thin curve represents the theoretical
v2(2) probability distribution function based on the estimated
mean power at the same frequency, derived from the linear-regres-

sion fit obtained from the deactivated state. Vertical lines represent
the 90th, 95th, and 99th percentile thresholds (left to right). Note
that for some frequencies, some power values are beyond the range
of plotted here; those are summed in the right-most bin. At delta
frequencies (most prominently at 1 Hz), the distributions deviate
substantially from the expected v2(2) but at other frequencies, the
fit is reasonable, in line with the assumptions of the BOSC method.
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background estimate came from periods of LIA (Figs. 5C–F).
Furthermore, a summary measure, Pepisode (defined as the pro-
portion of time occupied by BOSC-detected oscillations), cal-
culated using these different background spectrum estimates
ranged from 0.61 to 0.80 (Figs. 5B–E). It is clear that rhyth-
mic activity segments are indeed being detected (Fig. 6). Thus,
the BOSC method was able to pull out the continuous 3–4 Hz
theta activity, something it had not yet been tested on, with
minimal sensitivity to the state used to calculate PT. It is also
worth noting that a common technique, prewhitening (dividing
all power values by the mean power at each frequency) would

only be sensitive to modulations in theta power but might
completely overlook the overall presence of nearly continuous
theta if that rhythmic activity is sustained throughout the entire
recording segment. In addition, if correcting relative to a base-
line were done with hybrid states, then the results would be
highly dependent on the proportion of time occupied by theta
oscillations, producing variable results across recordings.

We examined the breaks in detection of 4-Hz oscillation
during the activated period more closely by assessing whether
they were due purely to amplitude modulation or to spontane-
ous phase resetting of the theta signal. By filtering the raw

FIGURE 5. Detection of theta (4 Hz) and the slow (1 Hz) oscil-
lations: The effects of different background power estimates within,
between, and across states. A: Power spectrum from one epoch
including all states with the estimated mean powers obtained from
either across all states, the activated state, LIA state, or the deacti-
vated state. B: Pepisode(f ) computed across all states, using each

method of estimating mean background power (as in A). C–F: The
raw time series (black) with the detected oscillations at 4 Hz (left
panels) or 1 Hz (right panels) plotted in red and time–frequency
plots of detected oscillations over the same time span (middle pan-
els). Background estimate from all states (C), from the activated
state (D), from LIA (E), and from the deactivated state (F).
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signal in a tight bandwidth centered at 4 Hz (3.37–4.76) and
computing the instantaneous phase via Hilbert transform of the
filtered signal (Le Van Quyen et al., 2001), we were able to
evaluate both hypotheses by comparing to the results of BOSC
(Fig. 7). Although time points corresponding to nondetections
using BOSC were typically concomitant with decreases in the
amplitude of the 4-Hz signal (which is unsurprising based on
the dependency of BOSC on amplitude), there were many
examples of decreasing amplitude that were not associated with

nondetection (see arrows Fig. 7) that still corresponded to
successful detections. By plotting the slope of the phase
component of the Hilbert transform (which is constant for a
consistent oscillatory process like a sine wave), we were able to
visualize sudden changes in the phase which, when they were
large enough, were consistently coupled to nondetected periods.
This suggests that although BOSC uses power as a threshold
factor, it is the consistency of the oscillation that it is critically
dependent on.

FIGURE 6. Detection of theta (4 Hz) oscillations during the
activated state: The effects of different background power esti-
mates within, between, and across states. A: Power spectrum
from a 10-s segment of the activated state, overlaid with (linear)
estimated mean background power derived from all states, the
activated state, LIA, or the deactivated state. B: Pepisode(f)

obtained with each of the background estimates. C–F: Raw, 10-s
time series (black) with the detected oscillations at 4 Hz plotted
in red (left panels) and time–frequency plots of detected oscilla-
tions (right panels). Background estimate from all states (C)
from the activated state (D), from LIA (E), and from the deacti-
vated state (F).
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The BOSC Method for Detecting the
Hippocampal SO

The hippocampal SO (Isomura et al., 2006; Wolansky et al.,
2006) is a novel brain state that has recently emerged as an im-
portant large-amplitude hippocampal rhythm. A major differ-
ence with theta (in addition to the fact that they are mutually
exclusive based on behavioral state) is that the SO is intermit-
tent and short-lasting. As shown in Figures 5 and 8, the BOSC
method was able to extract sporadic SO rhythms during the
deactivated state, consistent with previous reports.

When the background window was calculated across states, as
well as within the deactivated state, or even from the activated
state, there was a difference in the linear fit of the background
power estimate (Fig. 8A). The Pepisode calculated with the differ-
ent power estimates were variable at 1 Hz (Fig. 8B), as they were
for theta in the activated state. When the background estimate
was calculated from within the deactivated state, it was the most
conservative, with fewer oscillatory epochs detected at all fre-
quencies (Figs. 5C–F and 8C–F). The background estimates
including other states resulted in very similar Pepisode(f ) at 1 Hz
but were quite different at other frequencies (Fig. 8B).

Validation by Human Raters

Each rater independently reviewed the same data set three
times. Signals were derived from a single deactivated period that
had been previously assessed by both BOSC, using the conserva-
tive within state background, and FPPA methods. Windows of
3-s duration were randomly presented from this epoch. To assess
agreement within and across raters, each set of ratings was corre-

lated with every other. As well, each rating was correlated with
the results of both the FPPA and BOSC methods.

In two different runs (of three trials) across 3-s segments
extracted from the same time series sequence but having differ-
ent samples across runs (first run n 5 144, second run n 5
121), raters showed a high degree of consistency across trials.
The average correlations were 0.80 6 0.05 and 0.92 6 0.02
for the first and second runs, respectively (64 and 85% variance
accounted for, respectively). Thus, experts were reasonably
internally consistent across rating trials.

Inter-rater consistency was also reasonable. For the initial
run (as above), the average rating agreement was high (r 5
0.78 6 0.02; 61% variance accounted for), and for the second
run, the inter-rater correlation was again similarly high (r 5
0.73 6 0.11; 53% variance accounted for). Thus, experts were
consistent with each other.

The consistency of experts’ ratings with the FPPA and
BOSC methods were substantially different. The average corre-
spondence to the FPPA method was very low: r 5 0.28 6
0.02 (7.8% variance accounted for), whereas to the BOSC
method it was just as high as the interexpert correspondence:
r 5 0.74 6 0.01 (55% variance accounted for). Thus, the
BOSC method outperformed the FPPA method in terms of
consistency with expert human raters.

For overlapping data classification segments, the agreement
between BOSC and FPPA was equivalently low (r 5 0.29,
8.2% variance accounted for). Closer examination of the mis-
matches between BOSC and FPPA revealed two situations.
The most common was a tendency for FPPA to be too liberal
in classifying low bandwidth power as SO, even when not
obviously rhythmic (Fig. 9A). A less frequent occurrence was
the BOSC detection of short but just threshold oscillations that
were imbedded in backgrounds having less power in the lower
bandwidths (Fig. 9B). During both these cases, human raters
were more likely to agree with BOSC than FPPA. Given the
reasonable correspondence of human expert ratings to the
BOSC method, we thought it useful to assess the influence of
feedback training in which raters were provided with the results
of the BOSC method following each sample evaluation. Inter-
estingly, during these trials, intrarater consistency improved to
0.89 6 0.05 (79% variance accounted for) and in trials subse-
quent to the initial trial run this consistency improved to 0.93
6 0.04 (86% variance accounted for). As well, inter-rater con-
sistency also improved to 0.89 6 0.02 (79% variance
accounted for) and in trials subsequent to the first run this fur-
ther improved to 0.92 6 0.01 (85% variance accounted for).
Not surprisingly, consistency with the BOSC method itself also
increased substantially: 0.91 6 0.03 (83% variance accounted
for; in trials subsequent to the first run this improved only
slightly: 0.92 6 0.02; 85% variance accounted for).

DISCUSSION

This study demonstrates that the BOSC method is a suitable
and versatile detection algorithm for oscillatory epochs across a

FIGURE 7. Tracking BOSC results to fluctuations in the am-
plitude and phase of the 4-Hz theta component. Shown (in order
from top to bottom) are the raw LFP, the 4-Hz bandpass-filtered
version, the BOSC detection results, and the slope of the phase of
the filtered signal as computed from the Hilbert transform. Note
that it is sudden and large changes in phase and not necessarily
amplitude (see arrows) of the filtered signal that correspond to the
breaks in BOSC detection. The star marks a BOSC nondetection
that shows a comparable change in amplitude to the ones denoted
with arrows.
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multitude of conditions. In particular, it shows that the method
is able to detect both sporadic (SO) and near-continuous (theta)
oscillatory trains of activity in the rat hippocampal network, even
when state changes contribute to the signal on which the meth-
od’s power threshold is based. This is strong evidence that the
BOSC technique is robust to the influences that state changes
can have on the shape of the average power spectrum. Further-
more, the detection of oscillatory epochs using BOSC, but not
the Fourier peak power analytic method, was correlated well with

expert ratings of the same oscillatory episodes and thus BOSC is
principled, reliable, and accurate. Given the present demonstra-
tion and those prior (Whitten et al., 2011), we conclude that the
BOSC algorithm is a reasonably robust method that is suitable
for oscillation detection across species, frequencies, regions, tasks,
and states. The advantages conferred by this method include its
automation, which allows for speedy processing, and an express
lack of bias since it objectively provides quantifiable values for
the detection of oscillations.

FIGURE 8. Detection of slow (1 Hz) oscillations during the
deactivated state: The effects of different background power esti-
mates within, between, and across states. A: Power spectrum for
an 8-s second segment of the deactivated state, overlaid with
(linear) estimated mean background power derived from all states,

the activated state, LIA and the deactivated state. B: The Pepisode(f)
obtained with each of the background estimates. C–F: Raw, 8-s
time series (black) with detected oscillations at 1 Hz plotted in
red (left panels) and time–frequency plots of detected oscillations
(right panels).
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The BOSC Method—A Versatile, Robust, and
Reliable Oscillation Detection Algorithm

Originally, the BOSC method was developed to extract spo-
radic oscillatory activity from recordings having a multitude of
wide-band components that made detection difficult for other
spectral-based methods (Caplan et al., 2001). Until now, no
one has evaluated or used the BOSC method for the detection
of longer runs of near-continuous oscillatory activity such as rat
hippocampal theta. Although other methods may appear well
suited and perhaps more appropriate for this latter type of
detection, we determined that BOSC also performed well for
this purpose and was useful beyond the simple detection of os-
cillatory activity per se. Indeed, because the BOSC measure is
so sensitive to variations in both amplitude and frequency fea-
tures of oscillations, we were able to consistently detect spo-
radic and momentary breaks in otherwise seemingly continuous
trains of theta activity, which corresponded to sudden shifts in
the normal progression of phase values. Thus, the BOSC
method can be used in an efficient dual-mode fashion to mine
data segments for both transient oscillatory activity within
epochs that are mainly nonoscillatory as well as for nonoscilla-
tory periods during epochs containing more continuous oscilla-
tory activity. Together, the results of this evaluation speak to
the versatility of the method and highlight its significance for
the evaluation of neural dynamics in large datasets.

An additional important confirmation made here was that
the detection of oscillations by the BOSC method was rela-
tively insensitive to state-dependent components present in the
background used for the estimated fitting. This is an important
characteristic because many experiments have no prima facie
control over the electrographic state during which a particular
oscillation may be expressed or not. We specifically tested the
resilience of the BOSC method to state changes by examining
the influence of the particular background chosen (activated
versus deactivated) for both types of oscillatory activity (theta
versus the SO). The fact that BOSC was relatively insensitive
to changes in the components of the background spectrum

were in part because the assumptions about the form of the
background spectrum (colored noise spectrum with v2(2)-dis-
tributed wavelet power values) hold sufficiently well across the
states examined here (Figs. 3 and 4). In addition, the power
values one obtains due to the two types of rhythmic activity
here (theta and the SO) are sufficiently high that the precise
value of the power threshold is not so critical (Figs. 3 and 4),
which may in part underlie the demonstrated robustness to
state changes; this parallels the resilience of the BOSC method
to fluctuations in and out of the alpha rhythm in humans
(Whitten et al., 2011). Although relatively robust to transitions
across state, the method did perform nominally better when
power estimates came from within the state during which the
particular oscillation was expressed.

This relative robustness of the BOSC method to state
changes means one could use the method to ask research ques-
tions about state changes themselves. However, for research
questions geared toward examining changes in oscillatory activ-
ity within-state, collapsing across major state changes is not
optimal. Although the effects of state changes were not large
(Figs. 5, 6, and 8), when possible, measures of oscillatory activ-
ity would be more precise if comparisons were made within-
state. It would therefore be prudent to account for the current
state if known. If state transitions were not known, a first pass
with BOSC, detecting oscillations at all frequencies using the
entire background signal as a power estimate, could be done.
State changes could then be identified by either plotting the
power at the target frequencies over time as was done here or
through visual inspection by a trained observer. Once state
changes are identified, the BOSC method could be reapplied,
using background estimates to derive the PT values within-state
only.

Using the best-case detection background for the SO, we
also showed that the method was at least as consistent with
expert human raters as were the raters themselves. The low
correspondence of human raters to the FPPA method for the
same dataset highlights the superiority of the BOSC method
even when not considering its other advantages (especially

FIGURE 9. Comparison of BOSC to FPPA detection of slow
(1 Hz) oscillations. A: An example raw (upper trace) and SO-fil-
tered (0.84–1.19 Hz: lower trace) during the deactivated state.
The dotted lines represent the statistical upper and lower limits
(95% confidence interval) based on twice the value of the RMS of
the filtered signal. The box shows a clearly defined BOSC-detected
epoch of SO that was also detected with FPPA despite showing no

clear above-threshold rhythmic activity when visualizing the
filtered trace. B: Another example raw and SO-filtered trace (as in
A) during a transition from activated to deactivated state. The
box shows a BOSC-detected epoch of SO that was not detected
using PPA. Although the raw trace appears not to contain any SO
activity, the filtered trace shows just-threshold activity for three
cycles.
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automation). In fact, the correspondence within and between
raters and between raters and the BOSC method itself was
improved to �90% in subsequent trials in which the raters
were provided with feedback postrating regarding the BOSC
classification. This suggests that although human raters still
have some quantifiable bias, with BOSC feedback training they
can become almost as consistent as the method itself.

In sum, our findings show for the first time that the BOSC
method can be used in nonhuman electrophysiological record-
ings to detect sustained and transient episodes of oscillatory ac-
tivity. The BOSC method was able to detect SO during the
deactivated state as previously shown (Wolansky et al., 2006).
Although the background state used for SO detection did affect
the total number of detected epochs, the results were still quali-
tatively similar and the state-specificity remained. Another
major advantage of this method is its automation allowing for
one to perform oscillation detection with minimal subjective
involvement and maximal efficiency. As one can use the
method to plot detected oscillations over the raw trace, the
careful researcher can also cross-check the results ensuring the
accuracy of the method. This gives researchers a new and
objective method to identify oscillatory activity from human
and nonhuman electrophysiological recordings and allows one
to compare oscillatory epochs across different species, brain
states, and tasks.

Acknowledgments

The authors thank Leanna Cruikshank and Arne Ekstrom
for valuable feedback on the manuscript, Chris Madan for
technical assistance and Kingsley Chan and Caitlin Hughes for
data collection.

REFERENCES

Berger H. 1929. Uber das elektrenkephalogramm des meschen. Arch
Psychiatr Nervenkr 87:527–570.

Bland BH. 1986. The physiology and pharmacology of hippocampal
formation theta rhythms. Prog Neurobiol 26:1–54.

Bland BH, Oddie SD. 2001. Theta band oscillation and synchrony in
the hippocampal formation and associated structures: the case for
its role in sensorimotor integration. Behav Brain Res 127:119–136.

Buzsaki G. 1989. Two-stage model of memory trace formation: a role
for ‘‘noisy’’ brain states. Neuroscience 31:551–570.

Buzsaki G. 2002. Theta oscillations in the hippocampus. Neuron 33:
325–340.

Buzsaki G, Draguhn A. 2004. Neuronal oscillations in cortical net-
works. Science 304:1926–1929.

Caplan JB, Glaholt MG. 2007. The roles of EEG oscillations in learn-
ing relational information. Neuroimage 38:604–616.

Caplan JB, Madsen JR, Raghavachari S, Kahana MJ. 2001. Distinct
patterns of brain oscillations underlie two basic parameters of
human maze learning. J Neurophysiol 86:368–380.

Caplan JB, Madsen JR, Schulze-Bonhage A, Aschenbrenner-Scheibe R,
Newman EL, Kahana MJ. 2003. Human theta oscillations related
to sensorimotor integration and spatial learning. J Neurosci 23:
4726–4736.

Chrobak JJ, Lorincz A, Buzsaki G. 2000. Physiological patterns in the
hippocampo-entorhinal cortex system. Hippocampus 10:457–465.

Clement EA, Richard A, Thwaites M, Ailon J, Peters S, et al. 2008.
Cyclic and Sleep-Like Spontaneous Alternations of Brain State
Under Urethane Anaesthesia. PLoS ONE 3(4):e2004. doi:10.1371/
journal.pone.0002004.

Dickson CT. 2010. Ups and downs in the hippocampus: the influence
of oscillatory sleep states on ‘‘neuroplasticity’’ at different time
scales. Behav Brain Res 214:35–41.

Ekstrom AD, Caplan JB, Ho E, Shattuck K, Fried I, Kahana MJ.
2005. Human hippocampal theta activity during virtual navigation.
Hippocampus 15:881–889.

Freunberger R, Fellinger R, Sauseng P, Gruber W, Klimesch W. 2009.
Dissociation between phase-locked and nonphase-locked alpha oscilla-
tions in a working memory task. Hum Brain Mapp 30: 3417–3425.

Hasselmo ME. 2005. What is the function of hippocampal theta
rhythm?—Linking behavioral data to phasic properties of field
potential and unit recording data. Hippocampus 15:936–949.

Isomura Y, Sirota A, Ozen S, Montgomery S, Mizuseki K, Henze DA,
Buzsaki G. 2006. Integration and segregation of activity in entorhi-
nal-hippocampal subregions by neocortical slow oscillations.
Neuron 52:871–882.

Klimesch W, Sauseng P, Hanslmayr S. 2007. EEG alpha oscillations:
the inhibition-timing hypothesis. Brain Res Rev 53:63–88.

Le Van Quyen M, Foucher J, Lachaux J, Rodriguez E, Lutz A, Mar-
tinerie J, Varela FJ. 2001. Comparison of Hilbert transform and
wavelet methods for the analysis of neuronal synchrony. J Neurosci
Methods 111:83–98.

Marshall L, Born J. 2007. The contribution of sleep to hippocampus-
dependent memory consolidation. Trends Cogn Sci 10:442–450.

Marzano C, Ferrara M, Mauro F, Moroni F, Gorgoni M, Tempesta D,
Cipolli C, De Gennaro L. 2011. Recalling and forgetting dreams:
theta and alpha oscillations during sleep predict subsequent dream
recall. J Neurosci 31:6674–6683.

Percival DB, Walden AT. 1993. Spectral Analysis for Physical Applica-
tions: Multitaper and Conventional Univariate Techniques. Cam-
bridge: Cambridge University Press.

Plett M. 2000. Ultrasonic Arterial Vibrometry with Wavelet Based
Detection and Estimation. Seattle, WA: University of Washington.

Schall KP, Kerber J, Dickson CT. 2008. Rhythmic constraints on
hippocampal processing: State and phase-related fluctuations of
synaptic excitability during theta and the slow oscillation. J Neuro-
physiol 99:888–899.

Schiff SJ, Aldroubi A, Unser M, Sato S. 1994. Fast wavelet transforma-
tion of EEG. Electroencephalogr Clin Neurophysiol 91:442–455.

Schlesinger MF, West BJ. 1988. 1/f versus 1/fa noise. In: Stanley EH,
Ostrowsky EH, editors. Random Fluctuations and Pattern
Growth: Experiments and Models. Dordrecht: Kluwer. pp 320–
324.

van Vugt MK, Sederberg PB, Kahana MJ. 2007. Comparison of
spectral analysis methods for characterizing brain oscillations.
J Neurosci Methods 162:49–63.

Vanderwolf CH. 1969. Hippocampal electrical activity and voluntary
movement in the rat. Electroencephalogr Clin Neurophysiol
26:407–418.

Watrous AJ, Fried I, Ekstrom AD. 2011. Behavioral Correlates of
Human Hippocampal Delta and Theta Oscillations During Navi-
gation. J Neurophysiol 105:1747–1755.

Whitten TA, Hughes AM, Dickson CT, Caplan JB. 2011. A better
oscillation detection method robustly extracts EEG rhythms
across brain state changes: The human alpha rhythm as a test case.
Neuroimage 54:860–874.

Wolansky T, Clement EA, Peters SR, Palczak MA, Dickson CT. 2006.
Hippocampal slow oscillation: A novel EEG state and its coordina-
tion with ongoing neocortical activity. J Neurosci 26:6213–6229.

Worden MS, Foxe JJ, Wang N, Simpson GV. 2000. Anticipatory bias-
ing of visuospatial attention indexed by retinotopically specific
alpha-band electroencephalography increases over occipital cortex.
J Neurosci 20:RC63.

1428 HUGHES ET AL.

Hippocampus


