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Abstract

Background:
Neural oscillations are important for understanding cognitive functions. To quantify them,
certain methods, including Better OSCillation detection (BOSC), distinguish oscillatory
activity from non-oscillatory 1/f background activity and derive detection thresholds in order
to disregard most background signal. When successful, this produces detection criteria that
are fairly calibrated across frequencies. However, if the background estimate is misaligned,
this can backfire and potentially introduce a frequency bias.

New method:
The optimized BOSC method incorporates several improvements after testing each indepen-
dently and as combinations before comparing them all together with the standard BOSC
method. The improvements in question are: removing high-power values across frequencies,
using median rather than mean power values, and robust regression.

Results:
The new BOSC method showed enhanced performance when using shorter time windows
and when substantial power existed at one end of the measured spectrum. Synthetic signals
were used to demonstrate further versatility and the limitations of the new method.

Comparison with existing methods:
The standard BOSC method fared reasonably well aside from some extreme edge cases.
Outcomes suggested that at very short time windows, or when artifacts or lopsided power
spectra are a concern, the optimized BOSC method could result in a more selective fit that
shows greater alignment with the coloured-noise background signal.

Conclusion:
The standard BOSC method performs well in many typical scenarios, but the optimized
version is ideal for less conventional scenarios and addresses many of the shortcomings of
the standard method in these cases.
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1. Introduction

Neural oscillations, rhythmic brain activity produced by synchronized neuronal firing, are
associated with numerous brain states and cognitive functions so quantifying them is very
important for understanding the neural basis of cognition and behaviour (e.g., Buzsáki and
Draguhn, 2004). The quality of neural oscillation research hinges on how accurately rhythmic
activity can be quantified. This is not trivial because oscillations are typically not sustained
but are sporadic in duration and not constant but variable in both amplitude and frequency.
Also, the fact that oscillations are embedded within signal that has non-zero background
power values at all measured frequencies makes this even more challenging. Fortunately,
the form of this background power is known to be coloured noise, of the form P (f) ∝ 1/fα,
where P is power, f is frequency and and α is an exponent that is typically between 1 and
2 (Shlesinger and West, 1998). Numerous researchers have exploited this to either study
the background signal itself (like Samaha and Cohen (2022) and Donoghue et al. (2020))
or to calibrate measures of oscillatory activity by defining an oscillation as a signal that
deviates significantly from the standard background signal (Caplan et al., 2001; van Vugt
et al., 2007; Whitten et al., 2011; Hughes et al., 2012; Kosciessa et al., 2020; Seymour et al.,
2022). One widely adopted such method is Better OSCillation detection (BOSC; Caplan
et al. (2001); Whitten et al. (2011)), which uses power thresholds calibrated relative to an
estimate of the background along with a duration threshold that scales with the oscillatory
period (Figure 1). Although adopted by more than 32 labs in over 52 publications, the
BOSC method has known vulnerabilities shared by any method that is based on fitting the
coloured-noise spectrum. A particular example is that whenever the background estimate
is misaligned the thresholds will be calibrated incorrectly and this is especially problematic
with errors in the slope. This is because inaccuracies in the slope estimate reintroduce a bias
across frequency even though the goal of estimating the background spectrum is to remove
this frequency-bias. Here we estimate and illustrate the severity of the problem in general
and in exaggerated problem conditions. We then compare several approaches to help the
method fit more of the background signal and less oscillatory or artifactual signal. Before
we do so, we briefly elaborate on the challenges in quantifying oscillations and potential
applications of a more stable method.

1.1. Quantifying oscillations and challenges

The alpha rhythm (8–12 Hz) is one of the most robust known rhythms in the EEG,
easily evoked when participants close their eyes. For these reasons, it is a very good test
case for signal-processing methods. When this was first discovered by Berger (1929) the
oscillations were identified by visual inspection but later they were identified with Fourier
Transforms to compute the power spectrum while looking for a peak at a particular frequency
(Klimesch, 1999). However, signals in the brain are non-stationary and while windowed
Fourier Transforms can address changes over time, wavelet transforms are better suited to
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Figure 1: A schematic representation of the thresholds used in the BOSC method along with the background
fitting of power spectra. (A) Illustration of power threshold and duration threshold on a section of EEG
signal. Both thresholds must be exceeded for an oscillation to be recorded. (B) A power spectrum with a
background fit which is used to derive the power thresholds at each analyzed frequency. Also shown is an
incorrect fit which shows how a bias across frequency will occur if the slope of the background fit is wrong.

this non-stationarity. This is because the wavelet family is scale-invariant, meaning that
wavelets are comparable (i.e., the precision, or resolution, in both time and frequency are a
constant proportion at all frequencies) across frequencies (Schiff et al., 1994).

Since background signal power has the form P (f) ∝ 1/fα, oscillatory power needs to
be adjusted accordingly at each frequency. Imagine if one were to select only one single
power threshold to label signal as oscillatory— power at lower frequencies would nearly all
be above that threshold and power at higher frequencies would nearly all be below that
threshold.1 Several methods of analyzing oscillations, including BOSC, start by estimat-
ing the background spectrum such that measures can be rescaled relative to this estimate.
Applications of BOSC typically go one step further, and label segments of the recording as
oscillatory when the signal deviates substantially from that theoretical background signal.
Therefore, for oscillation detection the power thresholds must differ systematically by fre-
quency to account for the coloured-noise background form, and the BOSC method does this
by estimating the background spectrum using linear regression of the power spectrum in
log-log coordinates where it should be close to a linear function (Whitten et al., 2011). Be-
cause power is computed as the square of a complex value, the sum of the square of the real
and imaginary parts (each of which is approximately Gaussian-distributed) should produce
a χ2(2) distribution at each frequency like the example in Figure 2A (Percival and Walden,
1993). Power thresholds are thus set to some high percentile (usually the 95th percentile) of
the χ2(2) distribution after estimating mean power at each frequency using the background

1To offer some intuition: For a given amplitude, higher-frequency components reflect more energy. If
power did not decrease as frequency increased, that would sum to infinite energy, which is not plausible.
This means the observed decrease in power with increasing frequency (as in EEG signals) may be seen as
reflecting a physical constraint.
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estimate. An oscillation is “detected” at frequency f when the power threshold is exceeded
for a minimum consecutive time, defined by the duration threshold, set to some number
of cycles at f (usually three). The step-by-step process of BOSC from loading signal data
to detecting oscillations is illustrated in Figure 6 (red pathway). After detections are iden-
tified throughout the entire signal, we can then calculate Pepisode values at each analyzed
frequency; these represent the proportion of time (of the total signal length) during which
detections are present.

If the estimate of the background spectrum is well-aligned with the true background,
using a fixed-percentile power threshold will be unbiased across frequencies. However, if the
background estimate is misaligned, especially if the slope is wrong, that wrong slope will
introduce a new bias in oscillation analyses: low frequencies will be detected with a more
liberal power threshold than high frequencies, or vice versa depending on whether the slope
is under-estimated or over-estimated.

In summary, wavelet transforms are best-suited for non-stationary electrophysiological
signals, so BOSC makes use of them before estimating the 1/fα background during spec-
tral analysis to derive detection thresholds that should be exceeded by oscillatory activity.
However, a frequency bias can be introduced if the slope is wrong so robustness in the esti-
mate is desired. We devised several scenarios where a more robust background fit would be
advantageous, as we summarize next.

1.2. Circumstances that could benefit from a more robust background-spectrum fit

Because previous applications of BOSC and similar methods have used several minutes or
more of signal to estimate the background spectrum, a scenario of interest is using short time
windows within a signal. Standard use of a long segment of data to estimate the background
has the obvious advantage of using more data, thus increasing the signal-to-noise ratio of
the power spectrum and possibly avoiding many cases where the slope could be misaligned.
However, this breaks down if the spectrum is very non-stationary and changes throughout
the recording. For example, overall gain shifts due to electrodes slipping or drying out
over time or gradual mental state changes can make the background spectrum appear quite
different over time.

Another reason for investigating BOSC using short data windows from a given signal
was because using a smaller window could adapt to slow drifts in the spectrum. This
could also possibly help calibrate the thresholds better for oscillation detection within that
particular window since the rest of the signal would not influence the background fit for
that particular region. Using a shorter window could also reduce computation time since
wavelet transforms and Fourier transforms scale superlinearly in the number of time points.
Increased computational speed could be particularly helpful for real-time applications of
EEG analysis. The tradeoff, however, is that with a shorter background-estimate window,
the estimate becomes more unstable, which could insert more noise into oscillation analyses
than using a longer window. A more robust background-estimate method is needed to
achieve good-quality performance at short time windows.

The second circumstance of interest – signals with oscillations at or near the edges of
the measured power spectrum, was investigated because a peak at the edge of the power
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spectrum could have a large influence on the slope, tilting the background fit. This has a
worse effect than a peak near the middle of the range of analyzed frequencies which would
pull the fit upwards but with a far smaller effect on the slope. The former would produce
the bias across frequencies regarding the power thresholds discussed above so correcting the
background fit would be useful when applying the method to signals with oscillations near
the edges of the power spectrum. Additionally, other artifacts that introduce power values
that deviate from the background spectrum could affect the fit.

In sum, the two scenarios of interest that could benefit from a more robust background
fitting method are: the use of short time windows within a larger signal, and signals with
oscillations near the edges of a sampled frequency range.

1.3. Previous improvements to robustness of the background fit

The BOSC method has been shown to be relatively robust to state changes regarding
the background fit and calculation of thresholds (Whitten et al., 2011; Hughes et al., 2012).
However, anything that influences the regression will affect the thresholds and this was seen
with peaks in power spectra along with various artifacts. An improvement to the background
fit that was used in the standard version of BOSC and continued to be used in our optimized
version involved converting power values to log form before averaging rather than averaging
power values and then log-tranforming (van Vugt et al., 2007). Later improvements focused
on the fitting algorithm involve eBOSC (extended BOSC) by Kosciessa et al. (2020) which
used robust regression and fBOSC (FOOOF + BOSC) by Seymour et al. (2022) which
combined BOSC with the FOOOF (fitting oscillations and one over f) method by Donoghue
et al. (2020) which allowed the option of estimating a non-linear background spectrum.
While useful, these modifications still assumed that the background estimate is aligned
with the actual background after minimizing the effects of spectral peaks. In this paper,
the improvements made to BOSC helped to address the potential less-obvious influence of
various other artifacts by evaluating the background fit using theoretical properties, notably
the χ2(2) distribution of power values rather than assuming that the best fit to the points
on the power spectrum was the best background estimate. Getting the background fit right,
especially the slope, has always been particularly important since, as already mentioned, an
error in the slope can introduce a bias across frequencies.

In sum, the background fit has been previously improved by: using mean values after
log-transforming, along with using alternative regression forms to ignore outliers or perform
a non-linear fit, but an evaluation using the theoretical properties of the background, as we
do here, could help address less-obvious effects of artifacts.

1.4. Outline

In this paper, we explore methods of improving the general robustness of the BOSC
method using empirical data with varying degrees of alpha oscillations along with synthetic
data with oscillations simulated at various frequencies and amplitudes.

Our first goal was to improve the robustness of the background fit at shorter data win-
dows after first testing standard BOSC. To evaluate the robustness of the regression-based
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estimate of the background spectrum, we considered several outcome measures. We rea-
soned that since the true background spectrum should be relatively stable over timescales
of a few minutes, the variability of a given method when estimating the background across
successive background windows could be used as an outcome measure for robustness. The
first way we quantified this variability was by computing the standard deviation of the slope
estimated by the regression, over successive time windows. The second outcome measure
was the standard deviation of estimated intercepts. We were more concerned with the stan-
dard deviation of the slope because a wrong slope introduced a more serious problem: a
bias across frequencies that can artifactually produce ceiling or floor oscillation detection
at high or at low frequencies (Figure 1B). A wrong intercept changes the degree to which
thresholds are conservative or liberal, but comparably at all frequencies. Figure 3A,B plots
these measures as functions of window size, and both began to increase sharply at around
the 30 s window and below. While this showed greater consistency, it did not necessarily
mean the background estimates were more aligned with the true background. Since we know
that a signal of pure non-oscillatory background has a theoretical power value distribution
of χ2(2) at each frequency, we can compare that with the distribution of the actual power
values based on the background fit using the Kolmogorov-Smirnov d statistic (KS d) which
quantifies the maximum difference between two cumulative distribution functions (CDFs)
(Figure 2B). Therefore, lower KS d values indicate higher alignment with the theoretical
χ2(2) distribution so the KS d values for each window size are an outcome measure that
evaluates the alignment of the background fits with this theoretical standard. For our specific
outcome measure, we began by taking the median KS d value of the analyzed frequencies in
all windows within a signal before averaging those values from all windows of each size (e.g.,
average the median KS d from all 5 s windows, repeat for all other window sizes). Compared
to slope and intercept SD, this averaged median KS d (simply referred to as median KS d)
remained much more steady across window size and although there was an increase with
shorter windows there was also a lot of overlap of boxes across window sizes (Figure 3C).

Our second goal was to test and improve the robustness of BOSC for signals with os-
cillations near the edges of the power spectrum along with other extreme cases. We first
investigated this using empirical data with a “partial-spectrum” test. This test used signals
with an alpha peak that we cut off artificially at the peak frequency so the peak would be
right on the edge of the spectrum. The slope and y-intercept of the background fit were
compared with that of the full spectrum. In this test, robustness was indicated by small
differences in slope and y-intercept between the full spectrum and the partial spectrum. For
standard BOSC, a power spectrum with an alpha peak would pull the regression line up
but with a partial spectrum the regression line becomes tilted as well (Figure 5). A similar
test using simulated signals was done and reported later where simulations with peaks at
extreme frequencies, along with various other anomalies were compared to simulations with
alpha oscillations.

We had several ideas for the improvement of the background estimate:
1) Robust regression. Frequencies that deviate from the background signal we are trying

to estimate may tend to be more variable so a robust regression, used in eBOSC (Kosciessa
et al., 2020), could be beneficial by reducing the influence of outliers. We used MATLAB’s
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Figure 2: Empirical vs theoretical probability distribution function (PDF) and cumulative distribution
function (CDFs) of power values at one frequency of interest. (A) Comparison of the empirical PDF (bar
graph) from the Pz electrode of a single subject (sampling rate of 500 Hz) to the theoretical χ2(2) PDF
(red line). The last bar indicates overflow collecting power values above the range plotted. (B) Comparison
of the empirical CDF using the same data to the theoretical χ2(2) CDF. The KS d statistic indicating the
maximum vertical distance between the curves is also shown.

robustfit.m function, further discussed in section 3.1.
2) Median power. Because deviations from the background signal will typically consist

of very large power values, exchanging mean for median may reduce the influence of outliers.
The means can then be calculated from the medians through the ratio between the two in
a ln(χ2(2)) distribution since the regression is done in log-log coordinates after accounting
for the scale between the ln(Power) and ln(χ2(2)) distributions (Eq. 2).

3) High-power removal method. Consider that power values that are not part of the back-
ground spectrum we are trying to estimate usually take on very high values (e.g., Figure 2A).
If we screen out those high-power values, we may be able to more accurately estimate only
the background signal. After a first pass to estimate the face-value power spectrum, we then
remove any power values exceeding a high threshold (based on the χ2(2) distribution) at
any frequency in order to reduce the effects of high-power values, characteristic of oscillatory
activity or possibly artifacts, on the background estimate.

4) Frequency-subset method. Consider that frequencies that have little or no oscillatory
signal present come closer to our theoretical model of the background signal. We might
improve the robustness of the regression by simply focusing the regression on a small set
of “good” frequencies while ignoring frequencies with suspected oscillatory (or artifactual)
activity.2 After a first pass to estimate the face-value power spectrum, we performed the
regression using a subset of frequencies that best represent the non-oscillatory background
rather than using all frequencies. To determine these best-fit frequencies we initially inves-
tigated the behaviour of the standard deviation and coefficient of variation of power as a
function of frequency (SD(f) and CV(f)). When these did not show any promise we made

2Thanks to Michael J. Kahana for this suggestion.
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Figure 3: Measures of variability across background-spectrum estimates (time windows) as functions of
window size across the 48 participants, electrode Pz. Standard deviation of the slope (A) and y-intercept
(B) and median KS d averaged over windows of the same size (C). Medians are shown by orange lines inside
the boxes, the tops and bottoms show the 75th and 25th percentiles, respectively (difference is interquartile
range or IQR) and the ends of the whiskers show the maximum and minimum values excluding outliers.
Outliers are shown with small orange crosses and are at least 1.5*IQR above the 75th percentile or 1.5*IQR
below the 25th percentile. (A) At the 30 s mark and below the median slope SD sharply increases along
with the spread of the values. (B) The median y-intercept SD also increases with windows under 30 s but to
a lesser degree and the spread is relatively unchanged. (C) Median KS d also increases at the 30 s window
but at a much slower rate and the difference is only pronounced by the 5 s window. The area of the boxes
also overlap significantly so there is little change across window size for median KS d compared to the other
outcome measures.
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use of Kolmogorov-Smirnov tests and the respective d statistic (KS d) that shows how well
the distribution of power at each frequency resemble the theoretical χ2(2) distribution.

Combinations of these four individual modifications were also explored. They too were
then compared with standard BOSC and individual modifications with the ultimate goal
of optimizing the BOSC method to have increased robustness, particularly for short data
windows and signals with oscillations at extreme frequencies. The potential step-by-step
processes of these various combinations are shown in Figure 6 along with that of the standard
BOSC method and the method we found to have optimized robustness the most.

2. General Methods

Here we describe how the empirical signals and synthetic signals were gathered before use
in this paper along with the specifics of the analytical approaches used to test and improve
the robustness of the BOSC method under varying conditions.

2.1. EEG data

The data we used in this paper consisted of resting state EEG recordings along with
various simulated signals generated using slightly modified code from eBOSC by Kosciessa
et al. (2020). The core scripts for the optimized BOSC method including generation of
simulated signals can be found under Data and Code Availability.

The resting-state EEG recordings were taken from 48 participants in a larger experi-
ment investigating the role of neural oscillations in associative memory and anxiety. The
participants consisted of 69 undergraduate students enrolled in an introductory psychology
course at the University of Alberta in exchange for partial course credit (mean age = 20.51
years). Written informed consent was obtained from all participants for being included in
the study, in accordance with a University of Alberta ethical review board. Recordings were
done after participants completed an associative memory task and questionnaires regarding
trait anxiety and demographics (none of which are reported here), along with a brief break.
The recording location featured an electrically shielded, sound-attenuated chamber and a
high-density 256-channel Geodesic Sensor Net (Electrical Geodesics Inc., Eugene, OR), am-
plified at a gain of 1000 and sampled at 500 Hz. During the recording sessions, participants
were instructed to keep their eyes open after a beep until they heard the next beep, and
then to close their eyes and open them only after they heard the next beep for a total of four
beeps spaced one minute apart. In all, there were two 1-minute eyes-open and two 1-minute
eyes-closed cycles alternating after each other with a ∼ 30 s buffer in the recordings before
the eyes open/closed task, for ∼ 4.5 minutes total. Artifact caused by line noise at 60 Hz
was notch-filtered and 21 subjects were removed due to excessive artifacts, leaving 48 EEG
recordings for analysis in this study, all from the Pz electrode (channel 101). Spectral anal-
ysis of the Pz recordings was done using a Morlet wavelet transform with a width of 6 cycles
(Grossmann and Morlet, 1985). Frequencies were analyzed for analysis in 21 logarithmic
steps ranging from 1 to 32 Hz as shown by the following equation:

F = (21/4)n, n ∈ {0, 1, 2, . . . , 20} (1)
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We generated simulated signals using modified code from eBOSC (Kosciessa et al., 2020),
made to resemble the empirical data so they had a total length of 4.5 minutes with a 20-s
buffer followed by alternating nonoscillatory/oscillatory 60-s periods (500 Hz sampling rate)
and a 10-s buffer at the end (see Data and Code Availability for relevant eBOSC scripts).
In the background noise simulation α = 1 therefore 1/fα = 1/f so a signal of pure noise
would have a slope very close to –1 as opposed to the empirical data from the previous
experiment where the true background slope was unknown due to variability in α. The seed
used in the random number generator for the noise was also kept constant at a value such
that the slope of pure noise would remain very close to –1. We inserted oscillations at 10 Hz
to mimic alpha rhythms, 20 Hz to mimic beta rhythms and to present a peak near the edge
of the power spectrum, and would also add them together to create a simulation with two
peaks after simulating them separately. We also used smaller 16 Hz oscillations along with
the 10 Hz and 20 Hz oscillations to create a simulation where the peaks appeared wider
and more connected in the power spectrum. Additionally, we simulated high-power values
in certain cases by including nine large, yet short oscillations that were randomly placed
throughout the signal length at frequencies of 1–4 Hz since this is how high-power values
seemed to appear most often in empirical data. The amplitude of oscillations was variable
from zero to the point where a peak would be very high relative to the empirical data,
except for the high-power simulations where the random 1–4 Hz oscillations were always
present even if there were zero peak frequency oscillations. The position of the oscillations
within the signals remained unchanged, including the seed used for the random generation
of high-power oscillations.

2.2. Testing robustness

The first way we tested robustness was for the short time window scenario and we used
a “sliding-window” method. This would work such that a window of a given size (either
5 s, 10 s, 15 s, 30 s, 60 s, 120 s or 240 s) would start at the earliest point (just after 6 s)
and be “slid” along the length of the signal until the end of the window met the end of the
signal minus 6 s. The 6 s excluded from either side is a “shoulder” value used to exclude
edge artifacts, and it works out to be 3000 samples. The “sliding” was done by translating
the window by one sample after performing the background estimate using BOSC and then
repeating until the endpoint was reached (Figure 4). For larger windows the endpoint would
come earlier since there is less space to slide the window within a given signal and this
ultimately meant that more windows were calculated for smaller window sizes than for larger
ones. The various modified methods were tested for robustness across all 48 datasets with
the same window sizes. The standard deviation for the slope and y-intercept (slope SD and
y-intercept SD) of the regression lines were compared across window sizes as well as across
the different methods. Additionally, the median of the KS d values for all frequencies was
calculated for each window and these values were averaged across all windows of the same
size for a particular signal. This was used as another outcome measure since KS d shows
how close power value distributions given the background estimate are to the theoretical
χ2(2) distribution. Since the linear regression used for the estimate is being evaluated, the
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Figure 4: Illustration of the sliding-window method using a sample signal along with power spectra generated
from various windows. (A) The raw signal with detected 9.5 Hz (alpha peak) oscillations highlighted in red.
Also shown are example windows with three 10-s windows highlighted in blue, two 30-s windows highlighted
in purple and a 60-s window highlighted in green. The black arrow at the top indicates that each window
starts at the beginning and moves along the signal. (B), (C) and (D) show the power spectra generated by
the three 10-s windows as they appear from left to right respectively. (E) and (F) show the power spectra
for the two 30-s windows, again as they appear from left to right and (G) shows the spectrum for the 60 s
window. The various spectra also show the regression lines used to estimate the background. As a window
slides along a signal it generates many spectra and regression lines, the slope and intercept of which are all
compared to assess variation.

power values were scaled down to the χ2(2) distribution (µ=2) using the regression values
before performing the KS test.

All methods were also tested for robustness using a “partial-spectrum” test where each
method would compute the background estimate using the power spectrum from the entire
frequency range or from a restricted frequency range such that if the spectrum had an alpha
peak it would appear on the end rather than in the middle (Figure 5). Essentially, this
would be like having a peak at the highest analyzed frequency rather than near the middle
of the spectrum in the case of alpha. This in turn would affect the slope of the regression
line since a peak in the middle may simply raise the line while a peak on the end can tilt
it. The robustness of each method for this test was measured by the difference between
the slope for the full spectrum and that of the partial spectrum with a smaller difference
indicating the particular method was able to focus on the background and ignore the peaks.

Once the best-performing method from these tests was selected we then shifted focus
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Figure 5: (A) Power spectrum of full frequency range with background estimate from standard BOSC using
least-squares regression. The peak causes the regression to be skewed upwards but the slope is relatively
unaffected. (B) Power spectrum with background fit using partial frequency range that ends in the middle
of the alpha peak. The peak being at the end of the spectrum rather than near the middle line causes the
regression to tilt rather than just being pulled upwards so the effect on the slope is very pronounced.

from the background estimate to oscillation-detection consistency. The optimal method
was compared to the standard BOSC method using the partial-spectrum paradigm at first
before expanding the idea using simulated signals such that the peak could be moved any-
where on the spectrum including high frequencies (which the partial spectrum emulated).
Additionally, multiple peaks were simulated along with simulated high-power values. The
sliding-window test was also repeated using simulated signals to test which scenarios would
result in the greatest difference in performance between the optimized method and the orig-
inal. For this test the amplitude of the oscillations in each signal was varied six times so
there were six data points for the standard and optimized BOSC methods. Since the slope
from the power spectrum of the simulated signals was preset to be very close to –1 with no
oscillations added, this meant that the mean slope of the regression lines from all the win-
dows could also be used as an outcome measure. This was done by comparing the difference
in mean slope and –1, with smaller differences indicating a closer match between the slope
of the background estimate and the actual signal.

Computation time was also tested in two ways for standard BOSC, the individual modi-
fications and the optimal method using a 2019 iMac running MacOS 10.15.7 with a 3.6 GHz
8-core Intel Core i9 processor. The first test involved 100 trials of a script with the standard
BOSC functions from the wavelet transform to determining Pepisode values, with the time of
each trial along with the background fit by itself being recorded. A simulated signal with
10 Hz oscillations, and generated in the manner described above was used as data. The
second test focused on the background fit time only for windows of the different sizes in the
sliding-window test, and obtained these data windows from the same signal as the first test.
The number of windows for each window size per trial was adjusted so the total amount of
data to analyze remained constant, and the results were once again averaged over 100 trials.

In summary, the robustness of the BOSC method and the various proposed modified
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forms were tested for the scenarios of short time windows and oscillations along the edges of
a sampled frequency range using a “sliding-window” test and a “partial-spectrum” test for
each, respectively. This was done using both experimental EEG recordings and simulated
data.

3. Testing various robustness modifications

Next we describe each of the modifications listed earlier in detail, report the outcome
measures of variability and alignment with theory for each using the tests described in the
previous section, and discuss any specific contributions to improving robustness that are
found.

3.1. Robust regression

MATLAB’s robustfit.m function reduces the influence of outliers during a robust regres-
sion of all analyzed frequencies with an algorithm called iteratively reweighted least squares
(IRLS) with the bisquare weighting function (The MathWorks Inc., 2024). This was first
used in the eBOSC method by Kosciessa et al. (2020) who showed that this is useful for
removing the influence of spectral peaks and providing a regression line with a tighter fit to
the remaining points. For the sliding-window test there was no advantage to using robust
regression compared to ordinary least-squares (Figure 7) but it did slightly increase compu-
tation time (Figure 9), likely because robustfit.m involves an iterative algorithm as opposed
to polyfit.m. However, robust regression performed very well in the partial-spectrum test due
to the algorithm’s ability to exclude outliers (Figure 8). During the tests with simulated
signals it was still able to exclude peaks at various frequencies, sometimes even multiple
peaks but the simulated signals with high-power values (generated with many small peaks)
were able to throw it off, along with signals with multiple wider peaks that stretch across
more frequencies (Figure 11). This is presumably because once enough points are affected
the algorithm no longer considers them to be outliers.

3.2. Median power instead of mean power

Since the median is less affected by outliers than the mean, using the median of the
power values (in log form) instead of the mean at each frequency resulted in noticeably
better performance on both tests (Figure 7 and Figure 8). Note that we used the mean
log-power values to line up the background estimate; those means were computed from the
medians:

mean(log10(Power)) =
ψ(1) + ln(2) + median(ln(Power)) - ln(median(χ2(2))

ln(10)
(2)

This equation makes use of the ratio between mean(ln(χ2(2))) and median(ln(χ2(2))) with the
latter being equal to ln(median(χ2(2))) (median(χ2(2)) computed with MATLAB’s chi2inv.m).
The mean of ln(χ2(2)))=ψ(1)+ln(2) which is equal to ln(geomean(χ2(2))) where geomean
refers to the geometric mean, as opposed to the arithmetic mean, or common mean (Lee,
2012; verified in MATLAB). This distinction is important because it allowed us to correct a
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glitch in the original BOSC code where the power thresholds for detection are determined
using the regression values converted from log form and the χ2(2) mean of 2 when the χ2(2)
geometric mean of eψ(1)+ln(2) should be used instead.3 This is also relevant for deriving the
thresholds used in the high-power removal method along with scaling down the power values
for KS tests when regression values are used. Using the medians instead of the means did
increase computation time (Figure 9), presumably because medians require sorting.

3.3. Removing high-power values

One of the main reasons power distributions deviate from the theoretical χ2(2) distri-
bution is due to an abundance of extreme, high-power values (Figure 2A, overflow bar on
right). If we could remove those, we would have a more pure distribution, which would allow
us to selectively fit the background signal more accurately since the influence of those non-
background values would no longer be present. After an initial regression, the fit values were
used to scale the χ2(2) distribution with the power value distributions. Power values ex-
ceeding a high threshold based on the χ2(2) distribution (specifically, the 99.9th percentile)
were removed at each frequency and then another regression was performed using the mean
of the remaining power values (again converted to log form first). Overall this proved to be
an effective improvement on the sliding-window and partial-spectrum tests (Figure 7 and
Figure 8 respectively), but it did increase computation time due to the additional regression
and high-power removal operations (Figure 9).

3.4. Using a subset of frequencies

We reasoned that the background fit should be more accurate and robust if we only use
frequencies that have little oscillatory activity (or artifact) present before performing the
regression. These “best” frequencies were determined in an initial regression using KS d
scaled with regression values to the χ2(2) distribution just as it was used as an outcome
measure. However, other ways of obtaining the KS d values were also tested, namely using
the actual mean of power values at each frequency, using the median power values, and using
the regression values before removing values above a threshold (the 99.9th percentile of the
χ2(2) distribution) and then using the mean of the remaining subsample. Scaling using
mean power values produced inconsistent patterns with the peak frequencies sometimes
having the lowest d-values, but scaling using the regression values was much more consistent
and the peak frequencies usually had much larger d-values compared to other frequencies
(Figure A2A,C). The method of using the regression values, removing high values with a
99.9% threshold and then using the subsample generally showed this pattern too and the KS
d values were generally much lower, but the peak frequencies were not as distinguishable,
but scaling using median power values produced results with low KS d values as well but
also tended to have distinguishable peak frequencies (Figure A2B,D).

Initially we also investigated SD(f) and CV(f) since any frequency with a peak should
show high general deviation a lot from our model of the background. We mainly looked

3This was first flagged by Seymour et al. (2022) in the fBOSC code.
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for whether the peak frequencies in the power spectrum also produced peaks (or potentially
valleys) in the pattern of each outcome measure which would single them out. We first
tested SD(f) with the idea that less variance means that frequency may better represent the
background and would bring with it a benefit of computational simplicity. However, this
measure proved to be inconsistent; sometimes peak frequencies had high SD values but not
other times. Next we tried CV(f), hoping it would compensate for the scale differences in the
1/f form, but CV was even less effective (Figure A1). With both of these measures proving
ineffective it was clear that KS d had more potential, and after testing the four versions of
obtaining KS d on the sliding-window test the method using regression values proved to be
most effective. However, the benefits were marginal (Figure 7), and using KS d substantially
increased run-time due to the complexity of kstest.m, especially the sort functions within.
Using custom code for the KS tests did largely improve the computation time but it was
still relatively costly (Figure 9). This frequency subsetting approach was not included in
the optimized method, although KS d proved to be a useful outcome measure for assessing
the quality of a background estimate.

3.5. The best-performing method used a combination of modifications

In addition to the standalone modifications, we tried many combinations of the pipeline
using the different variants of each modification (Figure 6). The method that showed the
most overall improvement over standard BOSC involved a combination of removing high-
power values, using median-based regression instead of mean-based and using robust regres-
sion (Figure 7 and Figure 8). Specifically, this method started with an initial median-based
regression followed by removing high-power values above thresholds based on the initial re-
gression values and the 99.9th percentile of a χ2(2) distribution before performing a second
regression that is also median-based but also used robustfit.m. The combination of all these
modifications did substantially increase computation time, particularly the combination of
median-based regressions and high-power removal (Figure 9).

4. Comparing the new optimized BOSC method to the standard version

4.1. Oscillation-detection performance on experimental data

We first compared the detection performance of the two methods using the same exper-
imental data from earlier when testing the various modifications. Specifically, comparison
between methods was done using the Pepisode values (probability of detection within a time
window) along with a visual inspection of detections from each method (Figure 10). In
general, the optimized BOSC method resulted in slightly more detections across frequency
and had lower power thresholds for detection since it was less affected by high-power val-
ues. However, the detection rate for signals with power spectra containing no peak or an
alpha peak did not differ by much. Differences became more apparent when using partial
spectra for the same alpha peak signals just like the more apparent difference in background
fit quality, with optimized BOSC showing much more consistency between partial and full
spectra.
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Input data Output data

Standard BOSC

Optimized BOSC

Additional option

Necessary step

Remove high 
power values

Thresholds

Wavelet 
transform

Detection

Least-squares 
regression

Robust 
regression

Means of 
log-power

Medians of 
log-power

Robust 
regression

Least-squares 
regression

Frequency subset 
using KS d

Figure 6: Flowchart illustrating the possible steps that can be taken by different versions of the BOSC
method, with the five-step standard method and seven-step optimized method shown with light red and
cyan arrows respectively. Also shown are options that were used by neither but could be used in different
variations of BOSC, along with the necessary steps that are essential to BOSC. While the regression for the
background fit is not colour-coded as a necessary step, at least one regression must be performed. The icons
within each box are: a Morlet wavelet for the wavelet transform step, a probability distribution function of
power for steps involving it (means and medians of log-power, remove high power), a power spectrum with
a background fit for the regression steps, a cumulative distribution function and d statistic for the frequency
subset step, and a threshold diagram and sample detection output for the last two corresponding steps.
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Figure 7: Slope standard deviation (top), y-intercept standard deviation (middle) and median KS d (bottom)
as functions of window size using the 48 datasets for each method. Methods are depicted in different colours;
referring to the letters in the legend at the top: S - the standard BOSC method, R - robust regression, FS -
frequency subset method, HP - remove high-power, M - median-based regression and O - optimized BOSC
method. For slope and intercept SD, optimized BOSC performs better than standard BOSC even at shorter
windows (e.g., 15 s optimized vs 30 s standard) but the pattern of worsening relative performance below
30 s remains. For median KS d this is also the case for optimized BOSC such that performance improves
with longer windows as opposed to standard BOSC where it stays relatively constant, so the performance
difference increases with longer windows.
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Figure 8: Swarm (left) and box (right) plots for standard BOSC and tested modifications showing the slope
difference between the full spectrum and partial spectrum for the 48 datasets. The high-power removal
method (HP) and robust regression (R) show the smallest differences, along with the frequency subset
method (FS) but with more spread. The former two were combined with the median (M) to form our fully
optimized BOSC method (O). The standard BOSC method is labelled S.
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Figure 9: Computation times for standard BOSC (S), robust regression (R), median-based regression (M),
removal of high-power (HP), the frequency-subset method (FS) and the fully optimized BOSC (O). the
individual modifications and the combination used in our optimized version of BOSC. (A) computation
time for the background fit alone for each method. (B) computation time for the entire BOSC method from
the wavelet transform to retrieving Pepisode values after detection. Computation time was averaged over
N = 100 trials. (C) computation time for the background fit alone for each window size (repeated for a
respective number of windows) for each method. The number of windows decreased at the rate the window
size increased so the amount of data being analyzed remained constant. For all three tests computation time
values were averaged over N=100 trials, in (C) one trial considered all the windows for each window size
(e.g., 48 × 5 s windows or 1 × 240 s window). A simulated signal with 10 Hz oscillations, identical to that
seen in Figures 11A and 12 was used for all three tests, which were performed using a 2019 iMac running
MacOS 10.15.7 with a 3.6 GHz 8-core Intel Core i9 processor.
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Figure 10: Background fit and detection consistency for the standard BOSC method and the new optimized
version using full and partial spectra. Background fits are shown by the power spectra with (A) showing the
spectrum for the full frequency range and (B) showing the same for the partial spectrum that cuts off at the
alpha peak. (A) also shows fit of standard BOSC being pulled up by the peak compared to optimized BOSC,
but (B) shows the fit of standard BOSC being tilted as well while optimized BOSC is barely affected. C–F
show the raw signal (black) with detected episodes (red) superimposed, also points where participants were
asked to open their eyes and close their eyes are indicated with green and blue vertical lines respectively.
(C) shows the detections and Pepisode from standard BOSC when using the full spectrum while (D) shows
the same for standard BOSC with the partial spectrum. The same information is shown for optimized
BOSC with (E) showing the results from using the full spectrum and (F) showing the results of using the
partial spectrum. Immediately notable is the difference in detection consistency as shown by the Pepisode

values from full and partial spectra for optimized BOSC (E and F) being very close (0.41 vs 0.40) while the
Pepisode values from (C) and (D) for standard BOSC are more distant (0.35 vs 0.24). While (C) and (E)
show slightly less detection with the full spectrum for standard BOSC vs optimized BOSC, this is due to
the higher power thresholds in again shown in (A). The greater difference using the partial spectrum, shown
by (D) and (F) is due to the threshold bias across frequency that was shown by the tilted slope of standard
BOSC in (B). While the Pepisode values differ, visual distinction is better highlighted in a zoomed-in portion
during the eyes-closed phase in Figure A3.
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4.2. Assessing background fit and detection with simulated signals

We evaluated background fit by checking how much each method deviated as a result of
the various peaks and detection performance again used consistency again but between the
extreme frequency peaks and more centered peaks in alpha (10 Hz specifically). We also
tested the performance of robust regression by itself as this was one of the main changes in
methods like eBOSC when estimating the background spectrum. In doing so we found that
background fit quality was on par with optimized BOSC for these simulations and could
even slightly exceed it in certain cases (Figure 11A,B,E). This is likely because the robust
regression can still handle extremely high power values and there are no other artifacts in
the simulations. This carries over to detection performance (Table 1 and 2).

To distinguish the capabilities of optimized BOSC from robust regression we focused on
how the latter cannot address skewed values that are not outliers. A good example was the
skew from high-power values in the empirical data, so we used simulated signals designed
to mimic the effects of high-power values from 1–4 Hz. During tests with these simulated
signals, optimized BOSC showed better background fit quality compared to robust regression
and standard BOSC (Figure 11C,D). Another more complex simulation produced two peaks
at 10 Hz and 20 Hz, along with a 16 Hz peak in between but with half the amplitude in
order to make the peaks appear wider and connected. This would mean more points would
be affected instead of a few that could be recognized as outliers, however, this example
not only decreased the performance of robust regression but of optimized BOSC as well
especially as the oscillations grew larger (Figure 11F). Detection performance showed very
similar patterns as background fit quality (Table 1 and 2) Therefore, this example simulation
helps establish the limits of this optimized BOSC method.

Overall, simulated signals with peaks at extremely high or low frequencies showed dif-
ferences in both background fit quality and detection performance similar to that seen with
the partial spectra.

4.3. Sliding-window tests with simulated signals

Next we performed another sliding-window test between the original BOSC method
and the new optimized form using the simulated signals. These compared six different
oscillation amplitudes so as a result there were six data points per window size as opposed
to the 48 (participants) from the empirical data. Performance was once again evaluated
with the standard deviation of the slope and y-intercept of the background fit (slope SD
and y-intercept SD) and with resulting median KS d values by window size. For slope SD
and y-intercept SD, specifically, the performance difference of each method often remained
similar at each window size, with the exception of the windows spanning 120 s and 240 s
where performance was nearly identical (Figure 13 and 14). For median KS d this was not
the case and the trend was reversed to some degree with increased differences between the
two methods at longer windows (Figure 15).

The general performance for both methods decreased on all metrics for simulations with
higher oscillation amplitude and the new optimized method performed better in the vast
majority of instances. The exceptions to this were simulations with two peaks at 10 Hz
and 20 Hz and a similar simulation with a small 16 Hz peak added in between to connect
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Pepisode standard BOSC Pepisode robustfit Pepisode optimized BOSC
10 Hz 0.44 0.45 0.45
20 Hz 0.42 0.44 0.44
10 Hz and high-power 0.42 0.43 0.44
20 Hz and high-power 0.42 0.43 0.44
10 Hz and 20 Hz 0.36 0.43 0.43
10 Hz and 20 Hz (wide) 0.30 0.32 0.32

Table 1: Pepisode values for standard BOSC, robust regression and optimized BOSC for the six simulated
signals used for the spectra in Figure 11. Peak frequencies are shown in the table rows and other features
that match the power spectra so Figure 11A matches with the 10 Hz row, B matches with 20 Hz, C with 10
Hz and high-power, D with 20 Hz and high-power, E with 10 Hz and 20 Hz, and F with 10 Hz and 20 Hz
(wide). These Pepisode values are from the entire signal length and the the true proportion of oscillations
(theoretical Pepisode) included with the noise is 0.46. This is due to the noise generation seed remaining
constant in the eBOSC code we adopted (Kosciessa et al., 2020). The performance differences between the
three methods are similar to those seen in background fit quality with 10 Hz having the smallest difference
between the three. Similar performance is seen for robust regression and optimized BOSC for the other
simulation types apart from the high-power simulations, where optimized BOSC has the advantage. A
visual representation of the values from the simulation with 10 Hz oscillations is shown in Figure 12A.

Pepisode standard BOSC Pepisode robustfit Pepisode optimized BOSC
10 Hz 0.73 0.80 0.80
20 Hz 0.84 0.92 0.92
10 Hz and high-power 0.68 0.73 0.77
20 Hz and high-power 0.84 0.86 0.90
10 Hz and 20 Hz 0.70 0.90 0.89
10 Hz and 20 Hz (wide) 0.75 0.81 0.81

Table 2: Pepisode values for standard BOSC, robust regression and optimized BOSC for the six simulated
signals used for the spectra in Figure 11 but these values are from a small 5-s window with the true proportion
of oscillations (theoretical Pepisode) included with the noise being 1.00, again due to the noise generation
seed remaining constant. The smaller window retains the differences shown in Table 1 but allows them to
be more pronounced, although the 10 Hz + 20 Hz simulation gives a slight edge to robust regression over
optimized BOSC in a special case. A visual representation of the values from the simulation with 10 Hz
oscillations is shown in Figure 12B.
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Figure 11: Background fits for the standard BOSC method (red), BOSC with robust regression (green),
and the optimized BOSC version (blue) using power spectra of simulated signals. (A) Power spectrum and
background fits for a simulated signal with a 10 Hz alpha peak. Robust regression and optimized BOSC
overlap almost entirely. (B) A simulated signal with a 20 Hz beta peak. The fit of standard BOSC is
tilted more than the 10 Hz peak signal, similar to the partial vs full spectrum. Again, robust regression
and optimized BOSC overlap almost entirely. (C) A simulated signal with a 10 Hz beta peak and added
high-power values from 1-4 Hz. The fits for original BOSC and robust regression are both affected by the
high-power values such that they are tilted the opposite way as the signals without them. (D) A simulated
signal similar to (C) but with a 20 Hz peak instead. Again standard BOSC along with robust regression
are skewed while optimized BOSC is resilient. (E) A simulated signal with 10 Hz and 20 Hz peaks. Robust
regression and optimized BOSC perform very similarly with a very slight edge to robust regression in this
special case. (F) A simulated signal with 10 Hz and 20 Hz peaks, along with a smaller 16 Hz peak to reduce
the valley in between. Robust regression and optimized BOSC perform similarly again and the difference
between them and standard BOSC is much smaller.
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Figure 12: Detection comparison example for simulated signals between standard BOSC, robust regression
(robustfit.m) and optimized BOSC again using graphs showing detected episodes (in red) superimposed on
the raw signal (black). The green and blue lines indicate where oscillations begin (blue) and end (green)
similar to the indicators for participants to close or open their eyes. This particular example corresponds to
Figure 11A. The top row (A) shows detections and Pepisode values for the entire signal and the bottom row
(B) is zoomed in to a particular section to highlight greater differences on a small scale.

the two peaks, which skewed both methods. The optimized BOSC method had the clearest
advantage with the high-power value simulations. Shorter time windows also resulted in
worse performance like the empirical data with the exception of a new outcome measure
|µslope − (−1)| which remained relatively constant in most instances. This represented the
absolute difference between the mean slope and –1, the preset slope of these simulations using
just 1/f noise so smaller differences indicated a better match to the true slope (Figure 16).

In sum, the simulated signal, for which we know the ground truth, confirmed the supe-
riority of the optimized BOSC method, including its stability at short windows and special
advantage with high-power oscillations.

5. Discussion

In this paper we assessed, for the first time, the robustness of the background fit from
the standard BOSC method using short time windows within a larger signal. We found that
background fitting decreased in performance substantially for windows < 30 s in our ∼ 4.5-
minute empirical signals for all outcome measures (slope and y-intercept SD, median KS d).
However, this does vary depending on the unique qualities of each signal in question. This
is exemplified by how performance on all metrics was better at all windows for the synthetic
data which was free from gain shifts and generally had much more controlled variation.
Also for the first time, we analyzed the robustness of the BOSC method using signals with
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Figure 13: Slope standard deviation (slope SD) for the various kinds of simulation types. The red points
are from standard BOSC and the blue points are from optimized BOSC. The x-values (window sizes) for
the red and blue points are the same they are just plotted side-by-side, the same is true for Figures 14,
15, and 16. (A) The simulation with a 10 Hz alpha peak. (B) The simulation with a 20 Hz beta peak.
The high-power simulations show the biggest difference with (C) being high-power and a 10 Hz peak and
(D) being high-power and a 20 Hz peak. (E) shows a simulation with both a 10 Hz and 20 Hz peak and
(F) is a similar simulation, but with a smaller 16 Hz peak in between to make the other two peaks wider
and connected. These two instances show the lowest difference with the optimized BOSC showing worse
performance for (F), at least on this particular metric.
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Figure 14: Y-intercept standard deviation (y-intercept SD) for the various kinds of simulation types. The
colour coding and subplots match Figure 13. Patterns are generally similar, with the biggest differences in
the high-power simulations (C) and (D) and the lowest performance of optimized BOSC in (E) and (F).
The clustering in (A) for standard BOSC that is not present in Figure 13A may be due to coincidental
convergence of lines with different slopes on similar intercepts.
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Figure 15: Median KS d for the various kinds of simulation types. The colour coding and subplots match
Figure 13. Optimized BOSC performs better on all types but differences are generally less prominent for
this particular metric. Again the biggest differences are in the high-power simulations (C) and (D) while
(E) and (F) show the smallest differences.
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Figure 16: |µslope − (−1)|, (absolute values) for the various kinds of simulation types. The colour coding
and subplots match Figure 13. Like with median KS d, optimized BOSC performs better in all instances;
however, differences in (A) and (B) are more pronounced to the point where they are comparable to the
high-power simulations (C) and (D). (E) and (F) once again show the smallest differences.
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oscillations near the highest analyzed frequency (32 Hz). We found that these scenarios
are quite devastating to the background fit and this becomes exacerbated with larger peaks
in the power spectrum. Even if the peak is in the middle of the spectrum it can still be
problematic if the peak is extremely large. We designed a new version of the BOSC method
to optimize performance in these areas in order to address these vulnerabilities.

5.1. Our optimized BOSC method

Based on the results from the two tests, we modified the BOSC method to: remove high-
power values, use medians rather than means of power when performing the background
fit, and use robust regression in place of least-squares regression. While more focus was
given to the sliding-window test, the use of the two tests helps complement the limitation
of each as an operationalization of general robustness. A good example is how the robust
regression only made a large difference in the partial-spectrum test and its value may not
have been clear if we had only used the sliding-window test. As explained earlier, the partial-
spectrum test also relates to the later tests we did with simulated signals with peaks and very
high/low frequencies by emulating a signal with a peak at the highest analyzed frequency.
Therefore, the findings from the partial-spectrum test relate to and are expanded upon with
those from the later tests with simulated signals. For the sliding-window test, optimized
BOSC provided a strong advantage over standard BOSC with respect to the consistency and
alignment of background estimates with theoretical standards such that optimized BOSC
had better performance at windows 15 s or smaller compared to 30 s windows using standard
BOSC (out of the ∼ 4.5 minute length for the empirical signals). The overall pattern of
decreased performance for windows under 30 s seen with standard BOSC did remain with
optimized BOSC but the differences were less prominent. While the consistency (standard
deviation of slopes and intercepts) of background estimates was first tested, the (median
KS d) refers to the degree of alignment between the power values and the theoretical χ2(2)
distribution.

5.2. Overall comparison with standard BOSC

Having evaluated background fit quality and detection using both empirical and simu-
lated signals, it is clear that the optimized BOSC method is most helpful when a signal has
spectral peaks at very high or low frequencies along with various artifacts like high-power
values. Because optimized BOSC is designed to provide a fit based on theoretical assump-
tions, it has more ways of dealing with artifacts that may not be identifiable visually or
as statistical outliers. That said, the detection performance does not differ substantially
between the standard and optimized BOSC methods for signals with no peaks or a peak
in the center of the power spectrum (like alpha range), along with having little anomalies
and artifacts. This suggests that the standard BOSC method performs sufficiently well in
these cases, and even though a spectral peak may skew the regression of the standard BOSC
method slightly upwards, the line is not tilted. The effect is similar to an increase in the
power thresholds, making oscillation detection a bit more conservative at all frequencies.
At the opposite end, the optimized BOSC method also has some remaining limitations as
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shown with the more complex simulations. It cannot account for all artifacts, especially of
large size and quantity so in those extreme cases manual examination is still required.

5.3. Recommendations

For signals with no prominent peak or a peak near the middle of a power spectrum, the
standard BOSC method performs well. For signals with spectral peaks near the edges of
the analyzed range of frequencies, artifacts like excessive high-power values or with short
windows within a larger signal, the optimized BOSC method offers superior performance.
The presence of influential high-power values was certainly not uncommon in our empirical
data so mitigating the effects of them is definitely helpful. Even with standard BOSC
a comparison of power values to the theoretical χ2(2) distribution using KS tests can be
beneficial since the influence of high-power values is not always apparent. If there are high
KS d values in non-peak frequencies then it may be worth using the optimized method over
the original. Our consistent focus on the expected χ2(2) distribution of background power
during the development of the optimized BOSC method provided us with the opportunity
to perform evaluations with objective criteria rather than assuming the closest fit is most
aligned with the true background. Despite the success of optimized BOSC in the above cases,
there are still situations where a particular signal may contain so many large oscillations or
artifacts that neither method will work well enough. These rare cases would still have to be
examined manually and handled as special cases.

Finally, although we focused on BOSC, a method that was designed to view oscillations
as discretely turning on and off (although potentially varying in amplitude), the lessons
learned may be useful for methods of analyzing spectral features of EEG that stop short of
thresholding, if they also rely on estimates of the coloured-noise background.

5.4. Limitations

We took a systematic approach to assessing modifications of the background-fitting
method but restricted our tests to a single data set focusing on posterior alpha oscilla-
tions related to visual inattention. Additionally, robustness is very general so it can be
operationalized and tested using many different metrics and while our tests highlighted var-
ious strengths and weaknesses of BOSC, they certainly were not all-encompassing. While
we used simulated signals with oscillations at various or multiple frequencies aside from
alpha, oscillations in non-human animals with different characteristics may benefit more or
less from our optimized BOSC method. However, BOSC has been successfully applied to
invasive recordings from humans and non-human animals (e.g., Caplan et al., 2001; Ekstrom
et al., 2005; Watrous et al., 2011; Jutras et al., 2013; Hughes et al., 2012). Moreover, Whit-
ten et al. (2011) and Hughes et al. (2012) found consistency between human scalp-recorded
alpha rhythms and rat invasive hippocampal recordings of theta and slow oscillations in
that the standard BOSC method showed similar resilience to the precise power thresholds.
There is therefore good reason to expect that the improvements considered here will produce
similar results in different types of recordings.

Another limitation is that while this optimized BOSC method deals with high-power
values well, it is limited in the sense that while high-power values can be removed, absent
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low-power values are not filled in. Therefore, if the absence of low-power is the reason power
distributions do not fit a χ2(2) distribution it cannot be adjusted. Also regarding the nature
of the 1/fα background itself, a growing body of literature suggests that the α parameter
can vary over ranges of frequency and the exact causal mechanisms behind the background
noise have yet to be determined (He, 2014; Gyurkovics et al., 2021; Samaha and Cohen,
2022). The FOOOF algorithm (Donoghue et al., 2020) addresses this by estimating a non-
linear background spectrum form by incorporating a “knee” parameter into the regression.
This was combined with BOSC to make fBOSC (Seymour et al., 2022) and was expanded
upon in the SPRiNT (Spectral Parameterization Resolved in Time) algorithm (Wilson et al.,
2022) to address possible time-variance in the 1/fα background. An alternative to FOOOF,
Greenberg et al. (2016) replaced the linear regression in BOSC with a quadratic regression
to account for curved spectra. These methods do not remove less-obvious artifacts like high-
power values, however, which raises the question of how the modifications implemented here
may synergize with nonlinear fitting approaches, or if further adaptation is needed.

5.5. Conclusions

In this study we optimized the BOSC method such that it can, in many cases, automat-
ically account for the influence of not only spectral peaks but also high-power values that
have a less obvious influence when estimating the 1/fα background. This is because the
selected modifications work to bring the power value distribution at each frequency as close
as possible to the theoretical χ2(2) distribution in addition to downweighting the influence
of outliers in power spectra. While limited to linear fitting, this method uses a theoretical
standard for assessing the quality of a background estimate rather than assuming that the
tightest fit to non-peak frequencies is the best estimate, and this is what distinguishes it
from other methods. In terms of application, the tests we carried out show that this opti-
mized BOSC method has clear advantages over the original when using shortened windows
within a larger signal along with when spectral peaks are present near the edges of a power
spectrum and when a signal has high-power artifacts. However, for analysis of whole sig-
nals that are relatively artifact-free and have an alpha or theta peak or none at all, the
difference is negligible and the standard BOSC method performs well. Since the influence
of high-power values is often not obvious, comparing the power distribution to the χ2(2)
distribution with KS d can certainly be beneficial when using standard BOSC to check if it
is more appropriate to switch to the more robust yet more complex optimized BOSC method
or if the standard BOSC method is well suited to the case.

6. Data and Code Availability

The core scripts for the optimized BOSC method along with those for generating simu-
lated data can be found at: https://github.com/kapawluk/optimized-BOSC

The simulated data was generated using scripts derived from the eBOSC project (Ko-
sciessa et al., 2020), with the relevant code found at: https://github.com/jkosciessa/eBOSC/
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Appendix A.
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Figure A1: SD(f), CV(f) and respective power spectra from two empirical datasets (left and right column,
respectively). SD(f) is shown by (A) and (B) and while the plot in (A) has the highest values at the
peak frequencies for the respective power spectrum (E), this is not consistent with (B) and the respective
power spectrum in (F). CV(f) is shown by (C) and (D) and neither plot has the highest or lowest values
corresponding to the peak frequencies in either power spectrum.
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Figure A2: Various methods of calculating KS d vs frequency for the same dataset, shown by the power
spectrum (E). (A) KS d calculated using the mean of power values at each frequency. (B) KS d calculated
using regression values at each frequency. (C) KS d calculated with the method using regression values,
a 99.9% threshold and subsample mean. (D) KS d calculated using the median of power values at each
frequency.
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Figure A3: Zoomed in 5 s sections from Figure 10 (from 135 – 140 s in the signal). (A) corresponds to
Figure 10C (standard BOSC with whole spectrum) while (B) comes from standard BOSC with the partial
spectrum in Figure 10D. (C) and (D) do the same but with optimized BOSC (corresponding to Figure 10E
and F respectively) and they are identical with no loss of detection while (A) and (B) show clear diffeences
in detection. This zoomed-in section provides an example of how optimized BOSC can conserve detection
while only using a partial spectrum that would lead to a loss of detections in standard BOSC.
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